Issue 1, 2023

Bioorthogonal nanozymes: an emerging strategy for disease therapy

Abstract

Transition metal catalysts (TMCs), capable of performing bioorthogonal reactions, have been engineered to trigger the formation of bioactive molecules in a controlled manner for biomedical applications. However, the widespread use of TMCs based biorthogonal reactions in vivo is still largely limited owing to their toxicity, poor stability, and insufficient targeting properties. The emergence of nanozymes (nanomaterials with enzyme-like activity), especially bioorthogonal nanozymes that combine the bioorthogonal catalytic activity of TMCs, the physicochemical properties of nanomaterials, and the enzymatic properties of classical nanozymes potentially provide opportunities to address these challenges. Thus, they can be used as multifunctional catalytic platforms for disease treatment and will be far-reaching. In this review, we first briefly recall the classical TMC-based bioorthogonal reactions. Furthermore, this review highlights the diverse strategies for manufacturing bioorthogonal nanozymes and their potential for therapeutic applications, with the goal of facilitating bioorthogonal catalysis in the clinic. Finally, we present challenges and the prospects of bioorthogonal nanozymes in bioorthogonal chemistry.

Graphical abstract: Bioorthogonal nanozymes: an emerging strategy for disease therapy

Article information

Article type
Review Article
Submitted
25 okt. 2022
Accepted
06 des. 2022
First published
06 des. 2022

Nanoscale, 2023,15, 41-62

Bioorthogonal nanozymes: an emerging strategy for disease therapy

Z. Zhang and K. Fan, Nanoscale, 2023, 15, 41 DOI: 10.1039/D2NR05920G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements