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Magnetic structure and properties of the
honeycomb antiferromagnet [Na(OH2)3]Mn(NCS)3†
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Matthew J. Cliffe *a

We report the magnetic structure and properties of a thiocyanate-

based honeycomb magnet [Na(OH2)3]Mn(NCS)3 which crystallises in

the unusual low-symmetry trigonal space group P%3. Magnetic mea-

surements on powder samples show this material is an antiferromagnet

(ordering temperature TN,mag = 18.1(6) K) and can be described

by nearest neighbour antiferromagnetic interactions J = �11.07(4) K.

A method for growing neutron-diffraction sized single crystals

(410 mm3) is demonstrated. Low temperature neutron single crystal

diffraction shows that the compound adopts the collinear antiferro-

magnetic structure with TN,neut = 18.94(7) K, magnetic space group P%30.

Low temperature second-harmonic generation (SHG) measurements

provide no evidence of breaking of the centre of symmetry.

Honeycomb magnets, due to their high symmetry and two-
dimensionality, can host a wide range of magnetic phases,
including monolayer ferromagnetism in CrI3,1 proximate
Kitaev spin liquid states in RuCl3 and Na2Co2TeO6,2,3 complex
spin textures in FeCl3,4 and magnetoelectricity in Co2Mo3O8.5

Molecular magnets are of particular interest for low-dimen-
sional magnetism as it is often more straightforward to pro-
duce well-isolated low-dimensional connectivity, and the mole-
cular ligands offer the potential for a high degree of tunability.6

Honeycomb molecular magnets are no exception to this,

particularly those based on chelating ligands such as (ox2� =
C2O4

2�),7–9 tetraoxolene (C6O4R2
n�)10 amongst others.11,12

These structures often have multiple different paramagnetic
species producing ferrimagnetic order, whether this is alternating
metal sites A[MIIMIII](ox)3,7 A[MIIMIII](C6O4R2)3

13,14 or the pres-
ence of radical ligands in A2[M2(C6O4R2)3],10 where A is charge
balancing cation (typically alkylammonium). Equally, distorted
honeycomb structures, with multiple different exchange pathways
are common.12,15,16 Examples of ideal honeycomb lattice magnets
are thus comparatively rare.

One promising material family to search for honeycomb
magnets are the metal thiocyanates, which show a range of low
dimensional magnetic properties due to the layered structural
connectivity and have interactions as strong as comparable
halides.18,19 In this paper we investigate the magnetic proper-
ties of [Na(OH2)3]Mn(NCS)3 (NaMn(NCS)3�3H2O),20 formed of
ideal two-dimensional honeycomb [Mn(NCS)3]� layers with the
hexagonal void filled by 1D [Na(OH2)3]+ rods [Fig. 1]. It crystal-
lises in the low-symmetry but still trigonal P%3 space-group,
comparatively rare in inorganic materials (fewer than 0.25%
of ICSD structures21). As a result, the Mn(II) sites do not lie on
inversion centres, which raises the possibility that magnetic

Fig. 1 Neutron single crystal structure of [Na(OH2)3]Mn(NCS)3 (D19 at the
ILL, 25 K).17 (a) View along the c axis. Space group diagram for P %3 overlaid,
%1: white circle, 3: black triangle. (b) View along the b axis. Hydrogen bonds
shown as red lines.
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ordering may break the centre of symmetry and hence induce
simultaneous magnetic and electric order (type II multiferroi-
city).22 Although the structure of this compound has been
reported, because it is very sensitive to humidity, very little is
known about its physical properties.20 We report a method for the
synthesis of large [Na(OH2)3]Mn(NCS)3 single crystals (12 mm3) of
suitable quality for neutron diffraction measurements, which
mitigates the strong humidity dependence of this compound.
Using a combination of bulk magnetic property measurements,
low-temperature single crystal neutron diffraction and SHG mea-
surements, we have determined its magnetic properties. We find
that [Na(OH2)3]Mn(NCS)3 orders with the classical honeycomb
antiferromagnetic ground state, ordering into the centrosym-
metric collinear antiferromagnetic P%30 space group.

We synthesised [Na(OH2)3]Mn(NCS)3 using a method
adapted from that of Biedermann1998, using the salt metathesis
of manganese(II) sulfate and barium thiocyanate with additional
sodium thiocyanate in aqueous solution in a 1 : 1 : 1 ratio. After
filtering the precipitated BaSO4 and removing the water, a pale
green-yellow powder was obtained, deliquescent in ambient
conditions, which can be recovered from its own solution by
heating at no more than 60 1C. The powder sample is also
sensitive to dry environments, and will decompose to Mn(NCS)2

and NaNCS on heating.
On concentration in vacuo, aqueous solutions of [Na(OH2)3]-

Mn(NCS)3 change colour sequentially from colourless to pale
pink, pale green and eventually to aqua blue [Fig. S1, ESI†].
We found that the optimal concentration for crystal growth is
when the solution is an intense green colour, just before it
begins turning blue. More concentrated, blue, solutions very
rapidly crystallised, which led to many smaller crystals. Less
concentrated solutions were not sufficiently supersaturated for
crystal growth [Fig. S2, ESI†]. On leaving this green solution to
stand for 24 h at 7 1C we obtained large regular-hexagonal
crystals. As the supersaturated solution absorbs water from the
air, the concentration falls below the level required for optimal
crystal growth after 24 h. The harvested crystals from this initial
crystallisation were then used as seeds for future crystallisation
with the growth solution being reconcentrated to the optimal
concentrations. After nine iterations of seeded crystallisation
we obtained pale green, hexagonal crystals of [Na(OH2)3]-
Mn(NCS)3 suitable for neutron diffraction experiments: 4 �
3 � 1 mm3 [Fig. 3(a)]. Due to the humidity sensitivity of this
compound, we explored a variety of conditions for storage
using saturated aqueous salt solutions to control the atmo-
sphere: 54% (Mg(NO3)2(aq.)), 39% (NaI(aq.)), 32% (CaCl2(aq.))
and 23% (KCH3COO(aq.)).

23,24 We found that the crystals
were indefinitely stable at 32% humidity (423 months). We
confirmed the phase purity of powder samples with powder
X-ray diffraction and the quality of smaller single crystals
was checked using ambient temperature X-ray single crystal
diffraction.

Previous work has established that manganese thiocyanate
compounds show moderately strong magnetic interactions,18,19

and so to investigate the magnetic properties of [Na(OH2)3]Mn-
(NCS)3 and uncover any magnetic phase transitions, we carried

out magnetic susceptibility (m0H = 0.01 T) and isothermal
magnetisation measurements on a powder sample (2 K, �5 to
+5 T). We found that the magnetic susceptibility increases on
cooling until a broad maximum is reached around 25 K. Below
this temperature, the susceptibility decreases until a sharp
drop at the ordering temperature, TN = 18.1(6) K [Fig. 2(a)].
The temperature dependence of the moment was fitted to the
Curély model of a nearest neighbour classical honeycomb
magnet,12 using the following Hamiltonian:

H ¼ �1
2

X

i;j

JSi � Sj ; (1)

where jSj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðS þ 1Þ

p
, and the sum is only over nearest

neighbours. In this convention, antiferromagnetic superex-
change will give negative J. We fitted the data over the full
temperature range, with an additional 1/T term to account for
paramagnetic impurities due to sample hydration, giving J =
�10.0(2) K and g = 1.8 with 7.0(2)% paramagnetic impurities.
We also fitted just the high temperature regime (T 4 60 K),
using both the Curély model, giving J = �11.07(4) K, g = 2.02,
and using the Curie–Weiss model which gives a Curie–Weiss
temperature, yCW = �51.4(1.4) K, equivalent to J = �17.4(5) K
and g = 2.09, the overestimated Curie–Weiss temperature being
typical of analysis of low-dimensional magnets. The presence of
a small fraction of hydrated impurity means the extracted
values of g are unreliable.

The isothermal magnetisation does not saturate up to
5.00(1) T, consistent with the moderately strong antiferromag-
netism, and there is no observable hysteresis within the error
limits of the measurements (o1 mT) [Fig. 2(b)]. A change in the
gradient at 2.0(3) T is suggestive of a spin reorientation transi-
tion [Fig. S8, ESI†].

The combination of the negative yCW and lack of hysteresis
in the isothermal magnetisation data, suggests that [Na(OH2)3]-
Mn(NCS)3 has ground-state antiferromagnetic order. If there is
a ferromagnetic component due to spin canting, which could
explain the up-turn in the low temperature susceptibility data,
it must be small in magnitude.

Fig. 2 (a) Magnetic susceptibility, w measured from 2–300 K (black), with
the high temperature fits using the Curie–Weiss (teal) and Curély equation
(pink) for a classical honeycomb magnet. Inset: Temperature derivative of
the susceptibility in the vicinity of the transition. (b) Isothermal magnetisa-
tion data, measured between +5.00 and �5.00 T at 2 K. Inset: Close-up of
data between +0.1 and �0.1 T.
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To determine the low temperature nuclear and magnetic
structure of [Na(OH2)3]Mn(NCS)3, single crystal neutron diffrac-
tion measurements were performed (D19, ILL).17 Full datasets
were collected above (25 K) and below (2 K) the ordering
temperature of TN = 18.1(6) K. The data at 25 K (l = 1.45 Å,
631 independent reflections) could be integrated with the same
space group as the reported structure at ambient temperature,
P%3, indicating the absence of any structural transitions. The
atom positions and anisotropic displacement parameters were
refined freely, with a final w2 = 23.20, obtained by refinement
using the FullProf programme.25 From each H2O molecule one
hydrogen is directed towards a nitrogen, whilst the other
hydrogen is positioned towards a sulfur atom with +O–H� � �N =
153.291(2)1 and +O–H� � �S = 164.258(2)1. The distances of the
hydrogens to the acceptor atoms are dH1� � �N = 2.355(5) Å and
dH2� � �S = 2.326(7) Å, consistent with previous reports.26

In the low temperature dataset (2 K) all the Bragg reflections
(651 unique reflections) could be indexed by the nuclear space
group P%3, implying the propagation vector is k = (0,0,0). The
potential magnetic space groups with this propagation vector
were identified using the Bilbao Crystallographic Server,27–29

P%30, P%3, P3, P%10, P%1 and P1 in BNS notation.28 We initially
focussed on the three maximal symmetry magnetic space
groups: P%30, P%3 and P3. Of these, the P%3 magnetic space group
only allows for a collinear ferromagnetic order and so was
neglected as it is inconsistent with our magnetic property
measurements; P%30 permits only collinear antiferromagnetic
order and P3 allows antiferromagnetic, ferromagnetic or ferri-
magnetic arrangement of the moments as it contains two
distinct Mn(II) sites.

Refinements were carried out with both the P%30 and P3 space
groups. The results of the refinements provided comparable
models with similar refinement statistics, w2 = 9.49 (P%30) and
w2 = 9.8 (P3) [Fig. S6 and S7, ESI†]. The significant difference
between these models is the loss of the inversion centres in the
P3 space group, which produces the two unique Mn sites. In
both structures the Mn atoms are positioned on a 3-fold
rotation axis and thus the moments are constrained to lie
along c. The antiferromagnetic P%30 model has a moment size,
gS, of 4.9(2)mB per Mn, whereas in the P3 model, the magnitude
of the two moments are �3.4(3) and 5.4(2)mB. These moments
were closely correlated, and were only stable during the refine-
ments when the moments were constrained to refine between
�5.0 and 5.0mB. This resulted in moments of �4.0(2) and
3.9(2)mB. Within error these moments have the same magnitude,
although any uncompensated moment would result in a net
magnetisation along the c axis. We also investigated the potential
for lower symmetry k = 0 orderings, with canted moments or
significant magnetostructural distortions, which would require
triclinic symmetry. We integrated the data with triclinic symmetry,
which produced a cell which was trigonal within error, and then
refined the magnetic and nuclear structures in P%10 [Fig. S4 and
Table S1, ESI†]. This model has a single Mn site, M = 4.1(2)mB, with
the moment pointing primarily along the c axis with a significant
canting, though the errors in this model prevent reliable determi-
nation of moment direction. The atomic coordinates and

displacement parameters were refined freely, however there was
no evidence beyond error of any symmetry lowering beyond
trigonal symmetry and the refinement fit was significantly worse
than that for the higher symmetry models, with w2 = 51.3. We
therefore concluded that the triclinic models were not required to
describe this system.

To gain more detailed understanding of the transition we
collected data between 2 and 25 K with 0.25 K steps to follow
specific reflections. We focussed in particular on the 100 Bragg
reflection, which has significant magnetic contribution in the
magnetically ordered state. We fitted the intensity of this
reflection to a power law:

I = M2 = A(TN � T)2b + C, (2)

where A is a proportionality constant, TN is the ordering tem-
perature, b is a critical exponent and C the nuclear scattering
intensity. We found for the 100 reflection that b = 0.31(3) and
TN = 18.94(7) K [Fig. 3(c)], which lies between the theoretical
results for a two-dimensional Ising antiferromagnet (b = 0.125)
and a three-dimensional Heisenberg antiferromagnet (b =
0.367).30 This suggests that there is some degree of low dimen-
sional character even in the vicinity of the transition, as found
for other two dimensional magnets: FeBr3 (b = 0.324),31 NiCl2

(b = 0.27)32 and FeCl2 (b = 0.29).33 Other Bragg reflections, for
example the 235 reflection, show almost no change in intensity
with temperature as they have very limited contribution from
magnetic scattering [Fig. S9, ESI†]. The nuclear structure at 2 K is

Fig. 3 Summary of the refined magnetic structure in P %30 at 2 K (D19,
ILL).17 (a) Fobs against Fcalc plot. Inset: The measured single crystal. (b)
Magnetic structure viewed along the [110] direction showing the antifer-
romagnetic arrangement of moments (pink arrows). [Mn(NCS)3]� frame-
work is shown as a wireframe. (c) Temperature dependence of the 100 Bragg
reflection, which has a significant magnetic contribution, fitted to a power law
(black line), b = 0.31(3). (d) Alternate view of the magnetic structure, with the
magnetic lattice (connecting Mn atoms) shown.
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very similar to that at 25 K, with no statistically significant
deviations in bond lengths.

Our refinements suggested that the magnetic structure is
most likely the centrosymmetric antiferromagnetic P%30, rather
than the noncentrosymmetric weak ferromagnetic P3. To con-
firm this model and to determine if [Na(OH2)3]Mn(NCS)3 is
centrosymmetric in its ground state, we therefore carried out
second harmonic generation measurements at 4 K and room
temperature, along with variable temperature measurements
between 4 and 30 K. Optical excitation was performed using
Spectra Physics Spitfire Ace PA amplified laser system (40 fs
pulses at a 1 kHz repetition rate) at 800 nm (o1 W average
power) and 400 nm (o500 mW). We found no evidence of SHG
signal generation, suggesting the compound is centrosymmetric.
The results suggest that [Na(OH2)3]Mn(NCS)3 retains its inver-
sion centres, therefore ordering in the P%30 magnetic space group,
and providing further evidence that this compound is a good
example of a classical Heisenberg honeycomb antiferromagnet.

The [Mn(NCS)3]� layers of [Na(OH2)3]Mn(NCS)3 stack uni-
formly along the c axis, in contrast to the ABC stacking found
in NaMnCl3.34 We found no evidence of stacking faults, slip-
stacking transitions or symmetry-lowering due to stacking, in con-
trast to van der Waals materials such as MnPS3 and RuCl3 which
have monoclinic symmetry because of the layer sequence.35,36 This is
likely due to the infinite rod [Na(OH2)3]n

+ countercation, which
forces hydrogen bonds to the framework and force the layers to
stack in alignment.

