Issue 20, 2020

Intramolecular vibrational energy redistribution and the quantum ergodicity transition: a phase space perspective

Abstract

Intramolecular vibrational energy redistribution (IVR) impacts the dynamics of reactions in a profound way. Theoretical and experimental studies are increasingly indicating that accounting for the finite rate of energy flow is critical for uncovering the correct reaction mechanisms and calculating accurate rates. This requires an explicit understanding of the influence and interplay of the various anharmonic (Fermi) resonances that lead to the coupling of the vibrational modes. In this regard, the local random matrix theory (LRMT) and the related Bose-statistics triangle rule (BSTR) model have emerged as powerful and predictive quantum theories for IVR. In this Perspective we highlight the close correspondence between LRMT and the classical phase space perspective on IVR, primarily using model Hamiltonians with three degrees of freedom. Our purpose for this is threefold. First, this clearly brings out the extent to which IVR pathways are essentially classical, and hence crucial towards attempts to control IVR. Second, given that LRMT and BSTR are designed to be applicable for large molecules, the exquisite correspondence observed even for small molecules allows for insights into the quantum ergodicity transition. Third, we showcase the power of modern nonlinear dynamics methods in analysing high dimensional phase spaces, thereby extending the deep insights into IVR that were earlier gained for systems with effectively two degrees of freedom. We begin with a brief overview of recent examples where IVR plays an important role and conclude by mentioning the outstanding problems and the potential connections to issues of interest in other fields.

Graphical abstract: Intramolecular vibrational energy redistribution and the quantum ergodicity transition: a phase space perspective

Article information

Article type
Perspective
Submitted
13 mar. 2020
Accepted
20 apr. 2020
First published
20 apr. 2020

Phys. Chem. Chem. Phys., 2020,22, 11139-11173

Intramolecular vibrational energy redistribution and the quantum ergodicity transition: a phase space perspective

S. Karmakar and S. Keshavamurthy, Phys. Chem. Chem. Phys., 2020, 22, 11139 DOI: 10.1039/D0CP01413C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements