Extension of the π-conjugated core of methylchalcogenolated polycyclic aromatic hydrocarbon: synthesis and characterization of 1,4,7,10-tetrakis(methylthio)- and tetramethoxy-coronene

Abstract

Controlling the crystal structures of polycyclic aromatic hydrocarbons (PAHs) by regioselective methyl chalcogenolation is an effective strategy for realizing superior molecular semiconductors showing ultrahigh mobility, as exemplified by methylthiolated pyrene and peropyrene. Following the strategy, we designed and synthesized 1,4,7,10-tetrakis(methylthio)coronene (MT-coronene) and 1,4,7,10-tetramethoxycoronene (MO-coronene) as potential candidates for high-performance molecular semiconductors. Since the coronene core is highly symmetric, the regioselective functionalization at the 1,4,7,10-positions seemed to be challenging, and thus, we tested two strategies for constructing such regio-selectively functionalized coronene derivatives; one was the direct functionalization of parent coronene via the iridium-catalyzed borylation reaction, and the other was the stepwise construction of the coronene core with functionalized naphthalene derivatives. Interestingly, the former was suitable for the synthesis of MT-coronene, whereas the latter was suitable for MO-coronene. The crystal structures of MT- and MO-coronene were significantly different from the γ-structure of their parent and classified into the brickwork and the sandwich herringbone structure, respectively. In accordance with the brickwork crystal structures with isotropic but small intermolecular HOMO overlaps, the MT-coronene-based single-crystal field-effect transistors (SC-FETs) showed decent transistor responses with the carrier mobility of up to 0.5 cm2 V–1s–1. On the other hand, the SC-FETs of MO-coronene, the solid-state electronic structure of which was zero-dimensional due to the sandwich herringbone structure, were far inferior to those of MT-coronene. Based on the crystal structures and theoretical calculations on MT- and MO-coronene, we analyzed the tendency of the intermolecular interactions and intermolecular HOMO overlaps in the solid state, which explains the performances of the coronene system as molecular semiconductors. Furthermore, we compared the solid-state structures of a series of methylthiolated PAHs, pyrene, perylene, peropyrene, and coronene, to figure out the differences in the performances as molecular semiconductors, which gave us new insights into the relationship between the molecular, packing, and electronic structure in the solid state, showing viewpoints for superior molecular semiconductors.

Supplementary files

Article information

Article type
Edge Article
Submitted
03 Mai 2025
Accepted
21 Lui 2025
First published
21 Lui 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Accepted Manuscript

Extension of the π-conjugated core of methylchalcogenolated polycyclic aromatic hydrocarbon: synthesis and characterization of 1,4,7,10-tetrakis(methylthio)- and tetramethoxy-coronene

P. Pal, K. Bulgarevich, R. Hanaki, K. Kawabata and K. Takimiya, Chem. Sci., 2025, Accepted Manuscript , DOI: 10.1039/D5SC03215F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements