Issue 4, 2019

Energy alignment and recombination in perovskite solar cells: weighted influence on the open circuit voltage

Abstract

In this work, we assess the possible reasons for the differences observed in open circuit voltage (VOC) in mixed cation perovskite solar cells when comparing four different hole transport materials (HTMs), namely TAE-1, TAE-3, TAE-4 and spiro-OMeTAD. All these HTMs present close chemical and physical properties, however, once they are finally deposited onto the perovskite layer, the HTMs provide different performance characteristics. Additional to the evaluation of the HTM influence on recombination, we find that, upon deposition of the organic HTM on top of the perovskite, there is an important change in the energy level position, and the impact on the device VOC is discussed. We consider that this experimental observation could be general for other organic HTMs and would justify the difficulties in finding molecules and materials that could improve the efficiency of perovskite solar cells overcoming the solar-to-energy conversion efficiency of solar cells made using spiro-OMeTAD as a hole selective contact.

Graphical abstract: Energy alignment and recombination in perovskite solar cells: weighted influence on the open circuit voltage

Supplementary files

Article information

Article type
Paper
Submitted
15 feb. 2019
Accepted
07 mar. 2019
First published
08 mar. 2019

Energy Environ. Sci., 2019,12, 1309-1316

Energy alignment and recombination in perovskite solar cells: weighted influence on the open circuit voltage

I. Gelmetti, N. F. Montcada, A. Pérez-Rodríguez, E. Barrena, C. Ocal, I. García-Benito, A. Molina-Ontoria, N. Martín, A. Vidal-Ferran and E. Palomares, Energy Environ. Sci., 2019, 12, 1309 DOI: 10.1039/C9EE00528E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements