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Exciton transfer free energy from Car–Parrinello
molecular dynamics†

Christian Schwermann and Nikos L. Doltsinis *

A computational approach is presented which allows the calculation of free energies profiles for exciton

transfer processes within the framework of ab initio molecular dynamics (AIMD) simulations, sampling

both the electronic and the nuclear degrees of freedom. To achieve this, restraining potentials are

imposed on the centres of maximally localized Wannier orbitals. The resulting quantum-mechanical

orbital forces are derived analytically and implemented in an AIMD program. In analogy to classical

umbrella sampling techniques, these restraints are used to control an exciton transfer by incrementally

moving the Wannier centres corresponding to the electron–hole pair along a suitable reaction coordinate.

The new method is applied to study exciton transfer between two stacked penta(3-methylthiophene)

molecules as a function of intermolecular distance. From the resulting free energy profiles, exciton transfer

rates and diffusion constants are estimated, which prove to be in line with experimental results.

1 Introduction

Excitons, i.e. bound electron–hole pairs, and their dynamics
play a fundamental role in many areas of physics, (bio)chemistry
and nanotechnology. In biology, for instance, light-driven
processes are often triggered by the transfer of an exciton from
an antenna protein to a chemical reaction centre (e.g. photo-
synthesis in green plants and phototropic bacteria).1–11

Furthermore, exciton transfer is exploited in the fluorescence
resonance energy transfer (FRET) imaging technique that enables
the tracking of individual molecules in living cells.12–17

In nanoscience, exciton dynamics have a crucial influence on
the properties of numerous man-made materials. A prominent
example are 2D materials, such as transition metal dichalco-
genides, in which strongly bound excitons are responsible for
their outstanding optical properties.18–26 Organic optoelectronics,
including organic light emitting diodes (OLEDs)27–29 and organic
solar cells (OSCs),30–39 constitutes another vast field, which
fundamentally relies on the properties of excitons.

The starting point of the theoretical description of inter-
molecular exciton transfer (also known as excitation energy
transfer (EET)) is an electronically excited donor molecule D�

and an acceptor molecule A in the ground state. The excitation
energy is transferred from D� to A, leaving the donor in the
ground state and the acceptor in the excited state (see Fig. 1).
The rate at which this transfer proceeds is usually computed on

the basis of Fermi’s golden rule:40,41

kEET ¼
2p
�h
jVDAj2JDA;

where VDA is the electronic coupling element between donor
and acceptor, JDA is the spectral overlap of the vibrationally
resolved emission and absorption spectra, and h� is the reduced
Planck’s constant. In the usual Condon approximation, VDA is
assumed not to depend explicitly on the nuclear coordinates.
Effects due to nuclear motion are thus solely contained in JDA.

In his pioneering work on EET, Förster expressed VDA as the
pure Coulomb coupling between the molecular dipoles of A
and D.40 Due to its simplicity and its applicability to many
experimental scenarios, this approximation has been used
extensively.3,4,6,9,42–45 However, at small distances as, for
instance, encountered in organic semiconductors and photo-
voltaics, the dipole approximation breaks down and the actual
charge density distribution together with orbital overlap and
exchange coupling has to be taken into account.46–48 Within
time-dependent density functional theory (TDDFT), transi-
tion densities are readily available, improving the accuracy of
calculated Coulomb couplings.9,11,49–51 However, as already

Fig. 1 MO scheme of singlet exciton transfer for a HOMO–LUMO
excitation.
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proposed by Dexter,52 neglect of exchange effects still leads to
significant deviations at small distances, making more accurate
approximations necessary at distances below about 6 Å.53–57

The calculation of coupling elements from the splitting of
dimer excited states in TDDFT calculations further improves
upon these methods, as the whole system is treated within a
supermolecular approach.11,58–60 While this technique includes
Coulomb and exchange coupling as well as orbital overlap
effects, its application is straightforward only in the case of
homodimers, i.e. transfer between molecules of the same
kind.48 Mitigating also this shortcoming, the fragment excitation
density (FED) method explicitly calculates coupling elements
between localised exciton states and provides rates that compare
well with experimental findings.46,61–64

Subotnik et al. have constructed diabatic localised exciton
states via Boys orbital localisation, also enabling the direct
evaluation of coupling matrix elements.65–67 Notably, recent
implementations of subsystem TDDFT allow the easy construc-
tion of diabatic localised exciton states10,68–71 and the real-time
sTDDFT formalism enables the direct simulation of transfer
processes, even including nuclear dynamics, on short time-
scales.72 Nevertheless, nuclear motion is overlooked in the vast
majority of studies on exciton transfer. Most often, the spectral
overlap JDA is either completely neglected or obtained from experi-
ments or simplified by assuming harmonic oscillations.3,51,73–76

Zhang et al. have included explicit electron–phonon coupling
in their Monte-Carlo simulations77 and Plötz et al. have calculated
coupling elements for geometries sampled from molecular
dynamics (MD) simulations.47 Recently, Londi et al. have used
MD simulations to calculate semi-classical Marcus–Levich–Jortner
rates.78 On the whole, however, Fermi’s golden rule and the
Condon approximation are overwhelmingly adopted, although
they are strictly only applicable in the weak coupling regime.48,79

The approach presented in this work circumvents those
approximations, as it allows the direct evaluation of free energy
barriers for exciton transfer from Car–Parrinello molecular
dynamics, fully taking into account electronic and nuclear
degrees of freedom. The excitonic electron–hole pair is repre-
sented by the singly occupied molecular orbitals (SOMOs) of
the lowest excited singlet electronic state S1, with the energeti-
cally lower orbital (SOMOh) corresponding to the hole and the
higher (SOMOe) corresponding to the electron.

The exciton’s position is defined by the centroid of maxi-
mally localised Wannier orbital centres corresponding to the
SOMOs. The projection of the centroid position onto a reaction
coordinate is then used to describe the transfer between two
sites. In analogy to free energy calculations in classical MD,
a restraining potential is applied to the Wannier centres,
resulting in an additional force acting on the molecular orbitals
in the Car–Parrinello equations of motion. An efficient imple-
mentation of these forces in the CPMD code80 is presented and
successfully tested.

Restraining the exciton position allows for classical free
energy methods such as umbrella sampling to be employed.
With these methods, even rare events become accessible, irrespec-
tive of their timescale. This technique is applied to model exciton

transfer in poly(3-hexylthiophene), a common donor material in
bulk-heterojunction organic solar cells.38,39,81–87 The simulations
show that the exciton position can indeed be controlled by the
restraining potential. Moreover the calculated transition rates
compare favourably with previously reported experimental
diffusion constants.

2 Theory

In order to derive the forces arising from restraint potentials
acting on Wannier centres, the key formulae regarding
the definition of maximally localized Wannier orbitals and
Wannier centres are briefly introduced.

2.1 Wannier orbitals in a plane wave basis

The Wannier orbital |Tii for lattice vector T and band index i is
defined as88

jTii ¼ O
ð2pÞ3

ð
dke�ik�T jfkii;

where O is the volume of the unit cell and the |fkii are Bloch
orbitals for wave vector k. Defining the lattice periodic
functions89

uki(r) = e�ik�rfki(r),

expectation values for operators Â in the Wannier basis can be
written as

hT ijÂj0ji ¼ i
O
ð2pÞ3

ð
dke�ik�T hukij ~Ajukji;

where Â is the Fourier transform of Â. Based on this, the
Wannier centres are defined as the expectation value of the
position operator r within the unit cell at T = 0:90

hrii ¼ h0ijrj0ii ¼ i
O
ð2pÞ3

ð
dkhukij=kjukii: (1)

Maximally localised Wannier orbitals are obtained through
minimisation of the total spread

Y ¼
X
i

ðhr2ii � hrii2Þ

by applying a unitary transformation U(k) to the Wannier
orbitals:

jukii !
X
j

UjiðkÞjukji

The term Wannier centre then corresponds to the expectation
value (1) in the maximally localised basis.

In practice, additional complications arise from the discre-
tisation in reciprocal space. Vanderbilt et al. have derived
an expression that maintains the translational properties of
Wannier centres and their spread,90 which for the G point and
arbitrary cell geometry reduces to91

hriai ¼ �
X
b

hba

2p
Im lnð~zbiiÞ (2)
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where hba(a, b = x, y, z) are elements of the matrix h = [a1,a2,a3]
containing the lattice vectors ai. The matrix elements zaij are
given by

zaij ¼
ð
O
dr eiga�r~fi

�ðrÞ~fjðrÞ;

with vectors ga defining the Cartesian components of the
centre. The Kohn–Sham orbitals are transformed as well,
leading to

jfii ! j~fii ¼
X
j

Ujijfji (3)

and thus

~zaij ¼
X
kl

U
y
kiUljz

a
kl :

2.2 Restraining potentials

Next, the quantum-mechanical force resulting from a general
potential V acting on a Wannier centre hrii is derived. The
centres hrii themselves depend on the matrix elements z̃bii,
which, in turn, are functionals of all orbitals {fj}:

V(hrii) = V(hrii (z̃bii[{fj}])). (4)

The forces produced by the potential are thus functional
derivatives with respect to the orbitals. The expression for those
can be split into three terms by invoking the chain rule:

dV
dfj
�ðr0Þ ¼

X
a;i

@V

@hraii
� dhraiiðf~z

b
iigÞ

dfj
�ðr0Þ

¼
X
a;b;i

@V

@hraii
� @hraii
@~zbii

� d~zbii
dfj
�ðr0Þ:

(5)

The first term is, as for the classical analogue, the partial
derivative of the potential with respect to the centre. For example,
a harmonic potential

VðhriiÞ ¼
Kr

2
ðhrii � R0Þ2

with force constant Kr and equilibrium position R0 yields

@V

@hraii
¼ Krðhraii � R0aÞ:

The second term of (5) is the partial derivative of the
Wannier centre (2) with respect to the complex matrix element
z̃bii, which involves differentiation of the imaginary part of the
complex logarithm Im ln(z) = arg(z) with respect to a complex
number z = reij:

@

@z
Im lnðzÞ ¼ e�ij

@

@r
� i

z

@

@j

� �
argðzÞ ¼ � i

z
:

This leads to the expression

@hraii
@~zbii

¼ hab

2p
i

~zbii
:

The last term of (5) is the functional derivative of the matrix
element z̃bii with respect to the orbitals:

d~zbii
dfj
�ðr0Þ ¼

d
dfj
�ðr0Þ

X
k;l

U
y
kiUli

ð
O
dr eigb �rfk

�ðrÞflðrÞ

¼
X
k;l

U
y
kiUli

ð
O
dr eigb �rdkjdðr� r0ÞflðrÞ

¼
X
l

U
y
jiUlie

igb �rflðr0Þ:

Combining these derivatives and using the short notation
for the transformed orbitals (3), the final expression in real
space is obtained:

dV
dfj
�ðrÞ ¼

i

2p

X
i

U
y
ji

X
a;b

@V

@hraii
hab

~zbii
eigb �r~fiðrÞ: (6)

This expression can be used for any potential V(hrii), for which

the partial derivative
@V

@hraii
is known.

2.3 Implementation

In the CPMD code, the orbitals are stored as coefficients Cj (G)
in a plane-wave basis, where j is the orbital index and G is a
reciprocal lattice vector. (Note that here we consider only the
G-point approximation; however the formalism can be straight-
forwardly generalized.) Thus, the Fourier transform of the force
(6) is implemented as

dV
dCjðGÞ

¼ i

2p

X
i

U
y
ji

X
a;b

@V

@hraii
hab

~zbii

~CiðG þ gbÞ; (7)

where the C̃i(G) are the transformed coefficients of the maxi-
mally localized Wannier orbitals:

~CiðGÞ ¼
X
j

UjiCjðGÞ:

As the shifted coefficients C̃i(G + gb) as well as the transforma-
tion matrix U and the matrix elements z̃bii are determined
anyway during the usual calculation of Wannier centres, the
only overhead produced here is the evaluation of the force (7)
itself.

In order to investigate the transfer of a Wannier centre from
one molecule to another, an appropriate reaction coordinate
needs to be defined. To this end, a general coordinate x
defining a position x = A + (B � A)�x on a line connecting two
distinct groups of atoms is implemented (see Fig. 2).

With this, any position x can be projected onto a one-
dimensional reaction coordinate x:

x ¼ ðB � AÞ � ðx� AÞ
jB � Aj2 : (8)

Thus, x = 0 describes localisation on molecule A, while x = 1
means localisation on molecule B. A harmonic restraining

PCCP Paper

Pu
bl

is
he

d 
on

 1
6 

ja
nú

ar
 2

02
0.

 D
ow

nl
oa

de
d 

by
 F

ai
l O

pe
n 

on
 2

3.
7.

20
25

 1
0:

34
:0

8.
 

View Article Online

https://doi.org/10.1039/c9cp06419b


This journal is©the Owner Societies 2020 Phys. Chem. Chem. Phys., 2020, 22, 10526--10535 | 10529

potential acting on x translates to

VðxÞ ¼ Kx

2
ðx� xrefÞ2 ¼

~Kx

2
ðx� xrefÞ2 (9)

where

~Kx ¼
Kx

jB � Aj2 (10)

and can be used to calculate the derivative in eqn (7). The 1D
reaction coordinate x enables the application of known free
energy techniques such as umbrella sampling. To model the
transfer of an electron–hole pair, we choose not to restrain the
two orbitals involved individually, but their centroid

x ¼ hri1 þ hri2
2

(11)

The harmonic restraining potential (9) acting on this centroid
then leads to the gradient

@V

@hrii
¼ 2 �

~Kx

2
ðx� xrefÞ �

@x

@hri1
¼

~Kx

2
ðhrii � xrefÞ for i ¼ 1; 2:

A sample input for the implementation in the CPMD code is
available in the ESI.† Patches to CPMD version 3.15.1 or version
4.3, which add harmonic restraining potentials as defined here
are available on request.

3 Computational details

The simulations are performed with an in-house modified
version of the CPMD 3.15.1 package. Unless specified otherwise,
all calculations employ the PBE density functional92 with Grimme’s
D2 dispersion correction.93 Norm-conserving Troullier–Martins
pseudopotentials94 are used with a plane-wave cutoff of Ecut =
70 Ry. Excited states are modelled within the restricted open-
shell Kohn–Sham (ROKS) formalism.95–97 The simulation boxes
are chosen to have at least 7 Å of vacuum in every direction
to avoid interaction between periodic images. The smallest
possible box to accommodate the systems in all cases has the
dimensions 28 Å � 19 Å � 16 Å. Prior to the dynamics
simulations, wavefunctions are optimised to a gradient below
1 � 10�7 a.u. For the Car–Parrinello simulations,98 a timestep
Dt = 4 a.u. and a fictitious orbital mass m = 400 a.u. are chosen.
A Nosé–Hoover thermostat99,100 with a resonance frequency of

o = 2500 cm�1 is used to keep the nuclei at an average
temperature of T = 300 K. Structures and orbitals are visualised
using VMD 1.9.2 with the internal Tachyon renderer.101,102

For orbitals obtained from CPMD properties calculations,
an iso-value of 5 is used.

4 Results and discussion
4.1 Investigated molecules

As a model for the frequently used donor material in bulk-
heterojunction solar cells, poly(3-hexylthiophene) (P3HT, see
Fig. 3(left)),38,39,81–87 we investigate penta(3-methylthiophene)
(P3MT, see Fig. 3(right)), which has a chain length of n = 5 and
the hexyl chains present in P3HT have been replaced by methyl
groups.

Within ROKS, the first excited singlet state S1 is approxi-
mated by a symmetry-adapted linear combination of two open-
shell Slater determinants comprising a single set of molecular
orbitals.

In Fig. 4a, the two SOMOs of a single P3MT molecule are
presented, showing that the S1 excitation has p - p� character.
The vertical excitation energy at the optimised S geometry is
DE = 1.80 eV with the PBE functional. This result is lower than
literature results for oligomers with chain lengths of 4 to 6,
ranging from 2.49 eV to 2.96 eV in TDDFT calculations and
from 2.85 eV to 3.16 eV in experiments.86 On the other hand,
the PBE value is quite close to experimental results of B2.0 eV
obtained for crystals.86

However, it is well known that ROKS generally underestimates
excitation energies when used with GGA functionals – especially for
p- p� excitations.103–110 For this reason, we implement the ROKS
method with hybrid functionals yielding much improved excitation
energies (see ESI† for details). As a matter of fact, ROKS calculations

Fig. 2 Definition of the reaction coordinate x. A is the centre of mass
(c.o.m.) of atoms 1–5, B is the c.o.m. of atoms 6–10. x0 is the current
position vector and x0 the corresponding reaction coordinate according to
eqn (8).

Fig. 3 Structures of poly(3-hexylthiophene) (left) and penta(3-
methylthiophene) (right).

Fig. 4 SOMOe (top) and SOMOh (bottom) of a P3MT monomer (a) and
Di-P3MT (b) obtained from ROKS calculations at the respective optimized
ground state geometries.
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with the PBE0 hybrid functional111,112 (at the PBE geometry)
yield an excitation energy of 2.30 eV for P3MT, i.e. 0.5 eV higher
than with PBE. Since the calculation of the exact exchange energy
in a plane-wave basis is, however, considerably more time-
consuming, the dynamics simulations in this work are performed
with the GGA functional PBE. The shape of the GGA-ROKS
potential energy surfaces has been shown to be comparable to
that obtained with more accurate methods – including CASPT2
and TDDFT.104–110 This observation has been specifically made
for p- p� excited states in numerous different molecules leading
to realistic excited state dynamics in agreement with experimental
observations.

In the following, we refer to a single P3MT molecule as a
monomer. In order to simulate intermolecular exciton transfer,
a dimer (Di-P3MT) is constructed by rotating a second mono-
mer by 1801 and laying it on top of the other, with the aromatic
rings parallel to each other, as shown in Fig. 5. To keep the
monomers at a certain distance, intermolecular restraining
potentials are used throughout the simulations. In particular,
the intermolecular distance d is defined as the distance of the
sulfur atom of each ring of one monomer to the middle of the
C–C bond of the corresponding ring on the other monomer (see
Fig. 5) as these points practically lie on top of each other in the
optimized geometry. To realize a certain value of d, harmonic
potentials with a force constant of Kbond = 0.1 a.u. are applied
between the sulfur atom of each ring of monomer A (B) and the
corresponding two carbon atoms of monomer B (A), restraining

the distance d 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ dC�C2

p
(see Fig. 5). Here, dC–C = 1.4 Å is

the length of the C–C bond, which leads to the restrained
distances d0 specified in Table S2 (ESI†). This way, to restrain
the intermolecular distance d, in total 20 restraints are applied
(4 to each pair of aromatic rings) to the system. This addition-
ally prevents the monomers from drifting apart in the direction
of the chain, which otherwise occurs in longer unrestrained
simulations due to the shortened chain length (see Fig. S1 and
S2, ESI†), but is largely absent in real condensed phases.

For the S1 excited state of the dimer, the SOMOs now
correspond to linear combinations of the monomer SOMOs
(see Fig. 1b). This leads to a lower excitation energy of DE = 1.60 eV

with the PBE functional and DE = 2.15 eV with the PBE0
functional.

4.2 Free exciton dynamics

First, the character of the exciton in the Di-P3MT model system is
examined by performing a Car–Parrinello simulation in the S1 state
without any restraints whatsoever – i.e. neither Wannier centres nor
nuclear positions are restrained. During the simulation time of
2 ps, Wannier centres are calculated for the SOMOs at each
timestep and an exciton coordinate x is calculated via formulae
(8) and (11), placing the vectors A and B (see also Fig. 2) at the
c.o.m. of the central thiophene ring (considering the four carbons
and the sulfur atom) of each P3MT monomer. The resulting time
evolution of the exciton coordinate is shown in Fig. 6.

The exciton is localised mostly on monomer B (x = 1), with
occasional jumps to monomer A (x = 0). This indicates that the
exciton transfer in Di-P3MT can be described as a hopping
process of a localised Frenkel exciton from an excited Donor D�

to an acceptor A (see Fig. 1). Denoting the initial state as |D�Ai
and the final state as |DA�i, the wavefunction of the Frenkel
exciton can be written as

|Ci = c1|D�Ai + c2|DA�i.

With hC|Ci = 1 it is obvious that c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c12

p
, leaving one

degree of freedom describing the transfer process. As shown in
Fig. 7, both SOMOs are fully localised on one monomer for x = 0
and x = 1. For x = 0.5, however, both SOMOs exhibit localisation
on both monomers, corresponding to a Frenkel exciton with the
wavefunction

jCi ¼ 1ffiffiffi
2
p jD�Ai þ 1ffiffiffi

2
p jDA�i:

This further indicates that x is a viable reaction coordinate, which
can be interpreted as the localisation of a Frenkel exciton x = c1

2.

4.3 Restraining potentials

As illustrated by Fig. 6, the exciton in Di-P3MT is predomi-
nantly localised on one of the monomers, i.e. x = 0 or x = 1,
especially at large intermolecular separations. To calculate the
free energy barrier for intermolecular exciton transfer – for
instance, using umbrella sampling – a suitable restraining

Fig. 5 Definition of the intermolecular distance d.
Fig. 6 Time evolution of the exciton coordinate x from an unrestrained
simulation of Di-P3MT over 2 ps.
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potential needs to be applied that connects initial and final
states and is able to keep the exciton coordinate close to any
predefined value along the reaction path. Fig. 8 shows the time-
evolution of the actual exciton coordinate x for different
reference values xref specified in the harmonic potential (9).

The harmonic potential clearly keeps the exciton fairly close
to the specified position for all reference values and is thus able
to control exciton transfer. The amplitude of the oscillations
can be controlled by the force constant Kx, as shown in Fig. 9
and Fig. S3 (ESI†).

Application of restraining potentials on the orbital positions
obviously leads to an increase in fictitious electronic kinetic
energy (see Fig. S4, ESI†), as additional oscillations are induced.
Since the harmonic potential (9) acts on an orbital with
fictitious mass m, it will oscillate with the frequency

o ¼

ffiffiffiffiffiffi
~Kx

m

s
:

For example, an intermolecular distance of |B � A| = d = 4.0 Å,
a force constant of Kx = 0.2 a.u. (corresponding to K̃x =
0.34 eV Å�2), and a fictitious orbital mass of m = 400 a.u.,
lead to a frequency of o = 4079 cm�1. Since this value is close to
the range of the nuclear vibrational frequencies (see Fig. S5,
ESI†), electronic and nuclear degrees of freedom are not
completely decoupled, causing the Car–Parrinello method to
break down as energy is transferred from the nuclear to the
electronic subsystem. Therefore, an additional Nosé–Hoover
thermostat is applied to the orbital degrees of freedom. The
kinetic energy is kept constant corresponding to the temperature
T = 2kBhEkin,eli/NDOF = 300 K. Here NDOF is the number of
electronic degrees of freedom and is equivalent to the number
of orbitals. In the case of Di-P3MT, NDOF = 153 resulting in
hEkin,eli = 0.073 a.u.

4.4 Umbrella sampling and free energies

Having shown that the chosen restraint is capable of keeping
the exciton coordinate within small windows along the reaction
coordinate with controllable deviation, we now employ this
method to calculate free energy barriers for exciton transfer
within the framework of umbrella sampling.113–115 Average
forces, i.e. the partial derivative of the free energy Fi w.r.t. x,
@Fi

@x
, are obtained by umbrella integration from the average

coordinate hxii and its standard deviation si for each window i:

@Fi

@x
¼ 1

b
x� hxii

si2
� Kxðx� xrefi Þ;

with b = (kBT)�1, where kB is the Boltzmann constant and T is

the temperature. The total force
@F

@x
is then the weighted sum

over the forces of the windows:

@F

@x
¼
X
i

piðxÞ
@Fi

@x
;

Fig. 7 Snapshots of the SOMOs corresponding to hole and electron from
a dimer simulation without restraints. The Wannier centres of the hole and
electron states are shown as a blue and red spheres, respectively.

Fig. 8 Exciton coordinate during an MD simulation of Di-P3MT at d =
4.0 Å with a harmonic restraining potential with force constant Kx = 0.3 a.u.
keeping the exciton centre close to the reference coordinate xref.

Fig. 9 Deviation of the average exciton coordinate from the reference,
i.e. Dxi = xi � xref,i for different force constants Kx and windows i. The error
bars correspond to one standard deviation si.
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with the weights defined by Gaussian distributions:

piðxÞ ¼
aiðxÞP
j

ajðxÞ

aiðxÞ ¼ NiPiðxÞ;

PiðxÞ ¼
1

si
ffiffiffiffiffiffi
2p
p exp �1

2

x� hxii
si

� �2
" #

;

for the number of simulation steps Ni. The thus obtained
average force is then integrated on a grid of 1000 x-values
between x = 0 and x = 1.

In the following, a force constant of Kx = 0.2 a.u. is used in
order to have sufficient overlap between the 11 equally spaced
windows xref,i = n�0.1 (n = 0, 1,. . .,10). Due to the symmetry of
the Di-P3MT model system, the free energy curves are expected
to be symmetric around x = 0.5. Deviations, most noticeable for
d = 4.5 Å and d = 5.0 Å (see Fig. 10), arise from asymmetric
dynamics of the monomers and can ultimately be attributed to
the fact that simulation times are finite. In the thermodynamic
limit, all configurations would be sampled and the curves
would be symmetric. Nevertheless, the curves show a clear
trend: the farther the monomers are apart, the higher the
barrier for exciton transfer. This result is expected from the

known exponential distance dependence of the Dexter energy
transfer rate.52

To assess whether these barriers are physically meaningful,
transfer rates and diffusion constants are estimated from the
barrier heights and compared to experimental results.

According to transition state theory, the rates can be esti-
mated from transmissivity k and the probability to reach the
transition state, i.e. the maximum x�:116–118

Pðx�Þ ¼ exp½�bFðx�Þ�Ð x�
�1exp½�bFðxÞ�dx

The transmissivity k accounts for the dynamics at the max-
imum and can be calculated from the average velocity at the
maximum

k ¼ h _xYð _xÞix¼x� ;

where the Heaviside function Yð _xÞ ensures that only positive
velocities are counted as only those correspond to the exciton

crossing the barrier. The velocity of the exciton coordinate _x is
readily available from the restrained simulations at the max-
imum of the barrier. Note that, in contrast to constraints,
restraining potentials do not influence expectation values of
an arbitrary function f of the momentum within the canonical
ensemble, as the integrals over momentum and position are
separable

h f ðpÞi ¼ 1

Z

ð
R

dr

ð
R

dp f ð pÞ exp �b p
2

2m
� bVðrÞ

� �

¼ 1

Z

ð
R

dr exp½�bVðrÞ� �
ð

R

dp f ðpÞ exp �b p
2

2m

� �
:

Here, p = m :x and, according to eqn (8), _x ¼ ðB � AÞ � p
m B � Aj j2

. This

means that restrained simulations are perfectly suited for the

calculation of the average velocity h _xYð _xÞix¼x� . In conjunction

with the probability density P(x�), the exciton transfer rate can
then be calculated as

kEET ¼ kPðx�Þ ¼ h _xYð _xÞix¼x�
exp½�bFðx�Þ�Ð x�

�1exp½�bFðxÞ�dx
:

We note that recrossings are not taken into account within
transition state theory, i.e. particles which cross the barrier with
a positive velocity are assumed to always reach the product
state. As recrossings do occur in the investigated system (see
Fig. 6), the rate calculated this way is always an upper limit to
the exact transition rate.119 More accurate methods, such as the
Bennet–Chandler approach,116,120 are, in principle, also acces-
sible with our implementation. However, such approaches
usually involve explicit simulations of recrossings, rendering
the evaluation of recrossing rates with statistical significance
computationally extremely demanding.

Further assuming a simple 1D random walk to approximate
an ideal P3MT crystal, diffusion constants follow from121

D ¼ ðDxÞ
2

2Dt
;

Fig. 10 Free energy profiles for the exciton transfer between two P3MT
monomers at intermolecular distances of (from top to bottom) d = 3.0 Å,
d = 3.5 Å, d = 4.0 Å, d = 4.5 Å and d = 5.0 Å.
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where the hopping distance Dx corresponds to the intermole-
cular distance d and the hopping time Dt is the inverse of the
exciton transfer rate kEET. This finally leads to

D ¼ d2 � kEET
2

:

The barrier heights, transfer rates, and diffusion constants
obtained in this way are collected in Table 1. For d o 4.0 Å,
the barrier practically vanishes, so the given rates and diffusion
constants are only meaningful for d Z 4.0 Å.

While the applied approximations and model assumptions
certainly do not represent the situation in real organic solar
cells, they are fairly close to the limiting case of an ideal crystal.
Indeed, the calculated diffusion constants agree surprisingly
well with measurements conducted on P3HT crystals where
values of D = 3.3 � 10�3 cm2 s�1 and D = 7.9 � 10�3 cm2 s�1

were found for low and high crystallinity, respectively.38 According
to the calculated diffusion constants, this would correspond
to an intermolecular distance between d = 4.0 Å and d = 5.0 Å.
Indeed, experiments report distances between d = 4.17 Å and
d = 4.45 Å.122,123 For amorphous P3HT crystals, reported diffusion
constants vary strongly, ranging from D = 0.5 � 10�3 cm2 s�1 to
D = 10 � 10�3 cm2 s�1.124–126 It can thus be concluded that
the barriers obtained from umbrella sampling with restrained
Wannier centres of the SOMOs make physical sense and do
not contradict experimental measurements. A more meaningful
comparison between theory and experiment requires more
intricate models that include the actual crystal structure or
morphology, e.g. by sampling from large-scale force field mole-
cular dynamics simulations of P3HT crystals or by including
further monomers or a surrounding environment in the simula-
tion box. Beyond that, rates calculated for dimers could, as has
been done for charge transfer rates,127 be included in kinetic
Monte-Carlo simulations for a larger box in order to analyse the
exciton transfer efficiency of realistic solar cell architectures.

5 Conclusion

In this work, the theoretical framework and computational
intricacies of Car–Parrinello molecular dynamics with restrained
Wannier centres was presented. A technical implementation of
the method in the CPMD program was successfully tested and the
restraint approach was confirmed to be capable of effectively
controlling the position of molecular orbitals along a predefined
reaction coordinate. The new method was applied to compute free
energy curves via umbrella sampling for exciton hopping between

two stacked penta(3-methylthiophene) monomers. Effects due
to nuclear motion, which are often neglected in alternative
approaches, are fully taken into account. Exciton transition
rates and diffusion constants obtained from this approach have
been shown to be physically meaningful, as they compare well
with experiments.

All in all, this work establishes restraining potentials acting
on Wannier centres as novel and useful technique in the
toolbox of ab initio molecular dynamics simulations. While
the discussion here focuses on exciton transfer in organic
semiconductors, this technique is generally applicable to any
system. In particular, not only exciton transfer, but transfer of
any kind of charge carriers can be envisioned to be investigated
in this manner.
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Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2002, 65,
031919.

9 M. E. Madjet, A. Abdurahman and T. Renger, J. Phys. Chem.
B, 2006, 110, 17268.

10 C. König and J. Neugebauer, Phys. Chem. Chem. Phys., 2011,
13, 10475.

11 C. König and J. Neugebauer, ChemPhysChem, 2012, 13, 386.
12 W. E. Moerner and L. Kador, Phys. Rev. Lett., 1989, 62,

2535.
13 E. Betzig, Opt. Lett., 1995, 20, 237.
14 T. A. Klar and S. W. Hell, Opt. Lett., 1999, 24, 954.
15 C. J. Weijer, Science, 2003, 300, 96.
16 D. J. Stephens and V. J. Allan, Science, 2003, 300, 82.

Table 1 Free energy barriers DF, transfer rates kEET and diffusion con-
stants D for Di-P3MT for different intermolecular distances d. For d = 3.0 Å,
no rates and diffusion constants can be calculated

d/Å DF/meV kEET/ps�1 D/10�3 cm2 s�1

3.0 0.00 — —
3.5 0.93 1844.13 1129.53
4.0 51.63 27.43 21.95
4.5 108.28 5.31 5.37
5.0 146.89 0.71 0.89

Paper PCCP

Pu
bl

is
he

d 
on

 1
6 

ja
nú

ar
 2

02
0.

 D
ow

nl
oa

de
d 

by
 F

ai
l O

pe
n 

on
 2

3.
7.

20
25

 1
0:

34
:0

8.
 

View Article Online

https://doi.org/10.1039/c9cp06419b


10534 | Phys. Chem. Chem. Phys., 2020, 22, 10526--10535 This journal is©the Owner Societies 2020

17 W. E. Moerner and D. P. Fromm, Rev. Sci. Instrum., 2003,
74, 3597.

18 K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Phys.
Rev. Lett., 2010, 105, 136805.

19 M. Palummo, M. Bernardi and J. C. Grossman, Nano Lett.,
2015, 15, 2794.

20 I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn,
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