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Abstract

This research aims to explore the potential of citrus waste for valuable products.  A special 

pyrolysis chamber was used to produce bio-oil through thermo-catalytic pyrolysis of sweet 

lemon (Citrus limetta) waste using zeolite β, ammonium catalyst.  Kinetic parameters were 

derived from thermogravimetric data using the Kissinger equation. The activation energy and 

frequency factor values for hemicellulose, cellulose, and lignin were determined to be 83.14, 

108.08, and 124.71 kJ/mol, and 6.3×104, 9.4×106, 2.6×109 min-1, respectively. GC-MS analysis 

of the bio-oil revealed a variety of fuel range hydrocarbons. Additionally, the biochar generated 

from non-catalytic and catalytic pyrolysis were compared which exhibited different surface 

characteristics as evident by Scanning Electron and Transmission Electron Microscopy 

depictions. Our findings indicated that the zeolite β, ammonium served as effective catalyst by 

reducing activation energy and lowering the temperature required for maximum degradation 

during pyrolysis, ultimately yielding a diverse array of useful products from citrus waste 

compared to non-catalyzed reaction. It was concluded from the fuel’s properties that the bio-oil, 

if slightly upgraded using the appropriate techniques, had a promising future as a green fuel. 

Keywords: Citrus wastes; Zeolite β, ammonium; Pyrolysis; Kinetics; Biochar; Bio-oil. 
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Nomenclature and Abbreviations

Ea Activation energy

A Frequency factor

β Temperature programme rate

Tm Temperature maximum degradation

 R Gas constant

GCMS Gas chromatography mass spectrometry

FTIR Fourier transforms infrared spectroscopy

TGA Thermogravimetric analysis

SEM Scanning electron microscopy

TEM Transmission electron microscopy
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1. Introduction

The rapid increase in population and shift in lifestyle have significantly heightened the 

demand for energy [1]. Fossil fuels have traditionally been the major source of energy [2], 

however, the industrialization and technology advancement have led to their accelerated 

consumption resulting in alarming depletion rates [3]. Furthermore, the combustion contributes 

to global warming, adversely affecting the environment [4]. In light of dwindling fossil fuels 

supplies and their potential role in climate change, researchers and the global community are 

actively seeking for environmentally friendly alternatives [5-7]. The urgent need to address fossil 

fuel shortages and their impact on climate change has become a global concern, prompting 

researchers and international organizations to explore sustainable energy sources. The United 

Nations Climate Panel has targeted 50 to 80% reduction in greenhouse gas emission by 2050, 

emphasizing the importance of switching to renewable energy sources from non-renewable ones.  

As a result, renewable energy is increasingly recognized as essential for sustainable development 

and environmental preservation [8]. 

Biofuels are gaining significant recognition as a green fuel due to their ability to emit 

fewer harmful gases, such as NOx and SOx, compared to fossil fuels. Recent years have seen a 

great deal of research being conducted on potential utilization of biomass to produce biofuels 

because of its affordable and environmentally sustainable nature [9, 10]. Biomass serves as 

promising  source for mitigating harmful emissions, alongside other renewable sources [11, 12]. 

The utilization of biomass as a sustainable energy source is captivating due to its positive impact 

on the environment and eco-friendliness. One of the notable advantages of biomass conversion is 

its ability for compression into reduced volume, which facilitates easy storage, transportation, 

and long-term preservation without decomposition [13]. Moreover, the lifecycle analysis 
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indicates that biofuels, particularly biodiesel, can substantially reduce greenhouse gas (GHG) 

emissions as compared to petroleum diesel.

Citrus fruits are widely cultivated in many parts of the  world and play a significant role 

in human nutrition [14]. Roughly half of the wet fruit mass is made up of citrus waste, which is 

produced by the fruit processing industry after juice is extracted.  This waste primarily consists 

of peel and pulp [15]. Citrus peel and pulp, as a lignocellulosic material, predominantly consist 

of fibers and essential oils. These components can be extracted and utilized in various industries 

including medicinal and cosmetic. Moreover, the citrus fruit waste (peels and pulp), mainly 

consisted of hemicellulose, cellulose and lignin, can be utilized as a beneficial raw biomass for 

producing a variety of bio-chemicals and bio-fuels [16]. 

Worldwide, significant volumes of biomass waste are produced, including leftovers from 

the harvest and processing of fruit crops, which have significant potential to be transformed into 

biofuel. However, there is still a dearth of studies focusing on the pyrolysis kinetics of Citrus 

limetta waste over zeolite β, ammonium. Hence, the key objective of this work is to evaluate the 

efficacy of zeolite β, ammonium as catalyst for decomposition of citrus waste into biofuel. We 

also aim to appraise the kinetic parameters of reaction associated with this conversion. 

Additionally, we seek to find out how various parameters such as catalyst, temperature, and 

pyrolysis time affect the pyrolysis of Citrus limetta waste.

2. Experimental

2.1. Materials and Methods

The juice-extracted sweet lemon (Citrus limetta) waste (properly authenticated by a 

botanist), was sourced from a juice shop in Faisalabad city, Punjab, Pakistan. The collected 

biomass was shade-dried for 21 days, grinded into a fine powder using a grinder, sieved to the 
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desired mesh size, and stored in a sealed bag for further analyses. The elemental characteristics 

and structure of raw biomass were examined using energy dispersive X-rays and SEM. To 

improve the quality of oil produced, zeolite β, ammonium was selected as a catalyst among 

several commercial options. 

2.2. Thermogravimetric Analysis of Citrus Waste and Kinetic Study

TGA of citrus waste loaded with zeolite β, ammonium was conducted on Q500 

PerkinElmer at different temperature programme rate (15, 20, 25, and 30 °C.min-1). The obtained 

TGA results were then used to determine the Ea and A-factor through the following Kissinger 

equation [17]. 

ln β
T2

m
= ln A.R

Ea
―

Ea
RTm

(1)

In equation 1, Tm stands for maximum degradation temperature, β refers to temperature 

programme rate, and R denotes gas constant. The Ea and A-factor were computed from the 

slopes and intercepts of lnβ/T2
m vs 1000/Tm plots.

2.3. Pyrolysis Experiments and Products Characterization

In order to minimize heat loss in an inert atmosphere, citrus wastes loaded with zeolite 

β, ammonium catalyst was pyrolyzed in a salt bath (containing mixture of NaNO2, NaNO3 and 

KNO3) packed in a stainless-steel vessel enclosed in another vessel with insulating material. The 

pyrolysis process is schematically diagrammed in Figure 1 [18, 19]. For each experiment, 5 

grams of citrus waste was placed in the reaction vessel and secured within the salt bath. The 

resulting vapours were directed through a condenser, where they were condensed into liquid 

fraction. A GC-MS machine (GC7890B MS5977B Agilent) was used to chemically characterize 

the recovered bio-oil.  The analysis was carried out through HP-5 capillary column. Helium gas 

was employed as carrier gas and injector was kept in split mode at 25 °C.  Column oven was 
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retained at 40 °C for 15 min and then increased to 160 °C at 10 °C.min-1 and held for 8 min. 

After that, it was heated to 290 °C at a rate of 10 °C per minute and kept there for one minute. 

The analysis took a total of 24 minutes and the identities of peaks were made through NIST 

library. Moreover, the identity of the components in the bio-oil was also confirmed through FTIR 

analysis using Shimadzu IR Prestige-21.

The surface characteristics of biochar derived from both catalytic and non-catalytic 

processes were assessed employing SEM and TEM (JSM-5910 JEOL and JEM-2100 JEOL), 

respectively. For TEM investigation, the biochar was dissolved in acetone and then sonicated for 

five minutes. A drop of the sonicated colloidal solution was then placed onto a formvar-coated 

grid, allowed to air dry, and then transferred to the analytical chamber for examination.  

Figure 1. A schematic sketch of the pyrolysis setup
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3. Results and Discussion

3.1  Raw Biomass Properties

The morphology and elemental analysis of raw Citrus limetta waste was studied using 

SEM-EDX. The SEM image is given in figure 2 which displays a highly porous structure. The 

disordered clusters with spongy holes are visible within the image. A thorough examination 

features closed-off microstructures, variable particle size distribution, and irregular and porous 

surfaces. The particles also varied in size and shape. The results are in conformity with some 

previous studies. Kamsonlian et al., [21] performed SEM analysis of orange peel and witnessed a 

porous surface with irregularly shaped pores of varying sizes. The surface morphology of lemon 

peel was also examined by Thirumavalavan et al., using SEM, and they found a porous surface 

with pore size of 39.483 Å. 

Figure 3 represents the elemental composition of raw Citrus limetta waste having mass 

percentage of carbon (61.99%), oxygen (33.32%), potassium (3.23%) and calcium (1.46%) 

respectively. The results coincide with reported studies. Kamsonlian et al., [21] conducted EDX 

analysis of orange peel and observed the following weight percentages of chemical 

compositions: 33.22% C, 44.12% O, 13.02% K, 1.12% Si, 0.4% Ca, 1.30% Na, 1.34% Al, and 

3.30%Mg. According to Palaniappan et al.'s EDX study of sweet orange (Citrus x sinensisi) fruit 

waste, carbon and oxygen were the largest in the sample, which include 35.5 and 42.6%, 

respectively.       
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Figure 2. SEM depiction of Citrus limetta waste 

Figure 3. EDX of Citrus limetta waste
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3.2. Thermogravimetric analysis and Kinetics  

Thermogravimetry of citrus waste loaded with zeolite β, ammonium was conducted at a 

temperature programme rate of 15 °C. min-1, and the results are portrayed in TG/DTG curve 

shown in figure 4 and table 1 [24]. Utilizing the curve deconvulation method and application of 

Lorentzian peak function to TG curve, it was determined that weight loss occurred in four 

distinct phases between room temperature and 600°C, with no additional peak was noted. The 

initial weight loss was attributed by the physical desorption of vapours at temperature below 

100 °C. For hemicellulose, the Tmax was determined to be 223 °C. In the case of cellulose 

degradation, the Tmax was found to be 318 °C, while for lignin, it was observed at 436 °C. These 

findings align with earlier investigations. Nisar et al., [25] studied the pyrolysis of sugarcane 

bagasse with and without CuO. Their findings revealed a consistent four-step weight loss 

processes, which was attributed by the elimination of moisture and the breakdown of 

hemicelluloses, cellulose, and lignin. Additionally, Azariah et al., [26] performed banana peel 

pyrolysis at 10°C/min up to 800 °C, they observed 5.2% weight loss from 145 to 240°C, 45.9% 

weight loss from 240 to 448 °C, while 26.4% weight loss from 448 to 800 °C. 
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Figure 4. TG/DTG of Citrus limetta waste in the presence of zeolite β, ammonium at heating 
rate of 15 °C.min-1

Table 1. Data obtained from TG/DTG of Citrus limetta waste in the presence of zeolite β, 
ammonium at 15 °C.min-1

Temp/°C Tmax /°C Component

179 – 280 223 Hemicellulose

280 – 391 318 Cellulose

391 – 527 436 Lignin
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For the kinetic study thermal degradation experiments of citrus waste loaded with zeolite 

β, ammonium were conducted at temperature programme rate of 15, 20, 25, 30 °C·min-1. The 

obtained data were used to determine Ea and A-factor applying Kissinger equation. The plots of 

𝑙𝑛𝛽/𝑇2
𝑚 vs 1000/𝑇𝑚 were constructed (figure 5), allowing for the extraction of Ea and A-factor 

from the resulting graphs. The calculated values (table 2) showed that zeolite β, ammonium acted 

as good catalyst for citrus waste decomposition, evidenced by lower activation energies required 

for the decomposition of hemicellulose (83.14 kJ·mol-1), cellulose (108.08 kJ·mol-1) and lignin 

(124.71 kJ·mol-1) compared to non-catalytic reactions, which showed activation energies of 

99.76, 157.96, and 174.59 kJ·mol-1, respectively [27]. This trend aligns with findings from other 

biomass pyrolysis studies. For example, in a study on decomposition of peanut shells the authors, 

calculated Ea values (by Kissinger method) in the absence of catalyst as 108.1, 116.4, and 182.9 

kJ·mol-1 for hemi-cellulose, cellulose, and lignin, respectively. However, in the presence of 

catalyst, the Ea values were found as 66.5, 74.8, and 133 kJ·mol-1 for the same components, 

exhibiting termite hill as an efficient catalyst [28]. Varma et al., [29] used a thermogravimetric 

analyzer to conduct pyrolysis studies of peanut shells at heating rate of 10, 20, and 30 °Cmin-1. 

The Kissinger equation was used to determine Ea and A-factor. The calculated average Ea was 

observed as 109.05 kJ/mol. Similarly, in a study on sugarcane bagasse decomposition using 

Kissinger method [30], a reduction in Ea values were noted for catalyzed decomposition of 

hemicellulose, cellulose, and lignin vis-a-vis un-catalyzed reaction. Velazquez et al., [31] 

conducted pyrolysis of orange waste and calculated activation energies as 117, 105 and 260 

kJ/mol for decomposition of hemicellulose, cellulose and lignin, respectively.

Page 12 of 33Energy Advances

E
ne

rg
y

A
dv

an
ce

s
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
ja

nv
ie

r 
20

25
. D

ow
nl

oa
de

d 
on

 2
02

5-
01

-0
9 

21
:5

3:
55

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4YA00600C

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ya00600c


1.2 1.4 1.6 1.8 2.0 2.2

-3.5

-3.4

-3.3

-3.2

-3.1

-3.0

-2.9

-2.8

Hemicellulose
 Cellulose
 Ligninln

(
/T

2 m
)

1000/Tm (K-1)

Figure 5. Kissinger plots constructed from degradation of Citrus limetta waste loaded with 
zeolite β, ammonium 

Table 2. Kinetic parameters calculated employing Kissinger method

Component Parameters

Ea/kJ·mol-1 A/min-1 R2

Hemicellulose 83.14 6.3×104 0.979

Cellulose 108.082 9.4×106 0.939

Lignin 124.71 2.6×109 0.951
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3.3 Optimization of experimental conditions for pyrolysis

Pyrolysis tests were carried out between 280 and 350 °C to evaluate how temperature 

affects the pyrolysis of citrus waste.  The pyrolysis products from citrus wastes treated with 

zeolite β, ammonium at varying temperatures, catalyst concentrations and reaction times are 

shown in figures 6a, 6b and 6c, respectively. These figures depict the resulting bio-oil, char and 

gas yields, highlighting the influence of experimental conditions on the distribution of 

pyrolysates. Figure 6a illustrates the effect of temperature on the catalytic degradation of citrus 

waste. The plot indicates that the production of liquid product increased gradually, peaking at 

300 °C before declining with further increase in temperature. In contrast, the yield of gas fraction 

improved steadily as temperature rose. These results demonstrate that the use of zeolite β, 

ammonium catalyst effectively lowered the temperature required for maximum bio-oil 

production from citrus waste, establishing 300 °C as the optimal temperature for oil production 

with this catalyst. This suggests that zeolite β, ammonium outperform pumice, as reported in our 

previous investigation [27]. For comparison, Zhang et al., [32] examined that the optimum 

temperature for hydrothermal liquefaction of lemon peel was 336°C, which is very close to our 

data. Additionally,  Alvarez et al., [33] achieved a 54.6% (by weight) yield of bio-oil at 425°C 

during the fast pyrolysis of citrus waste. Moreover, the figure demonstrates that as the 

temperature increases, the gaseous fraction rises while the bio-oil shrinkages, which is attributed 

to the secondary degradation of bio-oil [34]. Miranda et al., [35] conducted bench-scale pyrolysis 

experiments of citrus waste and observed that increasing pyrolysis temperature resulted in 

decreased char yield while increasing volatile content. Another primary objective of this work is 

to find out the optimal time at optimum temperature for pyrolyzing citrus waste. Figure 6b 

illustrates the time optimization of the pyrolysis reaction. The maximum oil was produced at 
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time of 15 minutes, beyond which the production of bio-oil decreased. It also indicates that an 

increase in residence time led to a higher gaseous yield, while the biochar yield decreased with 

prolonged time. These findings align closely with a previous study on the degradation of sesame 

biomass [36]. 

To determine the impact of zeolite β, ammonium concentration on the pyrolysates yield, 

the sample was mixed with varying percentages of zeolite β, ammonium (1%, 3%, 5%, 7%, and 

9%) at optimal temperature and time. The results are given in figure 6c. When catalyst was 

combined with the sample up to 5%, maximum bio-oil was obtained. Beyond that concentration 

it has a negative effect. This is because raising the concentration of the catalyst causes the 

liquefaction to grow, but it also has an adverse effect above the ideal threshold of 5%. 

Additionally, catalyst poisoning is caused by the bio-oil molecules' adsorption of the catalysts' 

high specific surface area.  This trend is in line with several previous works. Samolada et al., [37] 

studied pyrolysis of lignocellulose and discovered that enhancing the zeolite content lowered the 

amount of bio-oil while increasing the amount of gases. Through pyrolysis of citrus waste, 

Poddar et al., [38] showed that the action of ZnO enhanced the bio-oil output (49.39 wt.%) as 

compared to non-catalytic ones (30.75 wt.%). Furthermore, gas production was found to increase 

with rise in temperature.
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Figure 6. Pyrolysis of Citrus limetta loaded with zeolite β, ammonium (a) Temperature 
optimization (b) Time optimization (c) Catalyst  optimization
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A comparison of oil yield in this work with previous studies is presented in table 3. It is 

clear from the data that sufficient quantity of bio-oil (50%) was produced from Citrus limetta 

waste in the existence of zeolite β, ammonium at lower temperature of 300 C.

Table 3. Pyrolysates yield from different biomasses at various conditions.

Product yield/wt.%Biomass Catalyst Optimum

Temp./C
Bio-oil Gases Bio-

char

Reference

Grapefruit waste  Nickel oxide 420 33 35 32 [19]

Almond shells  Zinc oxide 420 40 10 50 [18]

Cotton seed press cake Nickel doped zeolite 

Y, hydrogen

300 35 17 48 [39]

Pomegranate peels Sulfonated tea waste 330 56 6 37 [9]

Citrus limetta waste Pumice 320 45 20 35 [7]

Citrus limetta waste Zeolite β, 

ammonium

300 50 26 24 This 

work
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3.4 Characterization of Pyrolysates

3.4.1 GC-MS Analysis of Bio-oil

 A GC-MS machine was employed to chemically characterize the produced bio-oil and 

the chromatogram is depicted in figure 7. A detailed summary of the identified products, 

including their molecular formula, name, molecular weight, percent area, and retention time, is 

provided in Table 4. The current findings indicate that catalytic pyrolysis greatly enhanced both 

quantity and diversity of oil components produced compared to our previous study [28]. Notably, 

when comparing the catalytic bio-oil derived from citrus waste with the non-catalytic bio-oil [27], 

it was noted that the bio-oil produced with zeolite β, ammonium contained certain fuel range 

components, such as  phenol and benzene derivatives. Additionally, the analysis revealed the 

presence of a variety of compounds like furan, maltol, creosol, ester and oleic acid, suggesting 

that the bio-oil has been upgraded and could serve as promising candidate for biofuel. The results 

imply that zeolite β, ammonium played a crucial role in improving bio-oil quality by increasing 

the variety of compounds detected by GC/MS and expanding the spectrum of hydrocarbons 

present.   

The results align with previous investigations in the field of catalytic pyrolysis. Bhoi et 

al., [40] explored the catalytic pyrolysis of biomass using zeolite-based catalysts designed to 

eliminate undesirable compounds and enhance the hydrocarbon yield in bio-oil. Similarly, 

Miranda et al., [35] utilized GC/MS to identify key components such as carboxylic acid, phenol, 

and aldehyde in the the bio-oil produced by quickly pyrolyzing citrus dry peel. Significant 

compounds discovered were benzene, phenol, n-hexadecenoic acid, and 2-cyclopenten-1-one, 2-

methyl. In another study, Qiao et al., [41]  reported the presence of terpenic oxide, alcohols, 

esters, ketone, and aldehydes in the liquid fraction obtained from citrus peels. Additionally, 

Kravetz et al., [42] discovered large peaks of 2-propanone, 1-hydroxy, 2-propenoic acid, 
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succindialdehyde, furfural, 2-furanmethanol, 2(5H)-furanmethanol, and 3-methyl, 4-methyl-5H-

furan-2-one in in the bio-oil from Citrus sinensis waste.

. 

Figure 7. GC-MS chromatogram of bio-oil produced by thermo-catalytic decomposition of 
Citrus limetta waste 

Table 4. GC-MS profiling of chemical compounds in bio-oil produced by thermo-catalytic 
decomposition of Citrus limetta waste

S.No. R/T(min) Component Chem. 
formula

Mol. 
Wt Area %

1 5.14 Maltol C6H6O3 126.11 2.81
2 5.30 Hydrazine, 3 fluorophenyl C6H7FN2 126.13 4.18
3 5.41 Triethylenediamine C6H12N2 112.17 0.23
4 5.45 Furan, 4-methyl-2-propyl C8H12O 124.18 0.44
5 5.49 2(1H)-Pyridinone C5H5NO 95.09 0.49
6 5.71 4H-Pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl C6H8O4 144.12 9.68
7 5.77 4(1H)-Pyridone  C5H5NO 95.09 0.79
8 5.81 3-Pyridinol C5H5NO  95.09 2.24
9 6.01 Phenol, 3-amino C6H7NO 109.12 1.36
10 6.09 2(3H)-Furanone, dihydro-5-pentyl C9H16O 156.22 0.79
11 6.18 2(3H)-Furanone, 5-butyldihydro C8H14O2 142.19 2.72
12 6.23 2-Hydroxy-5,5-dimethyl-hex-2-en-4-one C8H14O2 142.20 1.04
13 6.29 Furan, 2-ethoxy-2,3-dihydro-4-methyl C7H12O2 128.17 2.41
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14 6.37 2-Pentene, 1-(pentyloxy)-, (E)-(E)-1-Pentyloxy-2-
pentene

C10H20O 156.26 4.05

15 6.49 2-Hydroxy-3-propyl-2-cyclopenten-1-one C8H12O2 140.17 0.62
16 6.67 Phenol, 2-ethoxy C8H10O2 138.16 17.79
17 6.97 2,5-Dimethyl-4-hydroxy-3(2H)-furanone C6H8O3 128.13 1.21
18 7.23 meta-Methoxybenzenethiol C7H8OS 140.20 0.57
19 7.31 1,2-Benzenediol,3-methyl C7H8O 124.13 1.68
20 7.35 1,4-Benzenediol, 2,3,5-trimethyl C9H12O2 152.19 3.30
21 7.46 Phenol, 4-ethyl-2-methoxy- C9H12O 152.19 0.74
22 7.50 Creosol C8H10O2 138.16 0.50
23 7.59 6-Methyl-3(2H)-pyridazinone C5H6N2O 110.11 7.32
24 7.75 Benzoic acid, 2,3-dihydroxy C7H6O4 154.12 1.43
25 7.78 1,2-Benzenediol, 4-methyl C7H8O 124.13 1.87
26 7.88 2-Methoxy-4-vinylphenol C9H10O2 150.22 1.95
27 8.06 2,5-Diethylphenol C10H14O 150.22 1.79
28 8.12 3-Thiophenecarboxylic acid C5H4O2S 128.15 1.44

29 8.24 Phenol, 2,6-dimethoxy- C8H10O3 154.16 2.11

30 8.37 1,4-Benzenediol, 2-methyl- C7H8O2 124.13 2.54
31 8.45 2-Ethyl-4,6-dimethyltetrahydropyran C9H18O 142.24 0.78
32 8.69 2,5-Dihydroxypropiophenone C9H10O3 166.17 0.30
33 8.76 3-Cyclohexen-1-one,2-isopropyl-5-methyl C10H16O 152.23 0.99

34 8.94 Benzene, 2-fluoro-1,3,5-trimethyl- C9H11F 138.18 1.65

35 9.01 Acetic acid, heptyl ester C9H18O2 158.23 0.52

36 9.05 4-Hydroxy-5,6-epoxy-.beta.-ionone C13H20O3 224.30 0.91
38 9.38 Phenol, 2-methoxy-3-methyl ester C8H10O2 138.16 0.82
39 9.49 2,4,6-Octatriene, 2,6-dimethyl- C10H16 136.23 0.24
40 9.92 Benzene, 4-ethyl-1,2-dimethoxy C10H14O2 166.21 0.43

41 9.98 Tricyclo[3.3.2.0(3,7)]decan-9-one C10H14O 150.22 0.42

42 10.28 1,3-Oxathiolane,2-(4 chlorophenyl)-2-methyl C10H11ClOS 214.71 1.62
43 10.33 3-Hydroxy-4-methoxybenzoic acid, methyl ester C9H10O4 182.17 1.12
44 10.48 5-tert-Butylpyrogallol C10H14O3 182.22 0.41
45 10.60 Cyclopropane,1-ethoxy-2,2-dimethyl-3-(2 

phenylethenylidene)
C15H18O 214.31 0.97

46 10.91 3H-Benz[e]indene, 2-methyl C14H12 180.24 0.41
47 11.04 Anthracene, tetradecahydro C14H24 192.34 0.35
48 11.09 Carbamic acid, methylphenyl-, ethyl ester C10H13NO2 179.22 0.45