The importance of the trigonal symmetry of the cation,
together with its templating hydrogen bonds, can be seen by
comparison with [1,3-Im]Mn(NCS)3 (1,3-Im = 1-ethyl-3-methyl
imidazolium) which has the bulky 1,3-Im cation as the charge
balance to the [Mn(NCS)3]� honeycomb.37 The 1,3-Im cation
has no strong hydrogen bond donors and its size and bulk
means the framework forms irregular hexagons. This distortion
away from perfect symmetry is often found in molecular frame-
work honeycomb magnets, for example Co(N3)2(bpg)�DMSO
(bpg = 1,2-dipyridine-4-ethane-1,2-diol, DMSO = SO(CH3)2).15,16

The [Na(OH2)3]+ countercation rod is not unique to [Na(OH2)3]Mn-
(NCS)3, occurring in a handful of other compounds, e.g. [Na(OH2)3]2-
[TeBr6].38 Neutron diffraction allows a close look at the H-bond
interactions between this cation and the framework.

The magnetic properties of [Na(OH2)3]Mn(NCS)3 are quite
distinct from the halide analogue NaMnCl3, which orders at
TN = 6.5 K with ferromagnetic layers, coupled antiferromag-
netically.39 [Na(OH2)3]Mn(NCS)3 has an ordering temperature
almost three times as high as NaMnCl3 (TN = 18.1(6) K) and the
net magnetic interactions are also stronger, yCW = �51(1) K,
compared to NaMnCl3, yCW = �4.2 K. The increase strength
of interactions in the thiocyanate compared to the halide
despite the significantly longer superexchange pathway (Mn–
Cl–Mn compared to Mn–NCS–Mn) is consistent with investiga-
tions of the binary compounds.18 This difference may be due
to the harder NCS� ligand having better orbital overlap
with Mn2+ and the single-orbital nature of the superexchange
pathway, rather than the two-orbital pathway in manganous
chlorides.

Our results establish that [Na(OH2)3]Mn(NCS)3 adopts the
P%30 space group, but it is worth exploring implications of the
P3 magnetic symmetry with two uncompensated moments
[Fig. S10, ESI†], particularly as analogous structures with dif-
ferent metals may adopt different ground states. P3 has
no inversion centre and is polar, and so this structure (if it
can be engineered in analogues or through application of
stimulus e.g. strain) would have electrical polarisation pro-
duced directly by magnetic order (type II multiferroicity).22

Generally, type II multiferroics adopt complex magnetic order-
ings, for example helical incommensurate states,40 or with
structural triangular lattice arrangements which introduce
frustration, e.g. triangular Sr3NiTa2O9

41 and Ba3MnNb2O9.42 It
would be unusual for a collinear magnetic ordering to induce
this behaviour, and even more so for a molecular framework.
These results illustrate the importance of magnetic structure
determination for understanding the function of magnetic
molecular framework compounds, as also shown by other
recent works on frameworks containing both Mn(II)43–46 and
other metals.47–49

In conclusion, we have determined the low temperature
structure and magnetic properties of [Na(OH2)3]Mn(NCS)3 by
developing crystal growth methodology for this humidity sen-
sitive compound. Neutron diffraction data permitted the hydro-
gen atoms to be located and hence the key role of the hydrogen
bonding network in framework structuration. Refinement of
single crystal neutron diffraction data shows that the com-
pound magnetically orders in P%30 magnetic space group, sup-
ported by SHG measurements for which we saw no signal at the
wavelengths we excited, consistent with this centrosymmetric
magnetic structure. The unusual low-symmetry trigonal space
group exhibited in this compound suggests that investigations
into the analogues incorporating metal ions which exhibit
magnetic anisotropy (e.g. Co(II), Ni(II), Fe(II)) may lead to
the complex spin structure and hence multiferroic behaviour.
Substitutions for metals which form metal thiocyanate frame-
works less sensitive to ambient humidity, e.g. Ni(II), may also
lead to more straightforward methods to grow and store these
compounds.
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12 J. Curély, F. Lloret and M. Julve, Phys. Rev. B: Condens.
Matter Mater. Phys., 1998, 58, 11465–11483.
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