Issue 23, 2017

A critical review on tin halide perovskite solar cells

Abstract

APbI3−xBrx perovskite solar cells with the bandgap of ∼1.5–1.6 eV, where A represents caesium, methylammonium, formamidinium and mixtures thereof, currently present certified efficiencies very close to those of established thin film technologies (such as CIGS and CdTe) and are thus one of the most important optoelectronics. To restrict the use of lead, as well as to tune the band gap of the material close to the optimum according to the Shockley–Queisser limit (being 1.34 eV), substitution (total or partial) of Pb2+ by Sn2+ should take place. In this review, we present results on single junction solar cells, utilizing CsSnI3−xBrx, CH3NH3SnI3−xBrx or NH2CH[double bond, length as m-dash]NH2SnI3−xBrx perovskites as absorbers, as well as a mixture of Sn2+/Pb2+ being adopted as the metal binary cation, reducing the bandgap to 1.2–1.4 eV. We also highlight very recently recorded efficiencies of perovskite-on-perovskite tandem solar cells, produced by the combination of the above low band gap materials with typical highly performing semi-transparent APbI3−xBrx perovskites of a higher band gap (close to 1.6–1.8 eV). We discuss these fascinating results, focusing on some key points such as, among others, the role of the tin compensator/reducing agent (usually SnF2) during perovskite crystallization. In addition, we present the critical challenges that currently limit the efficiency/stability of these systems and propose prospects for future directions.

Graphical abstract: A critical review on tin halide perovskite solar cells

Article information

Article type
Review Article
Submitted
28 jan. 2017
Accepted
20 mar. 2017
First published
23 mar. 2017

J. Mater. Chem. A, 2017,5, 11518-11549

A critical review on tin halide perovskite solar cells

M. Konstantakou and T. Stergiopoulos, J. Mater. Chem. A, 2017, 5, 11518 DOI: 10.1039/C7TA00929A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements