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Are we fitting data or noise? Analysing the predictive power of 
commonly used datasets in drug-, materials-, and molecular-
discovery.
Daniel Crusius,+a Flaviu Cipciganb and Philip C. Biggin *a

Data-driven techniques for establishing quantitative structure property relations are a pillar of modern materials and 
molecular discovery. Fuelled by the recent progress in deep learning methodology and the abundance of new algorithms, it 
is tempting to chase benchmarks and incrementally build ever more capable machine learning (ML) models. While model 
evaluation has made significant progress, the intrinsic limitations arising from the underlying experimental data are often 
overlooked. In the chemical sciences data collection is costly, thus datasets are small and experimental errors can be 
significant. These limitations of such datasets affect their predictive power, a fact that is rarely considered in a quantitative 
way. 
In this study, we analyse commonly used ML datasets for regression and classification from drug discovery, molecular 
discovery, and materials discovery. We derived maximum and realistic performance bounds for nine such datasets by 
introducing noise based on estimated or actual experimental errors. We then compared the estimated performance bounds 
to the reported performance of leading ML models in the literature. Out of the nine datasets and corresponding ML models 
considered, four were identified to have reached or surpassed dataset performance limitations and thus, they may 
potentially be fitting noise. More generally, we systematically examine how data range, the magnitude of experimental 
error, and the number of data points influence dataset performance bounds. Alongside this paper, we release the Python 
package NoiseEstimator and provide a web- based application for computing realistic performance bounds. This study and 
the resulting tools will help practitioners in the field understand the limitations of datasets and set realistic expectations for 
ML model performance. This work stands as a reference point, offering analysis and tools to guide development of future 
ML models in the chemical sciences. 

1 1. Introduction
2 Machine Learning (ML) models are widely used tools in the fields of chemistry, drug discovery, molecular science, and materials-
3 discovery.1-4 These models aid the development of Quantitative Structure Activity Relations (QSAR) or Quantitative Structure 
4 Property Relations (QSPR), which can be used to predict various properties such as bioactivity, physicochemical characteristics, 
5 reaction data, or quantum mechanical properties.5-9 The focus of the ML community and literature is often on state-of-the-art 
6 algorithms. However, the recent and past successes of ML models in biology and chemistry are not only due to algorithmic 
7 advancements, but also because of increasing amounts of data, either deposited to databases or laboriously curated from existing 
8 literature.10-13 Assessing the variability in experimental data is important,14 but ML applications in chemistry are also often limited 
9 by the high cost and presence of experimental noise in the data. This challenge is recognised but not always accounted for when 

10 evaluating ML model performance and uncertainty.15 
11 The ML literature distinguishes two types of uncertainty: aleatoric and epistemic.16-18 Aleatoric uncertainty arises due to random 
12 or systematic noise in the data. ML models are capable of fitting noise perfectly,19 therefore it is important to consider the aleatoric 
13 limit, a maximum performance limit of ML models due to noise in the underlying data. The aleatoric limit primarily refers to the 
14 evaluation or test set data: It has been shown that performance of ML models trained on noisy data can potentially surpass the 
15 expected performance due to noise in the training set, if evaluated on a noise-free dataset.18 Nonetheless, in practice, training and 
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1 test datasets usually have comparable noise levels, and this effect most likely remains hidden. Epistemic uncertainty, on the other 
2 hand, is uncertainty due to limited expressiveness of a model, known as model bias; and suboptimal parameter choice, often 
3 referred to as model variance.17

4 In this study, we specifically focus on how aleatoric uncertainty, or experimental noise, can limit ML model performance. We 
5 extend the method by Brown et al to define performance bounds for common datasets in chemistry and materials, distinguishing 
6 between experimental noise (𝜎𝐸) and prediction noise (𝜎𝑝𝑟𝑒𝑑). Assuming a perfect model (𝜎𝑝𝑟𝑒𝑑 = 0), we obtain the aleatoric limit 
7 or maximum performance bound. When incorporating non-zero model prediction noise 𝜎𝑝𝑟𝑒𝑑, which could arise from model bias, 
8 model variance, or noise in the training dataset, we also identify a realistic performance bound.
9 The method of Brown derives performance bounds by computing performance metrics between a set of data points and the same 

10 set with added noise. If the added noise matches the size of the underlying experimental error, the method reveals limits of model 
11 accuracy that should not be surpassed. 
12 We investigate the impact of data range, experimental error, and dataset size on these performance bounds. We then examine 
13 nine ML datasets from biological, chemical, and materials science domains, estimate performance bounds based on experimental 
14 errors, and compare to reported performance of leading ML models.
15

16 2. Results and Discussion
17 In section 2.1, we analyse the general influence of dataset properties, such as the data range, the size of experimental errors, and 
18 the number of data points on the maximum and realistic performance bounds of datasets used for ML models. Utilising synthetic 
19 datasets, we specifically investigate how Gaussian noise, applied at one and two levels, affects these bounds. This analysis is the 
20 foundation for section 2.2, where we compare estimated performance bounds of nine real-world ML datasets to reported 
21 performance of leading ML models. This allows us to distinguish between datasets where ML models have reached the limit of 
22 performance due to experimental error, and datasets where there is still room for ML model improvement.

23 2.1 Impact of data range, experimental error, and number of datapoints on realistic and maximum performance bounds

24 In the following, we investigate the effect of data range, magnitude of experimental error, and dataset size on performance bounds 
25 using the method developed by Brown et al20, described in detail in section 4.1 and extended by us to classification datasets. We 
26 define two types of performance bounds: a maximum performance bound where we only assume presence of an experimental 
27 error 𝜎𝐸, and a realistic performance bound, which also considers model prediction error 𝜎𝑝𝑟𝑒𝑑. The maximum performance 
28 bounds consider an intrinsic predictive limitation when evaluating ML models, based on the experimental uncertainty present in 
29 the datasets alone. For the realistic performance bounds, we assumed a prediction error 𝜎𝑝𝑟𝑒𝑑 equal to the experimental error 
30 𝜎𝐸, which we assume to be reasonable for most ML models.
31
32 Our analysis uses synthetic datasets uniformly distributed in the range [0,1]. For regression tasks, we use both the Pearson 
33 correlation coefficient R and the coefficient of determination r2 as evaluation metrics. To obtain maximum performance bounds, 
34 we add noise to the dataset labels and compute the evaluation metrics between the original dataset labels and the noisy labels. 
35 For the realistic performance bounds, instead of the original dataset labels, we consider a second set of noisy prediction labels, 
36 which simulate a model evaluation. Repeating this procedure multiple times yields distributions for each performance metric, from 
37 which we can estimate standard deviations or confidence intervals of the performance bounds. 
38 Additionally, we compute a maximum performance bound for binary classification tasks obtained from regression datasets, for 
39 which we use the Matthews correlation coefficient MCC, as well as the Area Under the Receiver Operating Characteristic Curve 
40 ROC-AUC as performance metrics. Details of this method are described in section 4.1.
41 The performance bounds can be computed for different noise distributions. Here, we exclusively consider Gaussian noise: First, 
42 we add Gaussian noise of a single level across all data points to identify general trends. Next, we mirror real-world data 
43 complexities by considering different noise levels depending on the label size. We study how the presence of two noise levels 
44 changes performance bounds relative to Gaussian noise of a single level. In principle, performance bounds could also be derived 
45 for other noise distributions, such as uniform, bimodal, or cosh distributed noise.
46
47 Gaussian noise of one level
48 First, we consider adding Gaussian noise with standard deviations 𝜎, which we present in % relative to the dataset range [0,1] of 
49 the synthetic datasets: A noise level of 10 % corresponds to Gaussian noise drawn from a normal distribution with 𝜇 = 0 and 
50 standard deviation 𝜎 = 0.1. Figure 1 shows maximum performance bounds (𝜎𝐸) for regression (Fig. 1a, 1d), realistic performance 
51 bounds (𝜎𝑝𝑟𝑒𝑑 = 𝜎𝐸) for regression (Fig. 1b, 1e), and maximum performance bounds (𝜎𝐸)  for classification (Fig. 1c, 1f) for different 
52 dataset size and noise levels. As expected, increased noise levels reduced the maximum and realistic performance bounds of a 
53 dataset. For regression tasks, noise levels of 𝜎𝐸 ≤ 15% yielded maximum Pearson correlation coefficients of 𝑅 > 0.9. Noise levels 
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1 of 𝜎𝐸 ≤ 10%  yielded r2 scores of 𝑟2 > 0.9. To increase performance bounds of a dataset, one therefore needs to reduce noise 
2 levels or increase the range of the data.
3 What is the impact of dataset size on these bounds? Increasing the dataset size at constant noise levels did not improve the 
4 maximum or realistic performance bounds of the datasets. However, the standard deviations of the observed performance metrics 
5 reduced. Thus, the predictive power of a dataset of larger size can be more confidently defined. This effect is similar to what is 
6 observed for significance testing, when comparing two distributions.3 The performance bounds considered here do not assess how 
7 well or efficiently a ML model might learn from a given dataset. The maximum performance bounds consider an intrinsic predictive 
8 limitation when evaluating models, based on the experimental uncertainty present in the datasets alone. The realistic performance 
9 bounds also consider a prediction error 𝜎𝑝𝑟𝑒𝑑. It is important to point out that 𝜎𝑝𝑟𝑒𝑑 will likely depend on the specific ML model 

10 and contributions of model bias, model variance, as well as how well the model can deal with experimental noise in the training 
11 data. In principle, models trained on datasets with noise-levels of 𝜎𝐸 can achieve higher predictive performance (i.e. 𝜎𝑝𝑟𝑒𝑑 <  𝜎𝐸), 
12 if evaluated on a test set with noise <  𝜎𝐸 .18 A future avenue of research could be to train ML models on abundant noisy data, 
13 while evaluation could be performed on smaller high-quality datasets. Thus, models with high predictive power could be obtained, 
14 even if the performance bounds of the training data sets are lower.
15

16
17 Figure 1: Shown are the distributions of different performance metrics for regression (a, b, d, e) and classification (c, f) of synthetic datasets as heatmaps. 
18 The mean values of the performance metrics are shown in the heatmaps, the standard deviations are overlayed as black contour lines. The synthetic 
19 datasets vary in sample size as shown on the x-axes and noise levels 𝜎, given in relative units to the data range on the y-axes. For cases (a), (d), (c), (f), we 
20 only considered experimental noise 𝜎𝐸; for cases (b) and (e), we considered experimental noise 𝜎𝐸 and predictor noise 𝜎𝑝𝑟𝑒𝑑 = 𝜎𝐸. The range for all datasets 
21 is [0,1], with datapoints distributed uniformly over the whole range. For the classification datasets, the regression datasets were divided into 0 (inactive) for 
22 values < 0.5, and 1 (active) for values ≥ 0.5. This was done before and after addition of noise, such that noise can lead to misclassification of datapoints. 

23
24 Gaussian noise of two levels in a single dataset
25 For some experimental measurements, error sizes can vary with the absolute size of the quantity measured. Size dependent errors 
26 were seen in the Rzepiela dataset, 21 one of the nine datasets we study in more detail in section 2.2. Here, we simulate this effect 
27 for a synthetic dataset of 𝑁 = 100 of range [0,1], by adding Gaussian noise with 𝜎𝐸,1 = 0.2 to the lower half of the dataset ( < 0.5), 
28 and a second noise level of 𝜎𝐸,2 = 0.05 to the other half of the dataset ( ≥ 0.5). We compute maximum performance bounds and 
29 directly compare this case to adding Gaussian noise of 𝜎𝐸 = {0.05, 0.1, 0.2} to the whole dataset.
30
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1
2 Figure 2: (a) Synthetic dataset of size 𝑁 = 100 with Gaussian noise of two levels added (𝜎E,1 = 0.2 for [0,0.5), 𝜎E,2 = 0.05 for [0.5,1]) is shown in blue. The same synthetic dataset 
3 with Gaussian noise of 𝜎E = 0.1 is shown in red. (b) Shown are the distribution of Pearson correlation R for the two different scenarios as histograms. As can be seen, the maximum 
4 expected performance for a dataset with the two levels of low and high noise (blue) is worse than the single level of moderate noise (red). For comparison, the low and high noise 
5 levels are also shown when applied to the whole dataset (see black dashed/dot-dashed lines, respectively). (c) Variation of mean and standard deviation of the Pearson correlation R 
6 with the noise barrier location of a uniform synthetic dataset. Varying the noise barrier location corresponds to varying the fraction of the dataset that experiences high noise 
7 addition. At a barrier location of 0, Gaussian noise with 𝜎𝐸,1 = 0.05 is added to the entire dataset (dashed line in (b)). If the barrier location is 1.0, the entire dataset experiences 
8 Gaussian noise with 𝜎𝐸,2 = 0.2 (dotted line in (b)). The barrier location of 0.5 corresponds to the blue case in (b).

9 As can be seen in Fig. 2, the dataset with 𝜎𝐸 = 0.1 had a higher maximum performance bound relative to the dataset with the two 
10 noise levels. Furthermore, the performance bound was more sharply defined, i.e. had a lower standard deviation 𝜎𝑅. For 
11 comparison, the resulting distributions of Pearson correlation R for single noise levels of 𝜎𝐸 = 0.05 and 𝜎𝐸 = 0.2 are also plotted. 
12 Therefore, noise of two levels (high and low) is worse than a moderate noise level for all datapoints. This hints at a wider ranging 
13 conclusion: presence of a few outliers or datapoints with high noise in an otherwise low-noise dataset can degrade performance 
14 disproportionately. We exemplarily show this by varying the location of the noise barrier, as shown in Fig. 2c, which is equivalent 
15 to changing the fraction of the dataset that is exposed to high noise levels. The maximum expected performance bound decreased 
16 steadily with increasing fraction of datapoints experiencing high noise levels. Therefore, datapoints with high noise levels should 
17 be excluded, if possible, to maximise predictive performance of a given dataset.

18 2.2 Are we fitting data or noise? Assessing performance bounds of application datasets and comparison to ML model performance

19 The maximum and realistic performance bounds for a total of nine datasets from drug discovery, materials discovery, and 
20 molecular discovery applications that were used for building ML models are shown in Table 1 and Fig. 3. We used error estimates 
21 in the following order of preference as available: (1) reported experimental standard deviations for datapoints, (2) reported 
22 standard deviation for the specific experimental assay, (3) standard deviation estimated from duplicate values via pairwise 
23 comparison (see section 4.4 for details), (4) standard deviation obtained from inter-lab comparison studies of the general method. 
24 Table 1 shows a detailed overview of the datasets used, the experimental error estimates, and the resulting maximum and realistic 
25 performance bounds for Pearson R / MCC, as well as the performance bounds in the evaluation metric of the best performing ML 
26 models from the literature. Fig. 3 shows a direct comparison of the performance bounds with the reported ML performance for 
27 all datasets considered. For three out of the nine datasets, ML model performance exceeded or was at the maximum performance 
28 bound, and thus the reported ML performance seems unrealistically high given the error estimates made here. An additional ML 
29 model exceeds the realistic performance bound but is below the maximum performance bound. The other five datasets have ML 
30 models that are below the performance bounds. We discuss the individual datasets in more detail as follows. 
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1
2 Figure 3: Performance bounds for different datasets compared to reported ML performance from the literature. Metrics that have best performance at a value of 1.0 are shown in 
3 blue (left axis), error-metrics with the best performance at values of 0 are shown in orange (right axis). For each dataset, the mean and standard deviation of the realistic performance 
4 bounds (𝜎𝐸 = 𝜎𝑝𝑟𝑒𝑑), as well as the mean of the maximum performance bounds are shown, if defined. The reported ML model performances for the BACE classification dataset 
5 (BACE-c), the Caco-2, and the Rzepiela datasets seem unrealistically high, given the estimated experimental error. For most other datasets, reported ML model performance remains 
6 below the realistic performance bounds, indicating further room for ML model improvement.

