Issue 9, 2025

Bulk thermally conductive polyethylene as a thermal interface material

Abstract

As the demand for high-power-density microelectronics rises, overheating becomes the bottleneck that limits device performance. In particular, the heterogeneous integration architecture can magnify the importance of heat dissipation and necessitate electrical insulation between critical junctions to prevent dielectric breakdown. Consequently, there is an urgent need for thermal interface materials (TIMs) with high thermal conductivity and electrical insulation to address this challenge. In this work, we synthesized thermally conductive polyethylene (PE) bars with vertically aligned polymer chains via a solid-state drawing technique to achieve a thermal conductivity of 13.5 W m−1 K−1 with a coverage area of 2.16 mm2. We utilized wide-angle X-ray scattering to elucidate the molecular structural changes that led to this thermal conductivity enhancement. Furthermore, we conducted a device-cooling experiment and showed a 39% hot spot temperature reduction compared to a commercial ceramic-filled silicone thermal pad under a heating power of 3.6 W. Thus, this bulk-scale thermally conductive PE bar with nanoscale structural refinement demonstrated superior cooling performance, offering potential as an advanced thermal interface material for thermal management in microelectronics.

Graphical abstract: Bulk thermally conductive polyethylene as a thermal interface material

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Communication
Submitted
10 okt. 2024
Accepted
13 jan. 2025
First published
15 jan. 2025
This article is Open Access
Creative Commons BY-NC license

Mater. Horiz., 2025,12, 2957-2964

Bulk thermally conductive polyethylene as a thermal interface material

G. Ren, Z. Wang, X. Huang, D. Hur, M. A. Pfeifer, M. N. Silberstein and Z. Tian, Mater. Horiz., 2025, 12, 2957 DOI: 10.1039/D4MH01419G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements