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Modelling ligand exchange in metal complexes with ma-
chine learning potentials

Veronika Juraskova,‡a Gers Tusha,‡b Hanwen Zhang,a Lars V. Schäfer∗b and Fernanda
Duarte∗a

Metal ions are irreplaceable in many areas of chemistry, including (bio)catalysis, self-assembly and
charge transfer processes. Yet, modelling their structural and dynamic properties in diverse chemical
environments remains challenging for both force fields and ab initio methods. Here, we introduce a
strategy to train machine learning potentials (MLPs) using MACE, an equivariant message-passing
neural network, for metal-ligand complexes in explicit solvents. We explore the structure and ligand
exchange dynamics of Mg2+ in water and Pd2+ in acetonitrile as two illustrative model systems. The
trained potentials accurately reproduce equilibrium structures of the complexes in solution, including
different coordination numbers and geometries. Furthermore, the MLPs can model structural changes
between metal ions and ligands in the first coordination shell, and reproduce the free energy barriers
for the corresponding ligand exchange. The strategy presented here provides a computationally
efficient approach to model metal ions in solution, paving the way for modelling larger and more
diverse metal complexes relevant to biomolecules and supramolecular assemblies.

1 Introduction
Metal ions have a central structural and functional role in many
molecular systems, including catalysts, supramolecular assem-
blies, and biomolecules. Due to their relevance, much work has
been done to investigate the structure, kinetics, and thermody-
namic stability of metal complexes in solution, including the dy-
namics of metal-ligand exchange reactions.1

Using a variety of experimental techniques, including X-ray ab-
sorption spectroscopy, neutron scattering and nuclear magnetic
resonance (NMR) spectroscopy, several mechanisms have been
proposed to describe ligand exchange in the first coordination
shell of the metal ion. These mechanisms range from dissociative
(D), involving an intermediate of lower coordination number, to
associative (A), proceeding through an intermediate of higher co-
ordination number. However, these are extreme cases – in most
instances, no such idealised intermediate exists, and instead, a
concerted interchange mechanism with dissociative (Id) or asso-
ciate (Ia) characteristics occurs.2,3

Of particular interest is ligand exchange with solvent, with
metal aqua complexes being the most extensively studied.4 The
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rate of this exchange depends on the nature of the metal ion,
particularly ionic radii, charge, and coordination environment,
ranging from 200 ps for Cs+ to 300 years for Ir3+.4 Coordina-
tion with nonaqueous solvents such as alcohols, dimethyl sulfox-
ide (DMSO), acetonitrile (MeCN), and amides, has also been ex-
plored.5

Among the cations investigated, significant efforts have been
made to study Mg2+ complexes due to their prominent role in bi-
ology, including RNA folding, ATP hydrolysis, cellular signalling,
and photosynthesis.6 In aqueous solution, Mg2+ forms octahe-
dral [Mg(H2O)6]2+ complexes with a Mg-O distance of 2.10 Å,
surrounded by a second solvation shell of 12 water molecules.7–9

Water molecules in the first solvation shell are tightly bound to
the cation and undergo exchange with the bulk solvent molecules
on the microsecond timescale (k = 5.3 ×105 s−1 at 298 K) via a
dissociative or interchange-dissociative mechanism.10,11

Another important example is Pd2+, which although less
prevalent in biology has an irreplaceable role in organocatal-
ysis12–14 and supramolecular chemistry.15–20 Pd2+ complexes
have a square planar geometry defined by four coordinate bonds
in equatorial positions. The complex can additionally interact
with two more loosely bound ligands at the axial positions. In
water, the [Pd(H2O)4]2+ complex has a Pd-O equatorial bond
distance of 2.00-2.05 Å, with a second solvation shell of 10 wa-
ters located between 4.02-4.40 Å.21,22 The Pd-O axial distance
has been investigated by neutron diffraction23 and extended X-
ray absorption fine structure experiments24 and with different
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computational methods.21,25,26 The axial interaction distance is
reported to range from 2.5 to 3.0 Å. Ligand exchange in Pd2+

square planar complexes is suggested to occur via an associa-
tive mechanism involving a pentacoordinated trigonal bipyrami-
dal transition state (TS), as suggested by Ligand Field Theory27,28

and supported by DFT calculations.29

While Mg2+ has a prominent role in biology, Pd2+ is a key
building block in supramolecular chemistry, giving rise to a wide
range of metallocages of various sizes and shapes.30–33 The in-
terplay between the metal, organic ligands, and solvents deter-
mines the final assembled structure.34–36 Notably, the labile na-
ture of Pd2+ -ligand axial interactions is key for self-correction
and optimal self-assembly.37,38 Pd2+ -based metal-organic cages
are commonly formed in MeCN solvent,34,37,38 although water
and DMSO are also widely-used. [Pd(MeCN)4]2+ has been char-
acterised using single crystal X-ray diffraction, revealing a Pd-N
bond length of 1.956 ± 0.008 Å.39 NMR studies have explored
MeCN ligand exchange, reporting reaction rates of k = 4.0 s−1

and k = 3.5 s−1 at 322 K.40,41

Computational modelling of Mg2+ and Pd2+ cations has re-
ceived significant attention, in particular for the former. Ap-
proaches employed for their modelling include molecular dy-
namics (MD) simulations with classical force fields (FFs),21,42

quantum mechanics/molecular mechanics (QM/MM) meth-
ods,25,43–45 and ab initio MD (AIMD).9,22,26,46–48 MD simula-
tions with non-polarizable FFs are the most widely applied option
since they balance the cost and accuracy of the resulting dynam-
ics. Here, the metal ions are modelled as single or a small set
of point charges with the electrostatic, dispersion, and excluded
volume interactions taken into account by a pairwise interaction
potential. The Lennard-Jones (LJ) parameters, and charges if a
dummy model is used, are typically adjusted to reproduce ex-
perimental solution properties such as solvation free energy, co-
ordination number, and water-metal distance of the first hydra-
tion shell, and, in some cases, the rate of water exchange.49–51 A
12–6–4 LJ potential has been developed to partially account for
charge-induced dipole interactions via the r−4 term.52,53 How-
ever, none of the available Mg2+ FF parameters can simultane-
ously reproduce all properties with sufficient accuracy. Moreover,
given the focus on metal-water properties alone, these models
cannot describe orbital-specific and anisotropic features impor-
tant in many metal-containing protein or synthetic catalyst ac-
tive sites, or even the properties of simple electrolytes.54 Po-
larizable FFs are in principle able to remediate the limitations
of non-polarizable FFs, but they are less frequently used due to
their time-consuming parameterization and increased computa-
tional cost, especially for exploring long-timescale processes.42,50

MacKerell et al.55 modified Mg2+ parameters to describe its inter-
action with water, Cl– ions, and nucleic acids using a polarizable
FF based on the Drude oscillator model. This approach uses QM-
computed interaction energies and geometries of hydrated com-
plexes as reference as well as condensed-phase osmotic pressure
calculations. Mg2+ parameters for the AMOEBA force field were
reported by Jiao et al.56 and further refined by Piquemal et al.57

However, both implementations experienced rapid water dissoci-
ation. This issue was addressed by Kurnikov and Kurnikova,58

who introduced a distance-dependent polarization response for
water.

The effect of various FFs on the ligand exchange mechanism in
Mg[(H2O)6]2+ complex was extensively studied by Schwierz et
al., using transition path sampling.59,60 They demonstrated that
while the commonly used non-polarizable FFs correctly predict
the dissociative characteristics of the mechanism of the water ex-
change (Id), they tend to overestimate the free energy barrier,
leading to a significantly slower reaction rate.59 In comparison,
the polarizable FF Amoeba and specialized non-polarizable FF
microMg lead to a preference for an associative mechanism (Ia)
with a reaction barrier too low, leading to significantly faster re-
action rates, further illustrating the complexity of the ligand ex-
change process.60

The interactions of Pd2+ with water molecules have also been
studied computationally with classical FF approaches. Sanchez
Marcos et al.21 investigated the [Pd(H2O)4]2+ complex in water
using MD simulations. They developed two intermolecular po-
tentials to describe the interactions between Pd2+ and the water
molecules, one for the first solvation shell, fitted to interaction
energies computed at the MP2 level on the gas-phase complex,
and another for the hydrated ion-bulk water interactions by in-
corporating a continuum polarizable model to account for solva-
tion effects.21 They suggested the presence of solvent molecules
in the axial position located between 2.5 and 3.0 Å, referred to
as a ’mesoshell’. The concept of the mesoshell has sparked de-
bate within the scientific community, with recent studies suggest-
ing that the structure of Pd2+ aqua complexes in water should
be interpreted under the ‘extended first shell’ paradigm.25,44 For
example, utilising QM/MM methods, Adnan Ali Shah et al.25,44

identified a weakly bound axial ligand (Pd-O distance of 2.8 Å),
resulting in a broad peak in the RDF between the first and second
solvation shells. Contrasting findings were reported by Chen et
al.26 using subsystem DFT AIMD simulations of the same com-
plex. Their results indicated that water molecules rarely occu-
pied the axial region. Instead, solvent molecules formed a pro-
tective “dome” on both sides of the square planar complex via
strong hydrogen bonds, preventing the penetration of single wa-
ter molecules from the axial directions. These studies provide al-
ternative interpretations of the experimental data, underscoring
the complex nature of axial interactions in Pd2+ aqua complexes.

AIMD simulations of explicitly solvated metal cations could,
in principle, provide unbiased insights into the structural prop-
erties of the solvation shells and mechanisms of the ligand ex-
change by describing the entire system at the QM level, thus
overcoming the limitations of classical FFs and QM/MM meth-
ods.22,26,46,61–63 However, its high computational cost limits its
use to small systems and picosecond timescale processes, often
insufficient to obtain converged free energies and model ligand-
exchange processes. Machine learning potentials (MLPs) have
emerged as promising alternatives to AIMD, reproducing accu-
rate energies and forces from electronic structure reference cal-
culations at a much lower cost.64 MLPs have been extensively
used in modelling materials,65,66 organic molecules,67,68 and
more recently in chemical reactivity.69,70 However, their exten-
sion to model metal ions in solution remains less explored. Only
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45 to 49 H2O cluster (149 structures)
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Fig. 1 Training data and active learning workflow: a) Training subsets for Mg2+ in aqueous solution, b) training subset for Pd2+ in acetonitrile
(MeCN), c) Scheme of the active learning workflow used to train the machine-learning potentials (MLPs).

a handful of examples have been recently reported, including the
work of Liu et al.71 who employed DeepMD72,73 to model Mg2+

and Ca2+ in water in the presence of hydroxide. Mondal et al.,
used DeepMD to study different formation and dissociation reac-
tions in alkali carbonate–hydroxide electrolytes.74 Additionally,
Michaelides et al.utilised the Behler-Parrinello NNPs75 to model
Na-Cl ion-paring in aqueous solution76 and in electrolytes con-
fined to nanoscale pores.77

Traditionally, MLPs are trained using AIMD reference data un-
der periodic boundary conditions (PBC). This approach inher-
ently captures long-range interactions but incurs a high compu-
tational cost due to the large size of the system, primarily con-
sisting of solvents. Consequently, this also limits the use of high
levels of theory and restricts the achievable sampling. Previous
works by our group78,79 and others80,81 have demonstrated the
efficiency and accuracy achievable using cluster data for train-
ing. When combined with active learning (AL), which itera-
tively builds the training set based on a preliminary version of
the trained MLP, this approach yields accurate and data-efficient
MLPs at a low computational cost. In this study, we expand
this protocol to model metal complexes in solution, using clus-
ters of solvated metal ions for training. Specifically, we apply
Atomic Cluster Expansion (ACE)82 and its message-passing neu-

ral network-based variant (MACE)83 to two model systems, Mg2+

complexes in aqueous solution, representing a strongly interact-
ing and biologically relevant metal ion, and Pd2+ complexes in
acetonitrile (MeCN), a transition metal relevant for supramolec-
ular chemistry in non-aqueous solvents.34,37,38 Ligand exchange
in these complexes proceeds via different mechanisms, allowing
us to investigate the capability of the MACE potentials to model
structural and energetic features characteristic of both processes.

2 Methods

2.1 ACE and MACE machine-learning potentials

In this work, MLPs were trained using linear regression with the
ACE84 descriptor and its variant MACE, in which ACE is com-
bined with an equivariant message-passing neural network archi-
tecture.83

The ACE descriptor85 builds on a traditional many-body ex-
pansion, where the Potential Energy Surface (PES) of the sys-
tem is expressed as a sum of different body-order interactions,
including two-body, three-body, and higher-order interactions de-
pending on the truncation. Although this approach is physically
motivated, it is limited to modestly-sized molecular systems, as
the computational cost of evaluating the energy scales exponen-
tially with system size, making it impractical to consider inter-
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actions beyond the three-body order. ACE overcomes this lim-
itation by introducing the concept of atomic neighbour density,
where the energy of each atom depends on the many-body in-
teractions with its N neighbours within a defined cut-off radius.
The validity of this concept is based on the assumption that the
energy of each atom only depends on its local environment.75,86

Second, it projects these densities onto physically invariant ba-
sis functions. This procedure ensures that the evaluation cost of
many-body terms scales linearly, rather than exponentially, with
the number of neighbours, regardless of the body order. A de-
tailed description of the method is provided in Ref. 85. The capa-
bility of the ACE descriptor to accurately map the PES enables the
use of simple linear regression for fitting, resulting in an accurate
and data-efficient approach to train MLPs.84

MACE combines the ACE descriptor with an equivariant
message-passing neural network architecture,83 incorporating
body-order contributions as node features. Using graph neural
networks (GNNs), the body-order term and cluster region implic-
itly expand with the number of message-passing layers, resulting
in a more accurate representation of atomic environments.83

Both ACE and MACE have been shown to reliably predict
the energies and forces of molecules and condensed phase sys-
tems.84,87–89 Linear ACE provides high accuracy in low-data
regimes, making it particularly suitable for use in the early stages
of AL, where typically small data sets are used.78,79 In this work,
we use linear ACE to build the training data sets using the AL
loop, while MACE is used to expand the data sets and fine-tune
the final potentials used for production MD simulations.

2.2 Workflow

The workflow presented here builds on our previous work on au-
tomated AL strategy for modelling chemical reactions in explicit
solvents (Fig. 1).79 The AL cycle is initiated from a small training
set of approximately 10 structures. These data consist of gas-
phase molecules generated by random displacement from a QM-
optimized structure or solvated clusters, obtained from MD simu-
lations or random placement of molecules in a box. The structures
are labelled with energies and forces computed at the reference
level of theory. The initial training data set is extended using AL
as follows: A first version of the MLP is generated and used to
propagate several independent MD simulations, typically ten, for
n3 +2 fs, where n is the index of the MD run in the AL loop, start-
ing from 0. From these trajectories, new structures are selected
using a similarity selector,79 which identifies new structures to
be included in the training based on the similarity between a
global Smooth Overlap of Atomic Positions (SOAP) representa-
tion of data point p and configurations p

′
in the existing training

set.90 The similarity vector, K, is defined as follows:

K = (|k(p0 ·pi)|ζ ,
∣∣k(p0 ·p j)

∣∣ζ , · · ·)T (1)

where the components of the vector k(p · p
′
) correspond to the

SOAP kernel functions computed between the SOAP representa-
tion of new structure p0 and the i-th configuration in the existing
training data pi. Parameter ζ is a positive integer that increases
the sensitivity of the kernel to changes in atomic position.90 The

selector adds structures to the training set if the maximum value
of their similarity vector, K, is smaller than the given threshold
kT , i.e., max(K)< kT . The new structures are then labelled by the
reference energy and forces, added to the training set and poten-
tial is retrained. If no structures are selected from the trajectories,
the index n increases by one and a longer MD simulation is per-
formed with the same potential. The AL procedure is repeated
until it either reaches the maximum number of AL cycles or when
no new structure is selected within the maximum AL time. De-
tails on electronic structure and MD protocols are provided in the
Computational Details section.

2.3 Data set preparation

2.3.1 Mg2+ in water

The training data set for Mg2+ consists of 344 structures. To
increase the accuracy of the resulting potentials across systems
with different sizes, the final dataset combines several subsets
with different compositions, corresponding to three subsets: (i)
[Mg(H2O)6]2+ complex in the gas phase (30 structures), (ii)
Mg2+ solvated in 45 to 53 water molecules in a spherical cluster
with radius 7 Å (165 structures), and (iii) water clusters contain-
ing 45 to 49 water molecules placed in a spherical cluster with
radius 7 Å (149 structures). The schematic representations of the
structures are depicted in Fig. 1a. The cluster size was selected to
be larger than the distance cut-off of the descriptors used in MLP,
i.e., 6 Å, needed to cover the Mg-O distance range sampled in the
dissociative mechanism. All datasets were trained using the en-
ergies and forces computed at ωB97X-D3BJ/def2-TZVP91,92 level
of theory as ground truth, which provides accurate estimation for
structural and thermodynamic properties of large systems. The
ACE MLP was used to generate the structures during AL unless
specified otherwise.

[Mg(H2O)6]2+ complex in the gas phase AL was initiated
from 10 structures obtained by a random displacement of
[Mg(H2O)6]2+ complex in the gas-phase. The new structures
were selected using the similarity selector with a SOAP cut-off of
5 Å and threshold of 0.999, with the maximum time in the active
training loop set to 3 ps. This procedure led to the selection of 30
structures.

Water cluster subset The initial structures of the bulk water
system were prepared by classical MD simulation using TIP4P-
Ew FF.93 A cubic box (L= 15 Å) was solvated with 112 water
molecules, minimized and equilibrated in an NPT ensemble (300
K and 1.0 bar) for 1 ns using Langevin dynamics and Berend-
sen barostat as implemented in the sander module of Amber-
tools23.94 For the initial training set, 10 clusters of 7 Å radius
containing 45 to 49 water molecules were cut from the equi-
librated trajectory and labelled with the reference energies and
forces (vide infra). The training set was then enhanced by AL us-
ing the similarity selector with a threshold of 0.9998 to avoid se-
lection of too distorted structures, and a maximum time set to 10
ps to accommodate for water relaxation. This approach yielded
an overall 149 structures.
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Mg2+ complex in a water cluster The initial structures for the
training were generated using classical MD simulations including
a Mg2+ ion solvated by 325 water molecules in a box of 21.5
Å. The box was minimized and equilibrated to experimental wa-
ter density using the same procedure as pure water. The system
was modelled using the TIP4P-Ew water model combined with
Li/Merz ion parameters in TIP4P-Ew water (12-6 HFE set).52 10
structures were randomly extracted from the equilibration trajec-
tory and cut into a 7 Å sphere with a centre in the Mg2+ cation.

The three subsets were combined to form the full data set used
to initiate AL, which was performed in four phases. In the first
phase, the ACE potential was trained on the full data set and used
in AL with MLP-MD initiated from Mg2+ -water cluster (structure
selected from a subset (ii)). During the MLP-MD dynamics step,
the cluster was constrained in its spherical shape by a flat-bottom
spherical bias potential set at a distance of 8 Å from the Mg2+

cation, applying a harmonic restraint of 500 kcal/mol Å−2. MD
simulations during AL were performed in an NVT ensemble at
400 K. New structures were selected using the similarity selector
with a threshold of 0.999, with maximum time in AL set to 7 ps.
This longer AL time compared to the gas phase complex was used
to account for the higher flexibility of water molecules outside the
first solvation shell. The first phase collected 11 structures, which
were added to the data set.

In the second phase, the AL was initiated using one of the clus-
ters generated during the previous phase, with the radius reduced
by placing the harmonic bias at a distance of 7.5 Å to increase the
density of the solvent around Mg2+ and enhance the sampling of
the repulsive region of the potential. To avoid selecting overly
distorted structures resulting from potentially unstable dynamics,
the selector threshold was tightened to 0.9999. Simultaneously,
the AL time was increased to 20 ps to further capture longer water
dynamics. The second phase resulted in generating an additional
55 structures.

After these two phases of training, we tested the accuracy and
stability of the resulting potential by comparing the MLP ener-
gies and forces with the ground truth data (for details see SI §S2)
and conservation of the total energy in NVE dynamics. Despite
the high accuracy of the trained ACE potential, as evidenced by
a mean absolute deviation (MAD) of 0.79 meV/atom for energy
and 46 meV Å−1 for forces (Fig. S1), the NVE and NVT MD sim-
ulations using PBC with the ACE potential were unstable. This
included the formation of bubbles, followed by the system’s col-
lapse. These instabilities could be alleviated by introducing more
radial functions into the descriptor and tuning the hyperparame-
ters. However, we decided to change the model in the following
phases from ACE to MACE, which is computationally more effi-
cient. Indeed, the MACE potential provided stable NVE dynamics
under PBC using the same training data set. Interestingly, the
long NVE dynamics with the MACE potential promoted proton
transfer of a water molecule in the first solvation shell, leading
to the formation of [Mg(H2O)5(OH)]+ and H3O+ species. As
these structures were underrepresented in the previous AL loops,
resulting in larger prediction errors (see Fig. S2), we manually
selected 35 structures along the NVE trajectory, cut them into 7
Å clusters, which contained the species, and added them to the

training set for the third training phase. Apart from adding these
data, we further repeated the AL loop to account for possible
differences between the conformational space sampled by ACE
and MACE potentials. The re-trained MACE potential was again
found to provide an accurate estimate of energies and forces, 0.69
meV/atom and 29 meVÅ−1 (see Fig. S3). The preliminary NVT
dynamics with this potential, however, led to fast dissociation of
one H2O molecules from the first solvation shell, without no ex-
change with the bulk solvent. To correct for this behaviour and
to ensure accurate exchange of the water molecules around the
Mg2+, we completed the training set by adding 23 structures with
H2O molecule dissociated to a distance above 3.0 Å (see Fig. S4)
from Mg2+ within the fourth training phase.

2.3.2 Pd2+ in MeCN

MLP for Pd2+ complex was trained using a total of 581 data
points from the following subsets (Fig. 1b). (i) Data obtained
by a relaxed 2D scan of the [Pd(MeCN)4]2+·MeCN complex in
the gas phase along the two Pd-N bonds describing the ligand
exchange process (25 structures). (ii) [Pd(MeCN)4]2+ com-
plex solvated by 60 MeCN molecules (305 structures). (iii)
The [Pd(MeCN)4]2+·MeCN complex solvated by 20 to 30 MeCN
molecules to describe interactions between Pd and MeCN (251
structures). As in the Mg2+ case, the size of all clusters was
selected in a way that the resulting cluster radius exceeds the
6 Å cut-off used in ACE and MACE descriptors. Unless speci-
fied otherwise, ACE was used as the ML model in all training
phases, employing the ground truth potential TPSS0-D3BJ/def2-
TZVP,92,95,96 since this functional has shown good performance
in reactions involving late-transition metals.95 MD simulations
in the AL loops were performed in an NVT ensemble at 300 K.
MD simulations longer than 1 ps used a flat-bottom spherical har-
monic bias potential set at a distance from the Pd2+ cation, apply-
ing a harmonic restraint of 100 kcal/mol Å−2. The value of the
harmonic restraint has been chosen to maintain the integrity of
the cluster without creating artefacts from the pulling force. The
onset distance of the flat-bottom potential was varied according
to the size of the clusters so that the density of the cluster was
close to the experimental density of the (bulk) liquid.

[Pd(MeCN)4]2+·MeCN complex in the gas phase The transi-
tion state (TS) structure corresponding to pentacoordinated trig-
onal bipyramid was obtained at the TPSS0-D3BJ/def2-TZVP level
of theory (Fig. 1b) and was used as a starting point for a 2D
relaxed PES scan along the two Pd-N bonds involved in the lig-
and exchange. These bonds are of equal length in the TS (2.28
Å); while the length of the remaining three Pd-N bonds is equal
to 1.95 Å. The PES scan resulted in a total of 25 structures (5x5
grid). In the following paragraphs, TS refers to the transition
state structure of [Pd(MeCN)4]2+·MeCN obtained from the PES
scan mentioned above, while reactant state (RS) refers to the
structure obtained from the geometry optimization of TS in gas-
phase with TPSS0-D3BJ/def2-TZVP.

[Pd(MeCN)4]2+ complex solvated in clusters of 60 MeCN
molecules The initial structure for the subset was generated
with the Quantum Cluster Growth (QCG) method97 (as imple-
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a) Validation for Mg2+ in water

b) Validation for Pd2+ in MeCN

Energy Forces

Energy Forces

Fig. 2 Comparison of the ground-truth and MACE prediction of energies and forces for cluster systems at 300 K: a) Mg2+ solvated in 51 water
molecules modelled at ωB97X-D3BJ/def2-TZVP level of theory, b) Pd2+ solvated in 30 MeCN molecules modelled at TPSS0-D3BJ/def2-TZVP level
of theory.

mented in xTB (version 6.5.0)98 and the lowest energy conformer
was selected with CREST.99. Then, the conformational space was
explored via metadynamics simulations with xTB.98,100 Three
simulations of 25 ps each were run in the NVT ensemble at 600 K,
using the Cartesian root-mean-square-deviation (RMSD), with re-
spect to a list of reference structures updated every 2 ps, as a col-
lective variable.100 During the simulations, a flat-bottom spher-
ical bias potential was applied to keep the cluster at the experi-
mental density of liquid acetonitrile at room temperature.100 For
each of the three trajectories, the first 600 fs were excluded and
the remaining frames were merged in a single trajectory. From
this, frames have been extracted every 240 fs resulting in 305
structures.

[Pd(MeCN)4]2+·MeCN complex in clusters of 20 - 30 MeCN
molecules The structures used as starting conformations in the
multi-step AL approach described in this section have been gen-
erated with CREST. The TS and RS structures obtained in the gas
phase (from the dataset (i)) were solvated by 20 to 30 MeCN
molecules using the QCG method97 and the lowest energy con-
formation of the cluster was selected with CREST,99 as mentioned
above. Different conformations were generated for the different
AL training phases as follows. Firstly, the data set (i) was used
as an initial data set in the AL loop, starting from TS solvated
by 20 MeCN molecules; new structures were selected using the
similarity selector with a threshold of 0.9999, with a maximum
MD simulation time set to 750 fs, the time found to be required

for transitioning from trigonal bipyramidal to square-pyramidal
coordination geometries, observed from previous trials. This AL
phase yielded 56 structures.

In the second phase, dataset (i) and the 56 structures obtained
from the first phase were employed as the starting training set.
The TS solvated by 30 MeCN molecules was used as a starting
conformation for the new AL loop, with an MD simulation time
of 1.5 ps and a SOAP selector threshold of 0.999. The choices
to extend the MD simulation time and the number of solvating
MeCN molecules were made to capture how the relaxation from
the transition state would evolve on longer timescales and in the
context of a larger solvation environment. The selector threshold
was relaxed to avoid the selection of conformations too similar
to the starting one since the fluctuations along the TS relaxation
have been explored in the previous training phase. In this phase,
36 new structures were generated, expanding the dataset to 117
structures.

In the following phase, the RS solvated by 20 MeCN molecules
was used as a starting structure, with the AL MD time extended to
5 ps to allow sampling of more distant regions of the PES. There-
fore, the number of solvent molecules was decreased to lower the
computational cost. 30 new structures were generated and added
to the previous data, yielding a total of 147 data points. Prelimi-
nary validation in the NVT ensemble under PBC showed artefacts
in the description of the average structure of the system, in par-
ticular, the formation of void regions in the axial positions of the
complex (Fig. S5).
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rMACE(Pd – N) = 1.97 Å

rMACE(Mg – O) = 2.08 Å

a)

b)

Fig. 3 Simulation boxes, radial distribution functions g(r) and coordination numbers N(r) of the metal complexes in solution. a) Mg2+ in aqueous
solution, b) Pd2+ in MeCN.

In line with the Mg2+ case, we, therefore, decided to adopt the
MACE for AL due to its computational efficiency and accuracy.89

Furthermore, to enhance the stability of the potential during AL,
we selected 150 structures from the dataset (ii) and merged them
with the previous 147 structures, obtaining an extended starting
dataset. A final AL loop was started from RS solvated by 20 MeCN
molecules, using a similarity selector threshold of 0.9999 and sim-
ulation time set to 20 ps to ensure the stability of the potential on
longer timescales. This training phase resulted in 129 new struc-
tures. Eventually, not considering the 25 structures from dataset
(i), the multi-step AL approach described above yielded a total of
251 structures (147 + 129 - 25).

3 Results and Discussion

3.1 Validation of the MLP

As a first step, we validated the accuracy and stability of the
generated MACE potentials for both Mg2+ in aqueous solution
and Pd2+ in MeCN. To evaluate the prediction error on unseen
data, we generated an ensemble of testing structures by an MLP-
MD simulation of the metal ion in a spherical cluster of solvent
molecules. We then selected frames along the trajectory and per-
formed a point-to-point comparison between the energies and
forces computed at the ground truth DFT level of theory and
MACE.

The testing data set for Mg2+ cation in aqueous solution con-
sisted of 51 structures collected over 50 ps NVT dynamics of Mg2+

solvated in a cluster of 51 water molecules. The spherical shape
of the cluster was kept by a harmonic spherical potential placed at
7.5 Å from Mg2+. Validation results are depicted in Fig. 2a. MACE
demonstrates excellent performance in energies and forces, with
MAD of 0.31 meV/atom and 18 meV Å−1 for energies and forces,
respectively.

For Pd2+ in acetonitrile, the MACE potential was tested on
structures generated from 100 ps NVT dynamics using a cluster
containing Pd2+ and 30 MeCN molecules. The solvent molecules
in the cluster were confined by a flat-bottom spherical bias poten-
tial with a radius of 10.0 Å, centred on Pd2+. From the trajectory,
51 structures were extracted. The MAD is 1.04 meV/atom and
8 meV Å−1 for energy and forces respectively. The good correla-
tion with respect to the ground truth energies and the accuracy
in forces suggest that the MACE potential closely reproduces the
shape of the reference PES, with the higher energy MAD likely
arising from a systematic shift in the absolute values, which has
been previously reported in some instances with MACE.89 Over-
all, the MACE potentials provide a reliable prediction of energies
and forces for both tested systems.

To further assess the performance of the MACE potentials in
larger systems, we performed 100 ps MD simulations under PBC
in the NVE ensemble for a system consisting of Mg2+ with 145 wa-
ter molecules in a 16.3 Å box and Pd2+ with 159 MeCN molecules
in a 24.0 Å box. In both cases, the MACE potential conserved en-
ergy, confirming the stability of the dynamics under PBC and on
simulation times longer than the active learning time (Figs. S7
and S8).

3.2 Structural properties of the metal solvation shells

We evaluated the structural properties of the metal environ-
ment by computing the radial distribution functions (RDFs) be-
tween the metal ions and the coordinating solvent atom. For
[Mg(H2O)6]2+, the computed Mg-O RDF from 500 ps MD sim-
ulations (Fig. 3a) shows a first peak at 2.08 Å, in agreement with
the 2.10 Å reported from X-ray diffraction and neutron scattering
experiments.7,101 Integration of this curve results in a coordina-
tion number of 6, confirming the octahedral arrangement of this
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a) b)

Fig. 4 Potential of mean force (PMF) profiles of the two ligand exchange processes for a) [Mg(H2O)6]
2+ (the solvent molecule exchanged is coloured

blue) and (b) [Pd(MeCN)4]
2+, where the black dot indicates the energy at the TS.

complex. A second, less well-defined peak is evident around r =
4.15 Å, corresponding to the second solvation shell. Integration
of this peak results in a coordination number of 12, in agreement
with experiments7 and reported ab initio computations.9 In line
with the known lifetime of the first solvation shell, the octahe-
dral complex remained stable during the simulation time and no
ligand exchange with the bulk solvent was observed.

As expected from the ligand field theory,27 Pd2+ forms a square
planar complex with 4 MeCN molecules, with a Pd−N distance of
1.97 Å (Fig. 3b). This is in excellent agreement with the value
obtained from the single crystal X-ray diffraction (SC-XRD) of the
complex (Pd-N bond 1.96±0.01 Å).39 Two peaks around 3.3 Å,
with a shoulder starting from 2.5 Å, and around 4.6 Å, are also
observed. The latter peak is associated with the second solvation
shell, with a coordination number of 8. The former peak corre-
sponds to the interactions of acetonitrile molecules in the axial
position, with a coordination number increasing from 4 to 6. The
previous studies on Pd2+ aqua complexes provided a foundation
for understanding the axial interactions of Pd2+ with MeCN. As
mentioned in the introduction, two paradigms exist in the litera-
ture. In the mesoshell paradigm, the two axial ligands are sym-
metrically bound, resulting in a sharp peak between the first and
second solvation shells.21,23,24 Conversely, the "extended first sol-
vation shell" concept suggests more weakly bound axial ligands,
leading to a presence of broad peak.25,44 The structural features
observed in the RDF in Fig. 3b indicate that for Pd2+ in ace-
tonitrile, axial ligands interact according to the "extended first
solvation shell" paradigm. This notion is further supported by the
asymmetry in the average distance of the two axial MeCN ligands
with respect to Pd2+ (Fig. S9 and S10). Additionally, a detailed
analysis of the axial coordination pattern (see section §S3.1) sug-
gests that the preferred average structure of the complex is not
octahedral but square pyramidal, with the ratio between the lat-
ter and the former being 7:4.

3.3 Free energy barrier of ligand exchange

The ability of the MACE potentials to describe ligand exchange
around the metal centre relies on accurately describing the dif-

ferent coordination states and their exchange mechanisms, ide-
ally leading to accurate kinetics. The latter has been difficult to
achieve with classical force fields.59,60

As discussed previously, ligand exchange in Mg2+ complexes
is suggested to follow a dissociative or interchange-dissociative
mechanism, which proceeds through an intermediate or transient
structure with a lower coordination number. Solvent dissociation
from the first solvation shell of the [Mg(H2O)6]2+ thus repre-
sents the rate-limiting step of the process. The free energy bar-
rier associated with the dissociation of one solvent molecule was
obtained from the potential of mean force (PMF) using US with
48 windows (Fig. 4a). The PMF shows a minimum at 2.1 Å, in
agreement with the value obtained from the RDF (Fig. 3a). A
second shallow minimum is located around 4.25 Å, correspond-
ing to the position of the second solvation shell, which is approx.
2 kcal/mol higher than the first minimum. This indicates that
the sampling of the region where water leaves the first solva-
tion shell is not fully converged. However, the two repetitions
of the US confirm that the free energy barrier is not affected (see
Fig. S13). The representative structures of both minima and the
associated transition region are depicted in Fig. 4. Analysis of
the trajectories confirms that the MACE potential correctly re-
stores the octahedral geometry of the complex. The barrier of
pulling the water molecule away from the first solvation shell is
7.6 ± 0.15 kcal/mol, with the peak located at a distance around
3.1 Å. The predicted barrier is 1.9 kcal/mol lower than the exper-
imental value, 9.5 kcal/mol,4,11 implying a higher rate of water
exchange around the Mg2+ .

For Pd2+ complex with MeCN, an associative mechanism has
been suggested from NMR experiments and static electronic
structure calculations.27–29,40,41 To determine the coordination
number that corresponds to the TS, the fluctuations of the coordi-
nation number and the Pd−N bond lengths were analysed in the
umbrella sampling trajectory that corresponds to the TS region in
the PMF (Fig. S16). The coordination number fluctuates around
a mean value of 4.96, which yields a barrier of 15.7 kcal/mol in
the PMF (black dot in Fig. 4b). This value is in very good agree-
ment with the experimental values from two independent NMR
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studies, 15.3 ± 0.4 kcal/mol40 and 15.2 ± 0.2 kcal/mol.41

The reaction mechanism of the ligand exchange is illustrated in
detail by the representative snapshots in Fig. 4b. The solvent as-
sociation proceeds via the formation of a square pyramid, where
the axial Pd−N bond shortens as the system approaches the TS re-
gion, while one of the equatorial Pd−N bonds progressively elon-
gates. This process leads to the formation of a trigonal bipyra-
midal TS, with an equal length of two Pd−N bonds involved in
the ligand exchange. Taken together, the PMF from the US sim-
ulations confirms the associative nature of the ligand exchange
mechanism. Furthermore, the activation barrier is in excellent
agreement with the experimental values, supporting the notion
that the MACE potential fitted to the hybrid DFT reference accu-
rately describes the PES of the system and allows for a realistic
description of the dynamics of the ligand exchange process.

4 Conclusions

In this work, we present computational strategies to build train-
ing data sets for modelling ligand exchange processes of divalent
metal cations in explicit solvents with MLPs. Using Mg2+ in aque-
ous solution and Pd2+ in MeCN as model systems and illustrative
examples, we demonstrate the capability of the MACE potentials
to reproduce the total energies and forces of the solvated metal
cations. Furthermore, the MLPs trained on cluster data can be
used in the condensed phase simulations with periodic boundary
conditions. The MACE potentials yield metal ion–solvent RDFs in
excellent agreement with experimental data, confirming the ca-
pacity of MACE to capture the structure of the polarised solvent
shells around the cations. Moreover, we demonstrate the ability of
the MACE potentials to model changes in the coordination shells
of the metal cations, allowing for a structurally and energetically
realistic description of different ligand exchange mechanisms in
complex liquid environments. More generally, we show that the
active learning strategy combined with MACE potentials allows
the generation of accurate and data-efficient MLPs that are suit-
able to model changes in the coordination chemistry of charged
species in solution. While further work is needed to automate the
selection of accurate parameters suitable across different metals,
this study provides a robust computational framework for prepar-
ing data-efficient models that accurately describe metal-ligand in-
teractions, paving the way to modelling increasingly complex sys-
tems, such as metallocages and catalysts.

5 Computational Details

5.1 Model parameters and training

ACE and MACE models were trained with ACE.jl82 wrapped by
pyjulip and mace v0.3.483,102 using in-house mlp-train pack-
age.103 The model hyperparameters and parameters used for
the active learning (AL) cycles are listed in SI § S1. The
QM computations were performed in ORCA v5.0.4104 wrapped
with autodE.105 The reference energies and forces were com-
puted at ωB97X-D3BJ/def2-TZVP91,92 and TPSS0-D3BJ/def2-
TZVP92,95,96 levels of theory for the Mg2+ and Pd2+ systems, re-
spectively.

5.2 Production MD

Mg2+ cation in water was simulated in a periodic cubic box of
16.3 Å containing 1 cation and 145 water molecules. The ini-
tial structure for the dynamics was obtained by classical dynam-
ics (see SI §2.3.1). The Pd2+ system was simulated in a pe-
riodic cubic box of 24.0 Å containing 1 metal atom and 159
acetonitrile molecules. The starting configuration of the sys-
tem was built in three steps. Firstly, an NPT-equilibrated box of
acetonitrile was obtained with the force field parameters from
Caleman et al.106. Secondly, the xTB-optimized structure of the
[Pd(MeCN)4]2+ complex was solvated with the acetonitrile box.
Lastly, the whole system was energy-minimized with Gromacs
(v2019.1).107 The radial distribution functions for both the Mg2+

and Pd2+ systems were computed from 500 ps NVT simulations
with the MACE potentials, with the first 50 ps used for equili-
bration and skipped from the analysis. The equations of motion
were integrated by the i-PI driver,108 with MACE potential evalu-
ated by the MACE-Atomic Simulation Environment (ASE) calcula-
tor using ASE v3.23.0b1.109 All MD simulations were propagated
with an integration time step of 0.5 fs. MD in the NVT ensem-
ble was thermostatted at 300 K by a stochastic velocity rescaling
thermostat with a coupling time constant of 100 fs.110

5.3 Free energy computations

The free energy profiles of the metal-ligand exchange reactions
were evaluated by umbrella sampling (US) simulations using the
i-PI driver combined with the Plumed v2.9.0 library.111,112 The
PMFs were constructed using the Weighted Histogram Analysis
Method (WHAM) code v2.0.11.113

For Mg2+ in water, the Mg···O distance was chosen as a re-
action coordinate (RC). The starting structures for each win-
dow were generated by a steered MD, pulling a water molecule
from the first solvation shell to a distance ranging from 1.5 to
7 Å. The US covered the distance from 1.5 to 6.0 Å, split into
48 windows with a spacing of 0.075 Å. In each window, the
trajectory was propagated for 1 ns, with the first 50 ps used
for equilibration and skipped from the analysis, corresponding
to 45.6 ns of sampling time. The US windows were propa-
gated independently at 300 K. A harmonic umbrella restraint
with force constant 500 kcal/(mol·Å2) was employed in the win-
dows from 1.5 to 3.00 Å, while the force constant was lowered
to 250 kcal/(mol·Å2) in the region from 3.00 to 6.00 Å. The
PMF was computed as an average from 2 US runs with random
seeds for generating the initial velocity distributions, with an un-
certainty estimated as a standard deviation. The final PMF was
corrected by the entropy term 2kBT ln(r/r0) that accounts for the
increasing volume of configuration space with increasing distance
r.114,115

For Pd2+ in acetonitrile, the coordination number was chosen
as a collective variable for the US (further details in section SI
§S4.2). The starting structures for the US runs were generated
by steered MD, during which one of the two MeCN axial ligands
was pushed towards the Pd centre, guiding the system towards
the ligand exchange event through the formation of the penta-
coordinated TS. In the US, the coordination number was varied
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from 4 (square planar reactant state) to 5 (pentacoordinated TS,
further details in SI § S4.2). For each window, the simulation
was run for 57.5 ps with a harmonic restraint with force constant
2400 kcal/(mol·Å2), using the last 50 ps for the analysis. To esti-
mate the statistical uncertainty, the US simulations were repeated
three times (using different random seeds for generating the ini-
tial velocity distributions), and the standard deviation from these
three repeats is plotted in Fig. 4.
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