View Article Online View Journal

Nanoscale

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: H. Wu, X. Zheng, J. Liu, Y. Yuan, Y. Yang, C. Wang, L. Zhou, L. Wang, B. Jia, X. Fan and J. Zheng, *Nanoscale*, 2025, DOI: 10.1039/D4NR05000B.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/nanoscale

Research progress of transition metal catalysts for electrocatalytic EG oxidation

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Hongjing Wu^a, Xiaoyue Zheng^a Jiajia Liu^a, Yanru Yuan^a, Yuquan Yang^a, Chenjing Wang^a, Li Zhou^a, Lulu Wang^a, Binbin Jia^{b,*}, Xiaoyu Fan^{c,*}, Jinlong Zheng^{a,d,*}

Glycol is a small molecule alcohol with a low oxidation potential and a key monomer in the production of polyethylene terephthalate (PET). The efficient oxidation of EG can further enable the recycling of waste PET. Currently, there are many studies on catalysts for EG oxidation, among which transition metal catalysts (including traditional non-precious metals such as Fe, Co, Ni and other noble metals such as Pt and Pd) have good prospects for application in EG oxidation reaction due to their unique electronic structures. In this study, the synthesis strategy of transition metal catalysts for the electrocatalytic oxidation of EG is summarized and the performance of different types of catalysts in the EG oxidation reaction is reviewed. Advanced characterization methods were used to understand the oxidation mechanism of EG and to control the conversion of EGOR intermediates into target products. Therefore, we need to further explore efficient catalysts for EG oxidation to achieve efficient reaction.

1. Introduction

With the carbon neutrality policy, people are more concerned about the environment, so some waste with recycling value can be processed by relevant means to achieve the upgrading of waste. The treatment of 'white pollution' has been troubling the relevant researchers, so it is of far-reaching research significance to realize the recycling of plastics. Polyethylene terephthalate^[1] (PET) is a kind of plastic used for daily packaging and textile purposes^[2], and the apparent consumption of polyester in China has reached about 48.99 million tons by 2022. Currently, the main treatment of PET packaging waste is landfill incineration^[3], of which a part can be more reasonably utilized indirectly or directly, and a part is scattered on beaches^[4]. Such a large amount of PET consumption can still cause serious environmental pollution if it is not handled properly. EG is a key monomer in the production of PET We can reduce the pollution by processing the hydrolyzed PET.

In the long term, it is preferable to achieve high efficiency electrocatalytic oxidation of EG. Firstly, the polyester nature of PET leads to its easy hydrolysis under alkaline conditions, and secondly, the main monomer of PET, EG, due to its unique properties of alcohols^[5,6]., is also easily oxidized (to produce format^[7], glycolic acid^[8] and other related value-added products), which can further improve the rate of hydrogen production. The use of electrochemical oxidation of PET with

⁺ Footnotes relating to the title and/or authors should appear here.

wastage and further reduced environmental pollution. For example, Zhao and colleagues made a pioneering contribution by introducing and documenting an electrochemical up-cycling method for the use of Cu-based nanowires as catalysts for the electrocatalytic oxidation of PET. In addition, electrocatalytic oxidation can directly convert chemical energy into electrical energy, avoiding the energy loss of traditional combustion methods. By selecting suitable catalysts and reaction conditions, selective control of EG oxidation products can be achieved. For example, the reaction can be regulated to produce high value-added chemicals such as formic acid, glycolic acid, glyoxylic acid, etc. Currently, transition metal catalysts are also a hot topic for EG oxidation. The research on the electrochemical oxidation of EG has been developed so far and has been obtained from the continuous investigation of previous generations. Research on the oxidation of EG began as early as the beginning of the 20th century. Only due to the relatively limited experimental techniques and analytical means at that time, scientists only studied the basic chemical properties of EG. By the middle of the 20th century, with the continuous development of chemical analysis techniques and instruments, researchers were able to explore the mechanism of EG oxidation reaction more deeply. The oxidation process of EG under different conditions was monitored and analyzed by means of spectroscopy, electrochemistry and other techniques, and some preliminary models of the reaction mechanism were proposed. For example, weber opened the seminal study of the oxidation reaction of EG on Pt electrode. This laid the foundation for subsequent related studies and allowed more researchers to start focusing on this field. At that time, the research was mainly focused on the observation of the basic phenomena of the reaction and the preliminary exploration of the reaction properties, including the conditions under which the reaction occurs, the role of the electrode surface, and so on. However, the understanding of the reaction mechanism was still at a relatively early stage due to the technical and theoretical level at that time. Vijh made further in-depth explorations on the basis of Weber's research. He may have

aqueous monomer EG has significantly reduced resource

^{a.}Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.

^{b.} College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichana 443002, China.

^c Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.

^{d.} Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China.

Supplementary Information available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

ARTICLE

Published on 12 apríl 2025. Downloaded by Fail Open on 7.5.2025 08:18:28

conducted a more systematic study of the oxidation reaction mechanism of EG on the Pt electrode, trying to reveal key information such as intermediates, reaction pathways, etc. during the reaction. The research methodology at this stage may have been improved, and more advanced analytical techniques and experimental means were adopted to monitor the changes in the reaction process more accurately. Vijh's^[9] research results made an important contribution to the construction of the theoretical system of the oxidation reaction of EG, and pushed the research in this field to a deeper level. From 1966 to 1971, the research on the oxidation reaction of EG on Pt electrode gradually developed from the initial starting stage to a more in-depth exploration stage, which laid an important foundation for the subsequent research in this field, and provided theoretical support for the practical application of the oxidation reaction of EG. At the same time, researchers began to pay attention to the effect of catalysts on the oxidation reaction of EG, including some transition metal catalysts were found to be able to accelerate the oxidation reaction of EG, which laid the foundation for the subsequent catalyst research. After the 21st century, that is, the period of rapid development of the catalysts for the oxidation of EG electrocatalytic oxidation, researchers have continuously explored the new catalysts in order to improve the efficiency and selectivity of EG oxidation reaction. efficiency and selectivity. For example, Professor Lei Wang and Associate Professor Xu published a **Rh-modified** PtRh_{0.02}@Rh^[10] paper on Nanowire electrocatalysts for efficient catalysis of EG-assisted hydrogen production from seawater electrolysis, the team of researcher Yong Chen designed and synthesized a Pd-Ni(OH)₂ composite electrocatalyst for the highly selective oxidation of EG. These catalysts enhanced the adsorption capacity of EG and the activation of reaction intermediates by modulating the electronic structure and generating strain effects, thus improving the activity and selectivity of the reaction. The continuous exploration for the electrocatalytic oxidation of EG has also gained wide attention in the field of electrocatalytic plastic up-cycling. The oxidation reaction of EG, as a hydrolysis product of petroleum-based PET, can convert under-utilized carbon resources into high-value-added chemicals, which provides a new way of thinking in solving the problem of white pollution and realizing the recycling of resources.

At present, research on transition metal catalysts mainly and focuses on heterogeneous structure catalysts multicomponent alloy catalysts. For example, we prepared Pd-PdSe^[11] nanosheet catalysts with a unique two-dimensional heterostructure. Pd-Se compounds with low crystallinity inside the catalyst interacted with metallic Pt at the edges to produce strong d-p orbital hybridisation. The electronic structure of the catalysts was deeply modified to exhibit excellent EG oxidation performance and high C1 path selectivity in alkaline media^[8,12,13], which can more effectively promote the complete oxidation of EG. The synergistic effect between different metals can improve the electronic structure and surface properties of the catalyst, enhance the adsorption and activation ability of EG, and improve the catalytic activity and selectivity. For example, Ni-cobalt-manganese ternary oxide catalysts show

Journal Name

excellent performance in the electrocatalytic oxidation of EG. with high catalytic activity and stability.10402949608,050008 particularly important to select an efficient catalyst for the electrocatalytic oxidation of EG. Studies have shown that transition metal electrocatalysts have a good application prospect in EG oxidation reaction, and the transition metal catalysts reviewed in this work are not only limited to the conventional Fe, Co, Ni based catalyst^[14], but also include Pt, Pd, $\ensuremath{\mathsf{Ir}^{[15\text{-}20]}}$ and other noble metal catalysts. These transition metal catalysts have obvious advantages in the reaction process, which are mainly manifested in the following aspects: High catalytic activity, transition metals have a variety of variable oxidation states and electronic configurations^[21-23], which enables them to form specific chemical bonds with EG molecules and reaction intermediates, so as to effectively promote the oxidation reaction. For example, by changing the electronic structure of the transition metal, it can tweak its adsorption capacity to EG and the reaction active site, improving the catalytic efficiency. In some transition metal catalysts, there is a synergistic effect between different metals. For example, in binary or multicomponent transition metal alloy catalysts, the interaction between different metal atoms can change the electronic structure and surface properties of the catalyst, enhance the adsorption and activation ability of EG, and thus improve the catalytic activity. In the electrocatalytic oxidation of EG, the unique electronic structure^[24] of the catalyst is the key factor to improve the catalytic activity. Its effects can be summarized in three aspects: (1) orbital hybridization forms new chemical bonds and active sites, which enables the atoms in the catalyst to form new chemical bonds and produce special electron distribution. These newly formed chemical bonds and unique electron distribution can be used as active sites to enhance the adsorption capacity of EG molecules and reaction intermediates, so as to optimize the reaction path and reduce the reaction energy barrier. (2) Due to electronegativity differences, electron transfer occurs in different elements, changing the electronic state of the metal, shifting the center of the d band, regulating the adsorption and desorption of the reactive species, and the resulting local charge distribution affects the adsorption and desorption process of the reactive species, promoting the reaction and avoiding side reactions; (3) Defects^[25] and interface structures in the catalyst cause the atomic coordination to be unsaturated, resulting in more active sites, promoting electron transport and interaction between different components, and synergistic enhancement of catalytic performance. Selective control of EG oxidation products can be achieved by judicious design of the structure and composition of transition metal catalysts. For example, the complete oxidation of EG to carbon dioxide and water can be promoted to achieve higher energy conversion efficiency; Or selectively produce glycolic acid, glyoxylic acid and other high-value chemicals to provide more options for chemical production. For example, Duan's^[8] research group constructed a Ni hydroxide base material loaded with Au atoms to achieve the oxidation of PET waste to obtain the high-value product glycolic acid. Compared with transition metal precious metal catalysts (such as Pt, etc.), transition metal non-precious

catalysts

Journal Name

metal catalysts^[26,27] (such as Ni, Co, Cu, etc.), have more abundant reserves on earth and relatively low prices, so nonprecious transition metal catalysts have obvious cost advantages in large-scale applications, but their performance is slightly inferior to that of precious metal catalysts. In order to develop more efficient electrocatalytic oxidation catalysts, appropriate modulation strategies can be chosen to regulate the electronic structure of the catalysts so as to improve the catalytic activity of the catalysts and further promote the marketing of the glycol electrocatalytic oxidation technology.

The catalytic activity, selectivity and stability of transition metal electrocatalysts for EG oxidation can be improved by designing and controlling the structure, composition and electronic properties of transition metal electrocatalysts. However, transition metal electrocatalysts still face many challenges in EG oxidation, such as the catalytic activity needs to be further improved, the stability and durability are insufficient, and the cost is high. It is of great importance to study the mechanism of transition metal electrocatalyst in EG oxidation and develop a new and efficient catalyst system to promote the practical application of direct alcohol fuel cells. Based on this, firstly, the oxidation mechanism of EG under alkaline condition was described in this work. Secondly, the synthesis methods and catalytic performance of the electrocatalysts used for glycol oxidation were described, and some problems existing in the current catalysts were described, which provided reference significance for further exploration of high performance electrocatalytic oxidation of glycol transition metal catalysts.