49 11.60 3,4-Dichlorobenzenethiol C6H3SHCl2 179.07 2.33
50 11.69 Hydrazine, (2,4-dichlorophenyl) C6H6Cl2N2 177.03 1.16
51 12.97 Ethyl,4-hydroxy-3-methoxyphenylacetate C11H14O4 210.23 0.51
52 13.20 2,4-Imidazolidinedione,5-(4-hydroxyphenyl) C9H8N2O3 192.17 1.06
53 13.99 beta.-(4-Hydroxy-3-methoxyphenyl)propionic acid C10H12O4 196.19 0.69

54 14.56 5,10-Diethoxy-2,3,7,8-tetrahydro-1H,6H-
dipyrrolo[1,2-a:1',2'd] pyrazine

C14H22N2O2 250.34 0.25

55 16.92 9,12-Octadecadienoic acid (Z,Z) C18H32O2 280.44 0.16
56 16.99 6-Octadecenoic acid C18H34O2 282.50 0.14
57 20.47 Dicyclohexyl phthalate C20H26O4 330.40 0.26
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3.4.2 FTIR of Bio-oil

Figure 8 shows FTIR spectrum of bio-oil. For the alcohols and phenols that make up 

major components of citrus peels, a strong peak (at 3448 cm-1) is indicative of OH bond 

stretching, while a weak peak ( at 1384 cm-1) is due to OH bending. The C=C stretch can be seen 

by the peak at 2067 cm-1. The C=O stretching of ketones, carboxylic acids, and esters is 

indicated by the absorbance peak at 1713 cm-1 and 1637 cm-1.  The peak at 1268 cm-1 due to C-O 

stretching vibrations is pointing towards the existence of carboxylic acids, ethers, alcohols and 

esters. Aliphatic amines are indicated by the C-N stretching vibrations at 1050 cm-1. These 

outcomes from FTIR are in conformity with the study of Al-Layla et al., [43] on pyrolysis of 

milk thistle waste.

In another study, lemon grass was flash-pyrolyzed by Madhu et al. [44] and FTIR was 

used to examine the produced bio-oil. The primary functional groups recognized were associated 

with C=O stretching (carbonyls), C=O stretching (alcohols, ethers, carboxylic acids, and esters), 

C-N stretching (aliphatic amines) and OH (alcoholic and phenols).  Likewise, Volpe et al. [45] 

utilized leftover orange and lemon peels to produce bio-oil. The functional groups they examined, 

according to FTIR analysis, were OH stretching (phenol), C=O stretching (ketone and carboxylic 

acids), and OH bending at 1370 cm-1.
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Figure 8.  FTIR spectrum of pyrolysis oil extracted from Citrus limetta waste

3.4.3 Fuel Properties of the Bio-oil

As indicated by the physico-chemical characteristics, the bio-oil produced has a strong 

odor and was pale yellow in color.  Other characteristics (Table 5) of the tested bio-oil, including, 

density, viscosity and pH, were quite similar to those of bio-oils testified in previous research 

[46, 47].
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Table 5. Comparison of physico-chemical properties of bio-oil obtained from Citrus limetta 
waste with bio-oil from different sources

Biomass/catalyst Density

(kgm-3)

Viscosity 
(Pa.s)

pH Reference

Rice husk 1190 0.150 2.80 [48]
Pine wood (at 425 °C)  1174 ± 40 -

2.1 ± 0.09
[49]

Miscanthus 1050 - 2.95
Corn stover 1250 - 2.87
Wood pellets 1230 - 2.80

[50]

Cotton stalk 1160 0.140 - [51] 
Areca nut husk 980 0.078 - [46]
Areca nut husk/ ZSM-5 812 0.029 - [46]
Cow hooves 1030±100 0.010 - [52]
Sugarcane bagasse 1211 0.004 - [53]
Palm shell 1051 0.003 - [54]
Pinewood waste 1140 0.001 - [55]
Corn stalk 1220 0.168 3.20 [47]
Sweet lemon waste (at 300 C) 980 0.168 3.5 This work
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3.4.4 Characterization of Biochar

Figure 9a and 9b display the SEM images of non-catalytic and catalytic biochar, 

respectively. The biochar obtained from non-catalytic decomposition (figure 9a) reveals a 

smooth disc-like texture, while catalytic biochar (figure 9b) exhibits an uneven and rough surface 

which makes it suitable for many applications for example as adsorbent, energy storage super 

capacitor, and catalyst [56]. These characteristics in biochar can be achieved through pyrolysis of 

citrus wastes using a selected catalyst. The interaction between the catalyst and citrus wastes 

resulted in the formation of lumps-like structures in catalytic biochar, which possessed a larger 

surface area. The use of a catalyst induced significant morphological changes, causing surface 

deformation with highly developed pore structure as also observed by many authors. Wang et al., 

[57] studied biochar produced after pyrolysis and observed irregular distributed pores on its 

surface that have been broken and collapsed. Ali et al., [20] performed SEM analysis on both 

non-catalytic and catalytic biochar samples. They observed flat and disc-like surface of non-

catalyzed biochar as compared to catalytic biochar having uneven, irregular and porous structure.
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Figure 9. SEM images of Citrus limetta waste biochar (a) without zeolite β, ammonium (b) 
with zeolite β, ammonium

Transmission Electron Microscopy was employed to study the microstructure of Citrus 

limetta waste biochar. Figure 10 (a, b and c) presents the TEM images of non-catalytic biochar. 

The TEM images of the non-catalytic biochar revealed a fused carbon skeleton, resulting in a 

compact structure with small, rigid and even surface. In contrast, the biochar obtained from 

catalytic process exhibited a different morphology as exhibited in figure 10 (d, e and f).  The 

TEM images show increase in the surface pore size, resulting from the agglomeration of carbon 

particles. This agglomeration process captured carbon molecules, imparting various rubber-like 

qualities to the biochar. The acquired data is in agreement with the findings reported in existing 

literature. Ali et al., [20] performed TEM analysis of both un-catalyzed and catalyzed biochar 

samples. They observed that the bare biochar exhibited a small particle size and displayed a 

highly rigid structure. In contrast, the catalytic biochar showed irregular surface and large pore 

size produced as a result of agglomeration of carbon particles. Li at el., [58] carried out TEM 
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analysis of biochar and revealed accumulation of similar carbon particles which were equally 

distributed in the carbon matrix.

Figure 10. TEM images of Citrus limetta waste biochar obtained at different magnifications (a, 
b, c) without zeolite β, ammonium (d, e, f) with zeolite β, ammonium 
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4. Conclusions

Our research centered on utilizing zeolite β, ammonium as catalyst for pyrolysis to 

transform waste citrus materials into valuable products, while also figuring out the reaction's 

kinetic parameters. Thermogravimetric analysis was conducted on citrus waste in an inert 

atmosphere over zeolite β, ammonium at various heating rates. Using Kissinger method, Ea for 

hemicelluloses, cellulose, and lignin was determined as 83.14, 108.082, and 124.71 kJ/mol, 

respectively. Moreover, for bio-oil production pyrolysis was done in a particular salt bath in 

nitrogen environment at 280 - 350 °C in the presence of zeolite β, ammonium catalyst. The 

pyrolyzed oil obtained at the optimized conditions was characterized using GC-MS and it was 

found that some additional fuel range hydrocarbons were noticed as compared to non-catalyzed 

reaction. The existence of phenols and alcohols, the primary constituents of citrus peel, was 

further verified by FTIR spectrum data.  Furthermore, additional bending oriented and 

stretching-supporting peaks verified the occurrence of carboxylic, ether, alcoholic, esters, and 

aliphatic amine groups. In general, the findings of this investigation indicated that the use of 

zeolite β, ammonium not only improved the quality of oil but also reduced the temperature and 

Ea of pyrolysis reaction. The work reported herein reveals that citrus waste in presence of zeolite 

β, ammonium catalyst has enormous potential for use in the production of biofuel. It can also be 

argued that, with the appropriate upgrading, the oil produced by citrus waste could be utilized as 

alternative biofuel.   
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