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Methylation of 2,8-dimethyl-6H,12H-5,11-ethanodibenzolb,fl[1,5]-
diazocine (ethano-Troger's base) with methyl iodide followed by ion
metathesis and fluorination with N-fluoro-2,3,4,5,6-pentachloro-
pyridinium triflate affords a new electrophilic N—F reagent, that is
more reactive than Selectfluor. 2D °F-!>N HMQC experiments
provide Jyr coupling constants which are diagnostic for the N—F
functional group.

The progress made in recent years in the field of modern organo-
fluorine chemistry indicates that the nature of the fluorine source is
critical for a particular fluorination process to succeed." This
observation stands true for nucleophilic and electrophilic fluorina-
tion, and this is independent of the activation manifold applied to
induce C-F bond formation. Much research has therefore focused
on the development of new reagents for late stage fluorination.>
The appearance of safe and easy to handle N-F reagents®” has
revolutionized the field of electrophilic fluorination by providing
alternatives to F,, XeF,," perchloryl fluoride® or O-F reagents, such
as trifluoromethyl hypofluorite,® acyl**” and perfluoroacyl hypo-
fluorites.® The preparation, properties and reactivity of N-fluoro
electrophilic fluorinating agents have been discussed in authorita-
tive reviews.’ In this category, Selectfluor bis(tetrafluoroborate) and
its analogues constitute a series of doubly quaternized N-fluoro-1,4-
bicyclo[2.2.2]octane reagents of remarkable stability and relatively
low toxicity. Our own work has concentrated on the development of
chiral Selectfluor bis(triflate)'® featuring the stereogenicity elements
on the DABCO core, and more recently as a corollary to this, the
development of new chiral N-F reagents derived from alternative
scaffolds amenable to double N-quaternization. The Troger’s
base 1 (TB)'' and its analogues are attractive candidates for
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transformation into N-F reagents, due to their C, symmetry, and
concave A-shape (Fig. 1). In our hands, the methylene-bridged TB
proved to be unstable towards F* electrophiles,'” so we focused our
efforts on the synthesis and characterization of the N-F reagent 2
derived from the ethylene-bridged Troger's base 3" (ETB =
2,8-dimethyl-6H,12H-5,11-ethanodibenzo[b, f |1,5]-diazocine). ETB
is readily available by reacting TB with dibromoethane and Li,CO3
in DMF. In this report, we disclose the synthesis and characteriza-
tion of 2 along with a preliminary study on reactivity. For the first
time, 2D 'F-">N Heteronuclear Multiple-Quantum Correlation
(HMQC) experiments were performed on 2 and known N-F
reagents. The resulting Jr coupling constants constitute a new
signature for the N-F functional group.

The synthesis of 2 was investigated with a study of a racemic
series. Modifying a literature procedure, the treatment of
(£)-ETB with a large excess of methyl iodide in a mixture of
MeOH/CH,Cl, afforded the desired monoquaternized iodide
salt,"* which was then subjected to ion metathesis with AgOTf
to afford 4 isolated in 70% yield over two steps (Scheme 1).

The validation and optimization of the critical fluorination
step was carried out with 4. The reaction was monitored by
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Fig. 1 Structures of the methylene- and ethylene-bridged Troger's bases
1 and 3, and of the N-F reagent 2.
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Scheme 1 Synthesis of the monoquaternized salt 4.
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Table 1 Optimization for the fluorination of 4°

©
\ \
N OTf N
—_
Conditions ©)
N N o

E 2TiO
4 2
No. F source Equiv. Temp. [°C] Conversion” [%)]
1 XeF, 1 40 0
2 XeF, 1 80 0°¢
3 F,%° 2 —-35 0
4 F,%f 2 —-35 0
5 F,%¢ 2 —-35 0°
6 F,%° 2 -10 0
7 F,%¢ 2 0 0°
8 5" 1 25 0
9 6" 1 25 0
10 77 1 25 55
11 77 1 -35 >95

4 Conditions: 4 (0.1 mol, 1 equiv.), fluorine donor (1 equiv.), CH;CN
(0.05 M). ? Conversion measured by '°F NMR with respect to triflate as
the internal standard. ¢ Degradation of the in situ formed N-F reagent.
?F, (10% in N,).° Reaction with NaOTf (1 equiv.). Reaction with
HOTS (1 equiv.). £ Reaction with NaBF, (1 equiv.). ” 5: 1-chloromethyl-
4-fluoro-1,4-diazonia-bicyclo[2.2.2]octane bis(tetrafluoroborate) [Selectfluor
bis-(tetrafluoroborate)]. * 6: N-fluoro-2,6-dichloropyridinium triflate.
7 7: N-fluoro-2,3,4,5,6-pentachloropyridinium triflate.

9F NMR spectroscopy (Table 1). XeF,, F, and a series of commer-
cially available N-F reagents were tested for their ability to transfer
fluorine onto 4; these experiments also gave information on relative
reactivity. XeF, and F, are atom economical reagents, and have the
advantage to facilitate postfluorination purification since no
organic co-product is produced upon fluorine transfer. Regrettably,
we found that these reagents were not suitable for the synthesis
of 2. XeF, did not react at 40 °C or led to decomposition at 80 °C.
Similarly, F, (10% in N,) led to decomposition at 0 °C, or returned
the unreacted starting material at —10 °C or —35 °C. No
fluorine transfer took place upon treatment of 4 with one
equivalent of Selectfluor bis(tetrafluoroborate) (1-chloro-
methyl-4-fluoro-1,4-diazoniabicyclo-[2.2.2]octane  bis(tetra-fluoro-
borate)) 5 or N-fluoro-2,6-dichloropyridinium triflate 6 in acetonitrile
at room temperature, suggesting that these known N-F reagents
would be less reactive than 2. Pleasingly, the more reactive N-fluoro-
2,3,4,5,6-pentachloropyridinium triflate 7 gave 55% of 2 when the
reaction was performed at ambient temperature. A significant
improvement was observed when the reaction temperature was
lowered to —35 °C. Under these conditions, the pyridinium salt fully
transferred F* on to 4. Stability studies indicate that decomposition
was taking place when a solution of 2 in acetonitrile was left at
room temperature for eight hours or more. As a result, the
reagent is best prepared immediately before use. Therefore,
the optimized procedure for the synthesis of 2 consists of
treating a solution of 4 (43 mg, 0.1 mmol, 1 equiv.) in dry
CH;CN (1 mL) with a slurry of N-fluoro-2,3,4,5,6-pentachloro-
pyridinium triflate 7 (1 equiv.) in dry CH3CN (1 mL) at —35 °C.
The resulting solution is composed of the novel N-F reagent 2
and an equimolar amount of 2,3,4,5,6-pentachloropyridine.
The relative instability and the difficulties encountered upon
isolation and purification of 2 did not allow for the analysis of a
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Fig.2 2D °F-®N HMQC of 2 (0.1 mM) in CDzCN at 298 K. *N
(60.8 MHz) & '°F (565.2 MHz). °F "AS(**N-"°N) = 0.27 ppm.

single crystal by X-ray crystallography. The theoretical and
experimentally measured HR-ESI spectra of 2 are in excellent
agreement showing a parent peak at m/z 149.0917 and m/z
149.0918, respectively. To help characterize the N-F bond in
particular, we performed 1D '°F NMR and 2D '°F-"°N hetero-
nuclear correlation experiments with 2 (Fig. 2). From this,
we observe a "N/"N one-bond isotope shift"> A equal to
0.27 ppm. Similar experiments were performed with Selectfluor
bis(tetrafluoroborate) 5 and the two chiral analogues 8 and 9;
for completeness, we also performed these measurements on
the N-fluoropyridiniums 6, 7, 10 and 11. All of the N-F reagents
in this NMR study, as expected, exhibit the characteristic one-bond
isotope shift (see ESIT for further details). Table 2 assembles the
9F and N chemical shifts for these compounds. Nitrogen
chemical shifts clearly reflect the differing hybridization states
of the nitrogen in the [NF** and [NF]" compound groups,
but otherwise exhibit little variation within each series. The
9F chemical shifts show a more pronounced difference for
compound 2 specifically, which exhibited a very high shift
of +103 ppm for the N-F group. This is well above the corres-
ponding signals recorded for Selectfluor bis(triflate) and its
derivatives, and the [NF]" reagents that typically range from
30 ppm to 50 ppm,>®'° as considered further below.

We also measured "Jpy coupling constants to further characterise
the N-F bond (Table 2). In the literature, experimental measure-
ments of two-bond "’F-'>N spin-spin coupling constants across
N-H- - -F hydrogen bonds (**Jy) are available, due primarily to
the work of Limbach and co-workers.'® These have also been
reported for complexes with F-H---N and N-H"---F hydrogen
bonds."” The directly recorded /gy coupling constant of 5 is in
agreement with a literature precedent.’® To the best of our
knowledge, the values of the other reagents reported here are
the first measurements of Jgy coupling constants of electrophilic
N-F reagents. These magnitudes principally reflect the nitrogen
hybridization state in the two compound classes, increasing with
greater s-character. We note that compound 2 shows the smallest
e value, although the limited data set makes meaningful com-
parisons difficult.