7 Drug binding tasks
8 Both the CASF201622 and the BACE23 datasets (BACE-c: classification, BACE-r: regression) report measured binding affinities. The 
9 CASF2016 (also sometimes referred to as PDBBind 2016 core set) covers multiple targets, the BACE dataset is a set of inhibitors of 

10 human β-secretase 1 (BACE-1) with both quantitative (IC50) labels (here: BACE-r) and qualitative binary labels (here: BACE-c). 
11 CASF2016 has a range of 9.75 log units, while BACE-r only covers 6 log units. Since both datasets originate from different 
12 laboratories and do not necessarily use the exact same experimental protocol, we estimated the experimental error 𝜎𝐸 = 0.69 log 
13 units. This estimate is based on a systematic study of duplicate values in the ChEMBL database.12, 24 Owing to the greater range, 
14 the maximum and realistic performance bounds of CASF2016 are higher than that of BACE-r, even though the experimental error 
15 estimate is the same. For both BACE-r and CASF2016, development of improved ML models seems possible, given the dataset 
16 performance bounds. Conversion of the BACE dataset into a classification task (BACE-c) leads to a ML model that exceeds the 
17 maximum predictive performance of the classification dataset. This suggests that the classification task simplified the bioactivity 
18 prediction task, however, the model might also fit to noise in the dataset.
19
20 Drug pharmacokinetics and molecular ML tasks
21 Next, we consider properties relevant in both molecular and drug discovery settings: Chemical reaction yields via the Buchwald-
22 Hartwig HTE dataset25, physicochemical properties such as aqueous solubility and lipophilicity, as well as in-vitro (PAMPA) and in-
23 vivo (Caco-2) permeability assays.
24 The AqSolDB dataset26 is an aggregation of aqueous solubility measurements. We estimated the experimental error as 𝜎𝐸 = 0.56 
25 log units via reported duplicates in the raw data that were removed in the compiled dataset. Since the range of the AqSolDB 
26 dataset is large (15.3 log units) relative to the error estimate (0.56 log units), performance bounds are high. The best reported ML 
27 model performance does not reach the performance bounds. 
28 The lipophilicity dataset27 has a smaller range of 6.0 log units compared to some of the previous datasets, however, estimated 
29 performance bounds are still high. This is because all datapoints are from the same assay with an estimated experimental error of 
30 𝜎𝐸 = 0.32 log units of the assay.28 Reported ML models have not reached the performance bounds of the dataset. 
31 The Rzepiela dataset21 is a collection of PAMPA permeability measurements, all performed via the same assay. In the publication, 
32 the authors report experimental error estimates that are different for high and low permeability compounds. We have simulated 
33 the effect of two levels of noise in section 2.1 for a synthetic dataset and apply the same method here. We used a value of 𝜎𝐸,1

34 = 0.2 log units for values of 𝑙𝑜𝑔𝑃𝑒𝑓𝑓 > ―7.6, and a value of 𝜎𝐸,2 = 0.6 log units for values of 𝑙𝑜𝑔𝑃𝑒𝑓𝑓 ≤ ―7.6. As already seen for 
35 the synthetic dataset, performance bounds are decreased due to the higher noise levels of some of the data points. ML model 
36 performance reported exceeds the performance bounds estimated here. It could be that the reported experimental error is too 
37 large, or the ML model might be fitting to noise in the dataset. The authors applied 10-fold cross-validation with random splits to 
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1 generate training and test data sets and evaluate ML model performance. The dataset contained 48 topologically different 
2 macrocyclic scaffolds, so there might have been structurally similar compounds in the train and test set, and it would be interesting 
3 to see how performance of the reported QSPR models would change for e.g. a scaffold-based split.
4 The Caco-2 dataset29 is a collection of Caco-2 permeability measurements with a range of 4.25 log units, aggregated from different 
5 publications. We used an error estimate of 𝜎𝐸 = 0.42 log units from an inter-lab comparison study for Caco-2 assays.30 The 
6 reported ML model performance is higher than the maximum performance bounds, indicating potential issues with fitting to noise.
7 Finally, we investigated a dataset of reaction yields (range of 0-100%) of Buchwald-Hartwig reactions from a high throughput 
8 experiment.25 We estimated a noise level of 𝜎𝐸 = 5.3%, which is based on repeat measurements performed as part of validating 
9 the original experimental protocol.31 The best reported ML models have high reported r2 scores and are between the realistic and 

10 maximum performance bounds. This could indicate a high-quality ML model, but since the dataset was split randomly, some fitting 
11 of noise cannot be ruled out. 
12
13 Materials science datasets
14 Many of the common materials science ML datasets have computational rather than experimental endpoints. This avoids the issue 
15 of experimental noise and allows construction of accurate ML models. We chose a dataset of experimentally measured band 
16 gaps32 reported as part of the Matbench suite33 of materials science benchmarks. However, only non-zero values were measured 
17 experimentally. We estimated the experimental noise as 𝜎𝐸 = 0.14 𝑒𝑉 from the unprocessed dataset that contained duplicate 
18 values. The estimated performance bounds are high, since the noise value is small relative to the range of the dataset (11.7 eV) 
19 and further ML model improvements seem possible. 
20
21 ML Model Performances Exceeding Performance Bounds
22 Out of the nine datasets studied, four datasets surpassed the estimated realistic performance bounds. Three out of these four 
23 cases also reached or surpassed the estimated maximum performance bounds. Why do certain ML models surpass our calculated 
24 performance bounds? Two of the flagged models (Rzepiela, Buchwald) were evaluated using random data splits, which might lead 
25 to inflated performance estimates due to overfitting to noise, memorisation, and overlap between train and test sets. 
26 The Rzepiela and Caco-2 permeability datasets and ML models were both flagged. The underlying datasets are complex 
27 permeability endpoints with narrow data range relative to the estimated error, resulting in relatively low performance bounds.
28 The BACE classification ML model also exceeded the performance bounds estimated.
29 Our findings highlight the need to carefully consider noise when building ML models based on experimental data, since several ML 
30 models report performances that seem unlikely given the estimated experimental error of the underlying data. Future studies and 
31 novel ML algorithms should consider the easy to calculate performance bounds when evaluation model performance, to ensure 
32 that advancements in ML models are genuine and do not result from overfitting to experimental noise.
33
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1 Table 1: Maximum and realistic performance bounds for chemical datasets, compared to leading ML models.

Dataset name / 
range

No of 
datapoints

Assay / 
experimental 

method

Experimental 
error estimate 

𝝈𝑬

Mean of 
maximum 
(realistic) 

performance 
bound: Pearson R 
(regression), MCC 

(classification)

Mean of 
maximum 

performance 
bound in ML 
eval. metric

Mean of realistic 
performance 
bound  in ML 
eval. metric

Best ML model 
performance / 
model name / 

data split

DRUG BINDING
CASF 2016 (PDBBind 

2016 core set) / 
9.75 log units

285 Binding 
affinity, 
multiple 
targets
logKi

0.69 pKi 
units24

0.95 (0.91) R: 0.95 R: 0.91 R: 0.845 / Δ𝐿𝑖𝑛_𝐹9
𝑋𝐺𝐵34 / 

-

BACE Regression / 
6.0 log units

1513 Binding 
affinity, single 

target
logKi

0.69 pKi 
units24

0.89 (0.79) RMSE: 0.69 RMSE: 0.98 RMSE: 1.32 /
RF35 /

scaffold 

BACE Classification /
{0,1}

1513 Binding affinity 
converted to 

binary classes:
0,1

0.69 pKi 
units24

MCC: 0.69 (-) ROC-AUC: 
0.84

-* ROC-AUC: 0.86 / 
Uni-Mol / 
scaffold

DRUG PHARMACOKINETICS / MOLECULAR
Lipophilicity 
AstraZeneca 

(MolNet, TDC) / 
6.0 log units

4200 Lipophilicity 
assay

Log-ratio

0.34 log 
units**

0.96 (0.93) MAE: 0.27 MAE: 0.38 MAE: 0.47 / 
Chemprop-

RDKit36 / scaffold

AqSolDB (TDC) /
15.3 log units

9,982 Solvation assay
Log(S)

0.56 log 
units***

0.97 (0.95) MAE: 0.45 MAE: 0.63 MAE: 0.76 / 
Chemprop-

RDKit36 / scaffold
Caco-2 permeability 

(Wang) (TDC) /
4.3 log units

906 Caco-2 
permeability 

assay
(log(Papp))

0.42 log units30 0.88 (0.77) MAE: 0.34 MAE: 0.47 MAE: 0.27 / 
MapLight37 / 

scaffold

Rzepiela dataset / 
3.5 log units

4367 Pampa 
permeability 

assay 
(log(Papp))

0.2 log units 
for high-

perm., 0.6 log 
units for low 

perm.21

0.91 (0.83) r2: 0.80 r2: 0.66 r2: 0.81 / 
0.77**** / 

Rzepiela QSPR21/ 
random

Buchwald-Hartwig 
HTE / 

0-100 %

3955 Chemical 
reaction yields, 

obtained via 
high-

throughput 
screening (%)

5.3 % ** 0.98 (0.96) r2: 0.96 r2: 0.93 r2: 0.95 / 
yield-BERT38/ 

random

MATERIALS
Matbench: 

matbench_expt_gap 
/ 11.7 eV

4604 Experimentally 
measured 

band gaps (eV)

0.14 eV *** 1.0 (0.99) MAE: 0.11 MAE: 0.16 MAE: 0.29 / 
Darwin39 / 

random (NCV)

2 * Not defined for the classification case.
3 ** Estimated by us, based on pairwise estimate of repeats performed in the original assay literature.
4 *** Estimated by us, based on pairwise error estimate via duplicates in raw data. 
5 **** Rzepiela et al report two different models.
6 Bold ML performance metric values indicate models exceeding the estimated maximum performance bounds.

7 3. Conclusions
8 This study has investigated the impact of experimental noise on predictive performance of commonly used experimental ML 
9 datasets. Based on the work of Brown et al, we define maximum and realistic performance bounds. Maximum bounds only 

10 consider experimental noise in the dataset used for evaluation, while realistic performance bounds also consider an estimated ML 
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1 model performance uncertainty. In general, increasing the dataset size leads to higher confidence in the value of the performance 
2 metrics, but does not yield increases in the performance bounds themselves. The value of the maximum and realistic performance 
3 bounds is determined by the size of the experimental noise relative to the data range. The here defined performance bounds can 
4 serve as a quantitative evaluation metric to assess if models fit to noise. This could also be applied during model training: Evaluating 
5 ML models on a validation dataset and ensuring that performance bounds are not exceeded could serve as an alternative, 
6 quantitative metric to avoid over-fitting. As part of this study, we identified 9 commonly used ML datasets from drug-, molecular-
7 , and materials-discovery and derived a systematic protocol to estimate realistic experimental errors. We show that for some 
8 datasets, reported ML model performance exceeds or is close to what we believe to be an upper performance limit. High ML 
9 performance is encouraging, but only if the model evaluation was rigorous. ML model performance that is at the performance 

10 bounds or even higher suggests that some ML models may be fitting to noise. This is a significant issue because these models will 
11 likely underperform in application scenarios. For some of the datasets investigated, ML model performance has not yet reached 
12 the maximum performance that could theoretically be achieved with the underlying datasets. This highlights the need for further 
13 efforts relating to model and algorithm development, e.g. for ligand binding affinity predictions. 
14 ML model evaluations themselves are still a debated topic, but efforts such as the therapeutic data commons (TDC) that include 
15 pre-defined datasets, data-splits and standardised evaluation metrics are a step in the right direction. However, the commonly 
16 reported tabular benchmarks of ML models are not enough, and more thorough evaluations based on statistical tests should be 
17 used to convincingly claim performance advances of new algorithms.3 When generating evaluation datasets, we recommend 
18 increasing the data range, or reducing the experimental error if possible. Additionally, the use of low-noise data points as test sets 
19 should be considered, if data of varying quality is available.
20 Datasets with computational endpoints are often used in materials science applications. Such datasets do not have experimental 
21 noise, and use of these synthetic datasets is a promising path forward if experimental data is scarce or impossible to acquire. For 
22 synthetic datasets and corresponding ML models, it will be interesting to further study the addition of artificial noise of varying 
23 levels to see how different ML models deal with noise, and if they can surpass the noise levels given in training datasets when 
24 evaluated on noise-free or low-noise test sets.18 When constructing synthetic datasets of experimentally measurable endpoints, 
25 e.g. via physics-based simulations, addition of noise to the same levels as observed in experiments should be considered. Further, 
26 one should ensure to mirror the data range of experimental assays with the synthetic datasets. Otherwise, the performance 
27 bounds will be artificially increased, the task is effectively simplified, and models should not be expected to transfer well to 
28 predicting the underlying experimental tasks.
29 Together with this manuscript, we provide the Python package NoiseEstimator to reproduce this study (https://github.com/d-
30 cru/NoiseEstimator and forked at https://github.com/bigginlab/NoiseEstimator) and a web-based application 
31 (https://noiseestimator.bioch.ox.ac.uk) to aid computation of maximum and realistic performance bounds for other experimental 
32 ML datasets. 

33 4. Methods
34 4.1 Addition of Gaussian noise and estimation of performance metric bounds

35 For a dataset of size N, with range [𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥], and labels 𝑦 we draw N random samples from a normal (Gaussian) distribution 
36 with mean 𝜇 = 0 and standard deviation 𝜎 equal to the desired experimental noise level via the NumPy package40. The probability 
37 density for the Gaussian distribution is 

38 𝑝(𝑥) = 1

2πσ2
𝑒―(𝑥―𝜇)2

2𝜎2 .

39 We obtain the noisy labels 𝑦′ by adding noise to the labels y (see Fig. 4 for several examples of synthetic datasets with different 
40 noise levels). Given an original label 𝑦𝑖, a noise sample 𝑛𝑖, we obtain a noisy label 𝑦′𝑖 via:

41 𝑦𝑖′ = 𝑦𝑖 + 𝑛𝑖

42 We can then compute regression metrics, such as Pearson correlation coefficient R, coefficient of determination r2, etc., directly 
43 between the original dataset labels y, and the noisy labels 𝑦′ to obtain maximum performance bounds, since we do not consider 
44 any predictor noise. For estimating a realistic performance bound, we draw a second set of noisy labels 𝑦′𝑝𝑟𝑒𝑑, with noise from a 
45 Gaussian with mean 𝜇=0 and standard deviation 𝜎𝑝𝑟𝑒𝑑. We then compute the relevant metrics between 𝑦′ and 𝑦′𝑝𝑟𝑒𝑑, which 
46 effectively simulates evaluation of a ML model.
47 To simulate effects of noise when converting regression datasets to binary classification datasets, we add noise as described to 
48 the labels y to obtain noisy labels 𝑦′. Then, with a sharply defined class boundary 𝑏, which serves to split the dataset into binary 
49 classes {0,1}, we obtain the noise-free class labels 𝑦𝑐 via

50 𝑦𝑐 = 0 𝑖𝑓 𝑦 < 𝑏
1 𝑖𝑓 𝑦 ≥ 𝑏.
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1 The noisy classification labels 𝑦𝑐′ are then equivalently defined as

2 𝑦𝑐′ = 0 𝑖𝑓 𝑦′ < 𝑏
1 𝑖𝑓 𝑦′ ≥ 𝑏.

3 We can then compute classification metrics, such as Matthews correlation coefficient MCC, or ROC-AUC, etc. between 𝑦𝑐 and 𝑦𝑐′. 
4 For both classification and regression performance bound estimates, we independently repeat the noise addition and performance 
5 bound computation 1000 times if not specified otherwise. This yields a distribution of values for each metric considered, of which 
6 we report the mean and standard deviation.
7 We also performed addition of Gaussian noise of two different levels. For this, we split the dataset along a boundary 𝑏’. To obtain 
8 the noisy labels 𝑦′, we add Gaussian noise of 𝜎1 to all values of 𝑦 that are below b’; for values above b’ we add Gaussian noise of 
9 𝜎2. The estimation of the performance bounds is then performed as described above.

10
11 4.2 Synthetic dataset generation

12 Synthetic datasets were generated via the NumPy package40. All synthetic datasets are of range [0,1] with datapoints distributed 
13 uniformly over the full range. After generating a uniformly distributed dataset of size N, we draw N random samples from a normal 
14 (Gaussian) distribution with 𝜇 = 0 and 𝜎 equal to the desired noise level as described in the previous section. This noise is then 
15 added to the datapoints as described in section 4.1 to obtain 𝑦′ or 𝑦′𝑝𝑟𝑒𝑑. Figure 4 shows an example synthetic dataset with 𝑁 = 50 
16 with various levels of experimental noise added in (b), (c), (d).

17 𝑥

18
19 Figure 4: Uniformly distributed synthetic datasets of size N = 50, with no added noise (a), Gaussian noise added with standard deviations of 𝜎𝐸= 0.1 (b), 𝜎𝐸= 0.25 (c), and 𝜎𝐸= 0.5 
20 (d). If we consider the classification case, the boundary b is shown as a vertical dashed line. Resulting false negatives (fn) and false positives (fp) due to addition of noise are colour 
21 coded. Predictor noise 𝜎𝑝𝑟𝑒𝑑 = 0 for all cases. 

22 4.3 Experimental dataset selection and dataset details

23 We selected datasets that were used for ML modelling from drug discovery, materials science, and molecular science applications. 
24 We can distinguish datasets based on the following attributes: 
25 • Labels: Experimental or computational observable
26 • Source: Single source and assay or aggregate of multiple sources or assays
27 • Task: Regression task, or classification task (or regression converted to classification)
28
29 Every dataset has the following properties: (1) Range of labels or number of classes in the classification context, (2) size of 
30 experimental error, which is often unknown or not reported, and (3) number of datapoints. When estimating performance bounds, 
31 selection of a realistic estimate of the experimental noise is key. Following, we detail the selected datasets and how error estimates 
32 were obtained.
33
34 Drug binding datasets
35 The CASF 2016 dataset22 (also referred to as PDBbind 2016 core set, N=285) is a commonly used evaluation dataset for ML / DL 
36 scoring functions for the prediction of protein ligand binding affinities.41 Experimental error of binding affinity data depends on 
37 the specific binding assay method, error estimates range from around 0.2 log units for industrial drug research up to 0.69 log units 
38 for public affinity data from various sources, as applicable for PDBbind.15, 24 The data was obtained from 
39 http://www.pdbbind.org.cn/casf.php. The experimental error estimate used was 0.69 log units, as derived in Kramer et al. This is 
40 based on 2,540 systems with 7,667 measurements.
41
42 The BACE dataset23 (N=1513) is part of the MoleculeNet benchmark suite.42 As the BACE dataset originates from various sources, 
43 we assume an experimental error of 0.69 log units, identical to the CASF 2016 dataset. Since the BACE dataset has been used for 
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1 both regression and classification, we also derive performance bounds for the classification task. The BACE dataset was obtained 
2 from https://moleculenet.org/datasets-1 on March 21, 2024.
3
4 Drug pharmacokinetics and molecular datasets
5 The AstraZeneca lipophilicity dataset27 (N=4200), as deposited to ChEMBL12 and listed in the Therapeutic Data Commons 
6 repository43, 44 and MoleculeNet42, is a dataset of experimental octanol/water distribution coefficients (logD at pH 7.4). All data 
7 points were measured via a single, well-defined shake-flask method,28 and we estimated an experimental standard deviation of 
8 0.34 log units (RMSE: 0.46 log units). This value was based on a pairwise comparison of reported assay values to the 22 reference 
9 literature values as reported in the assay publication.28 This includes six compounds for which the reported assay values were 

10 outside of the assay range, 
11 < ―1.5 or > 4.5; we set those values to be equal to -1.5 or 4.5, respectively. The assay publication lists an RMSE of 0.2 log units 
12 (corresponding standard deviation of 0.16 log units), which can be obtained if the six ‘out-of-range’ datapoints are excluded. The 
13 experimental range of the assay is 6.0 log units. The lipophilicity dataset was obtained via the Therapeutic Data Commons python 
14 package, as described at https://tdcommons.ai/single_pred_tasks/adme/#lipophilicity-astrazeneca on March 20, 2024. 
15
16 The Wang Caco-2 permeability dataset29 (N=906) is another of the datasets listed in the Therapeutic Data Commons repository. 
17 The dataset is an aggregate of Caco-2 permeability measurements from different sources. Caco-2 cells are being used as an in-
18 vitro model to simulate the human intestinal tissue. Since this dataset was compiled from different sources, we estimated the 
19 experimental error based on a quantitative inter-lab comparison study to be 0.42 log units.30 This is based on 10 compounds, 
20 measured in seven different laboratories, yielding 169 value pairs that were used to estimate the standard deviation. The Wang 
21 dataset was obtained via the Therapeutic Data Commons python package on March 20, 2024, as described at 
22 https://tdcommons.ai/single_pred_tasks/adme/#caco-2-cell-effective-permeability-wang-et-al.
23
24 The Rzepiela dataset21 (N=3600) is a single source, single-assay dataset of macrocycle PAMPA measurements (parallel artificial 
25 membrane permeability assay). Different to many other datasets encountered, the authors provide an uncertainty estimate 
26 depending on the permeability value. Experimental error was higher for low permeability values (0.6 log units for permeabilities 
27 of (−log Peff ∼ 7.6)). At higher permeability values (−log Peff ∼ 5.8), the standard error of PAMPA measurement is only ∼0.2 log 
28 unit. To estimate performance bounds, we applied noise levels 𝜎𝐸,1 = 0.6 log units for values > 6.7; and 𝜎𝐸,2 = 0.2 log units for 
29 values ≤ 6.7. The Rzepiela dataset was obtained from the original publication supplementary data.
30
31 The AqSolDB dataset26 (N=9982) is an aggregate of a total of 9 different datasets of experimental aqueous solubility measurements 
32 (LogS). When merging the 9 datasets, the authors attempted to select the most reliable values if duplicates were present. Some 
33 of the datapoints have an associated standard deviation if duplicates were measured.  We estimated the experimental error via 
34 pairwise computation of the standard deviation based on duplicate values using the method of Kramer24 and as defined in 
35 section 4.4. This yields an overall experimental standard deviation of 𝜎𝐸 = 0.56 log units. The AqSolDB dataset was obtained via 
36 the Therapeutic Data Commons python package, as described at https://tdcommons.ai/single_pred_tasks/adme/#solubility-
37 aqsoldb, on March 20, 2024. 
38  
39 The Buchwald-Hartwig HTE dataset25 (N=3955) is a single source, high-throughput experimentation-based dataset of reaction 
40 yield measurements of a palladium-catalysed Buchwald-Hartwig cross-coupling reaction. To the best of our knowledge, no 
41 experimental uncertainties were recorded as part of the dataset directly. The high-throughput experimental protocol was 
42 developed in the Merck Research Laboratories for nanomole-scale experimentation in 1536-well plates.31 In the original protocol 
43 publication, 64 reactions were run twice as part of an experiment conducted. We used these 64 reactions to estimate an 
44 experimental standard deviation based on the pairwise method defined in section 4.4. This yields an experimental standard 
45 deviation of the high-throughput protocol of 𝜎𝐸 = 5.3%, which we used as an approximate error for the Buchwald-Hartwig HTE 
46 dataset. The Buchwald dataset was obtained from https://github.com/rxn4chemistry/rxn_yields on March 21, 2024.
47
48 Materials Science datasets
49 The Matbench_expt_gap dataset33 (N=4604) as listed in the matbench repository is a dataset linked to the materials project, and 
50 lists experimentally determined band gaps in units of eV of inorganic materials. Only non-zero values were measured 
51 experimentally. As part of the Matbench curation process, duplicates were removed. Accessing the original data source32 allowed 
52 us to use the duplicate values to estimate possible experimental error via pairwise estimation of errors. We obtain an experimental 
53 standard deviation of 𝜎𝐸 = 0.14 𝑒𝑉. The matbench expt gap dataset was obtained via the matbench python package, as described 
54 at https://matbench.materialsproject.org/How%20To%20Use/1install/ on March 21, 2024.
55
56 4.4 Noise estimation for experimental datasets

Page 10 of 13Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
jú

ní
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

1.
9.

20
24

 1
3:

25
:1

7.
 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online

DOI: 10.1039/D4FD00091A

https://moleculenet.org/datasets-1%20on%20March%2021
https://tdcommons.ai/single_pred_tasks/adme/#lipophilicity-astrazeneca
https://tdcommons.ai/single_pred_tasks/adme/#solubility-aqsoldb
https://tdcommons.ai/single_pred_tasks/adme/#solubility-aqsoldb
https://github.com/rxn4chemistry/rxn_yields%20on%20March%2021
https://matbench.materialsproject.org/How%20To%20Use/1install/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00091a


Journal Name  ARTICLE

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 11

Please do not adjust margins

Please do not adjust margins

1 To obtain an estimate of experimental noise, we relied on the following order of preference: (1) reported experimental standard 
2 deviations for datapoints, (2) the reported standard deviation for the specific experimental assay (if a single well-defined assay 
3 was performed for the entire dataset), (3) standard deviation estimated from duplicate values via pairwise comparison, (4) inter-
4 lab comparison studies of the general method used.
5
6 None of the datasets considered here had individually reported standard deviations for all datapoints (1). For datasets that 
7 originated from a single, well-defined assay, we used the reported standard deviation of that assay as a noise estimate.
8 For datasets that are aggregates of multiple studies or methods performed by different labs, we went back to the raw data before 
9 de-duplication, if available, and estimated the standard deviation based on pairwise deviations according to the method described 

10 by Kramer et al24 and briefly summarised here: The estimated experimental standard deviation 𝜎𝐸 is computed from all possible 
11 m pairs of measured duplicate values (the pair i has the measured values 𝑦𝑝𝑢𝑏,𝑖,1, 𝑦𝑝𝑢𝑏,𝑖,2):
12

13 𝜎𝐸 =
1

2(n ― 1)  
𝑚

𝑖=1
(𝑦𝑝𝑢𝑏,𝑖,1 ― 𝑦𝑝𝑢𝑏,𝑖,2)2 

14 If no duplicate raw data was available, we looked for quantitative inter-lab comparison studies of the specific methods to obtain a 
15 noise estimate. For classification datasets, it is more difficult to find reliable noise estimates. For the BACE classification task, we 
16 went back to the original regression data, added noise to the regression labels, while maintaining the same class boundary as used 
17 for conversion to the classification task. We then derived noisy classification labels, which we compared to the true classification 
18 labels as described in section 4.1 to obtain estimates of the classification performance metrics.

19 Data availability
20 The Python package NoiseEstimator and all data and code to reproduce this study are available at https://github.com/d-
21 cru/NoiseEstimator and forked at https://github.com/bigginlab/NoiseEstimator (release v0.0.2) We also provide a web-based 
22 application hosted at https://noiseestimator.bioch.ox.ac.uk to aid computation of maximum and realistic performance bounds for 
23 other experimental ML datasets. The code and data are also archived on Zenodo and can be accessed at 
24 https://doi.org/10.5281/zenodo.11397227.
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