Sorption of arsenate on cerium oxide: a simulated infrared and Raman spectroscopic identification

Abstract

Ceria (CeO2) is a candidate for arsenic removal, and characterizing its surface speciation is crucial for controlling its removal ability. Here, we focus on arsenates and exploit ab initio calculations to study their interaction with the three most stable surfaces of CeO2. The adsorption of arsenate is stronger on the {100} surface followed by the {110} and {111} surfaces. We find that arsenate can potentially adsorb to CeO2 surfaces, with a range of binding configurations. Interestingly, we discovered a 5-fold coordinated As(V) species in a trigonal bipyramidal coordination, which is stable and displays a strong interaction with the surfaces, pulling oxygen out of the surfaces, which should be a valuable model to address in As adsorption experiments such as EXAFS. We then predict the infrared (IR) and Raman spectral signatures, finding that adsorbed arsenates have a characteristic spectral fingerprint between 200 and 1200 cm−1. Characteristic peaks compared with experiments gives confidence in the modelling. The 5-fold coordinated As species in particular shows potential diagnostic As–O stretching modes between 635–756 cm−1 in IR spectra and 387–521 cm−1 in Raman spectra. While all binding modes for arsenate adsorption on ceria provide IR active modes, interestingly this is not the case for Raman active modes. Here, we provide a set of reference spectra and binding modes for arsenates on CeO2 that can further experimental characterization of arsenate speciation, and provide control of its impact on the removal performance of cerium dioxide.

Graphical abstract: Sorption of arsenate on cerium oxide: a simulated infrared and Raman spectroscopic identification

Supplementary files

Article information

Article type
Paper
Submitted
24 sep. 2024
Accepted
06 jan. 2025
First published
10 jan. 2025
This article is Open Access
Creative Commons BY license

Environ. Sci.: Nano, 2025, Advance Article

Sorption of arsenate on cerium oxide: a simulated infrared and Raman spectroscopic identification

K. M. Ta, D. O. Wisdom, L. J. Gillie, D. J. Cooke, R. Zhu, M. A. Gonçalves, S. C. Parker and M. Molinari, Environ. Sci.: Nano, 2025, Advance Article , DOI: 10.1039/D4EN00894D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements