Recent advances in near-infrared organic photosensitizers for photodynamic cancer therapy
Abstract
With the advancement of photodynamic therapy, various photosensitizers have been developed to enhance the efficacy of cancer treatment while minimizing side effects. Recently, near-infrared organic fluorophores have gained significant attention as promising photodynamic agents for cancer therapy due to their tunable photophysical properties, structural versatility, good biocompatibility, high biosafety, and synthetic flexibility. In particular, near-infrared organic photosensitizers offer several notable advantages, including deep tissue penetration, a low fluorescence background for bioimaging, and reduced damage to biological tissues compared to traditional visible-spectrum photosensitizers. In this minireview, we will discuss the current developments in near-infrared organic photosensitizers for photodynamic cancer therapy. Furthermore, we will briefly highlight the challenges and prospects in this field. This minireview aims to encourage more researchers to develop advanced near-infrared organic photosensitizers and facilitate their transition from laboratory research to preclinical studies and ultimately to clinical use.
- This article is part of the themed collection: Biomaterials Science Recent Review Articles, 2024