With regard to the notably greater fluorine chemical shift of
2, previous studies'® have suggested that '°F NMR shifts of N-F
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Table 2 °F and *N chemical shifts, and YJgy coupling constants for 2,
5-11. >N NMR (60.8 MHz, CDsCN, 298 K) and °F NMR (5652 MHz,
CDsCN, 298 K)

I 45 A5

F
E oomid® | 2BFP 2Ti0® Ph' o1i0®
2 5 9
CFg 8
Cl Me
cl X cl X X X
SO S |
cIeN” el c”eN” N o Me @N Me
F T{o° F 1109 F TfO FTi0®
7 6 10 11
[NF]** Reagent 2 5 8 9
'F NMR (ppm) +103.6 +48.1 +36.7 +36.0
N NMR (ppm) +188 +177 +182 +183
Yen (Hz)* 70 85 90 91
[NF]" Reagent 7 6 10 11
F NMR (ppm) +46.2 +30.2 +46.9 +15.9
>N NMR (ppm) +253 +256 +260 +259
Yen (Hz)* 140 145 130 125

“ Although not determined, the sign of these coupling constants are
expected to be negative due to the negative magnetogyric ratio of **N.
The chemical shifts are relative to external NH; (*°N) and CFCl; (*°F) at
0.0 ppm.

reagents correlate with reactivity for a series of structurally
related reagents; for the dicationic [NF]*" type reagents, this
trend would suggest that 2 is more reactive than Selectfluor and
could therefore serve as a reagent to prepare Selectfluor from its
monoquaternized precursor. Experimentally, we found that
fluorine transfer from 2 to 12 was complete after 5 minutes at
room temperature in acetonitrile (Scheme 2).

We probed next the ability of 2 to transfer F* onto substrates
other than the Selectfluor precursor 12. Scheme 3 presents
selected fluorination processes, and compare the reaction
conditions and yields with data obtained from the literature
for Selectfluor bis(tetrafluoroborate) 5,°° and when available for
N-fluoro-2,3,4,5,6-pentachloropyridinium triflate 7. The fluor-
ination reactions of benzene, fluorobenzene and anisole were
successful and overall required shorter reaction times with 2
compared to 5. The ortho-para ratios of the fluorinated products
of anisole and fluorobenzene by 2 and 5 are similar suggesting a
similar mode of reactivity. The reactivity profile of N-F reagents 7
and 2 is more similar. Styrene derivatives underwent fluorina-
tion in the presence of 2 and acetic acid giving the products
of fluoroacetoxylation in good yields. Additional experiments

)@O@f zfj @O@f [@

F 2TfO OB, 2Tf0 OBF4
12 5

Scheme 2 Fluorine transfer from 2 to 12.
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A) Fluorination of aromatics

O

F+ source
_—

R F*source Temp [°C] Time[h] Yield [%]® o[%]¢ p[%]¢
22 40 6 85
H 70 Reflux 2 48 - -
5¢ Reflux 20 83
24 0 1 85 65 35
OMe 7 25 0.25 91 36 38
5¢ Reflux 12 929 45 55
E 24 40 1 89 33 67
5¢ Reflux 12 99 31 69
B) Fluorination of styrenes
F
= AcO
Rz 2(1 equiv) R2 13R,=H R,=H 77%
o 0on
10°C,05h 1=Br Ro=H 78%
: 16R;=H R;=Cl 46%
R, CH3;COOH R
Scheme 3 (A) Fluorination of arenes: ¢ arene (4 equiv.), 2 (15 equiv.),

CH3CN. ® Data from ref. 3c; substrate (excess), 7 (1.0 equiv.) in CH,Cl.
¢ Data from ref. 20; arene (2.8 equiv.), 5 (1.4 equiv.), TFOH (3 mL) in
refluxing CH,Cl,. ¢ Data from ref. 3¢; substrate (co-solvent), 7 (1.0 equiv.),
CH,Cl,. © Yields determined by °F NMR spectroscopy using 1-fluoro-4-
nitrobenzene as the internal standard. (B) Fluorination of styrenes: styrene
(1 mmol, 1 equiv.), 2 (1 equiv.), CHsCOOH (0.04 M), 10 °C, 30 min. Yields
refer to the product isolated after silica gel chromatography.

demonstrate that the ethylene-bridged Troger based reagent 2
does not react with less activated alkenes, for example cyclohexene.
This result defines the limitation of the novel N-F reagent 2 in
terms of reactivity.

In summary, we have prepared and characterized the novel
N-F reagent 2 derived from the ethylene-bridged Troger base.
This reagent was found to be a competent F* source, more
reactive than Selectfluor, and of similar reactivity to pentachloro-
pyridinium triflate. Moreover, we present the first 1](F_N) coupling
constants for eight N-F reagents inclusive of 2, a set of data serving
as a new signature for the N-F bond. This study opens the door
towards asymmetric fluorination since the ethylene-bridged Troger’s
base is a chiral molecule.
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