The essence of EG oxidation is that, under certain conditions, the C-H bond or carbon-carbon bond in the EG molecule breaks, reacts with the oxidising agent and loses electrons so that it is oxidised. During the oxidation process, functional groups such as hydroxyl (-OH) in glycol molecules can participate in the reaction, resulting in changes in its structure and the formation of various oxidation products. For the oxidation reaction of EG the earliest research was about its normal oxidation reaction^[28], but with the continuous exploration of the researchers, the research on the electrocatalytic oxidation reaction of EG has been developed rapidly, and nowadays the literature exists mostly about the electrocatalytic oxidation of EG. However, it does not mean that there is no difference between these two reactions. For the oxidation of EG^[29], an oxidant is usually required, such as potassium permanganate, oxygen, etc., and there are certain requirements for the reaction temperature, pressure and other conditions. The conditions for such oxidation reactions are relatively harsh, requiring a specific chemical environment and a high energy input. In contrast, electrochemical studies have traditionally focused more on the potential-current behavior on different catalysts as well as the oxidation products. The electrocatalytic oxidation reaction of EG, which is usually carried out in an electrochemical system, requires conditions such as electrodes, electrolytes, and an applied electric field.

The oxidation of EG occurs on the electrode surface by applying a voltage across the electrode. The reaction conditions are relatively mild and can be carried out at room temperature and pressure, and the rate and selectivity of the reaction can be controlled by adjusting parameters such as voltage and current. There is also a certain difference between the two in the

This journal is C The Royal Society of Chemistry 20xx

ARTICLE

2. EGOR reaction mechanism of transition metal

Journal Name

mechanism of the reaction, in the oxidation of EG reaction process is the oxidant directly with the chemical reaction of EG, through the capture of glycol molecules in the electron or hydrogen atom to achieve oxidation. During the reaction, the nature of the oxidant and the reaction environment have an important influence on the type and distribution of the oxidation products, while the electrochemical oxidation of EG process is that the EG molecule is firstly adsorbed on the surface of the electrode, and then under the action of the electric field, the active sites on the surface of the electrode interact with the EG, so that the EG loses its electrons and undergoes oxidation reaction. At the same time, the ions in the electrolyte will also participate in the reaction, playing the role of transferring charge and maintaining electroneutrality. In general, the electrochemical oxidation of EG has higher reaction rate and higher selectivity, so the study of electrochemical oxidation of EG is more relevant. The oxidation reactions of EG mentioned in this paper are electrochemical oxidation of EG.

In general, glycol oxidation is a chemical reaction process involving the breaking of chemical bonds and electron transfer. The reaction follows different reaction mechanisms in different media. The pathway of electrocatalytic oxidation of EG in alkaline medium is generally divided into two cases: a complete oxidation with multi-step dehydrogenation^[30], where the EG molecule (HOCH₂CH₂OH) undergoes adsorption on the electrode surface with the aid of the catalyst. Immediately thereafter, in an alkaline environment, the α -H of the EG molecule is affected by the neighboring hydroxyl group and its activity is enhanced, which is easily adsorbed by the active site on the catalyst surface and removes the α -H. At the same time, it combines with OH⁻ in solution to produce the intermediate in adsorbed state (HOCH₂CH(OH)O*), which releases an electron, which is the first step of the reaction for dehydrogenation. Subsequently, the intermediate is further dehydrogenated, and after a multi-step reaction, the carbon-carbon bond is broken. After the break, the hydroxyl group on one of the carbon atoms continues to dehydrogenate and reacts with OH- to format (HCOO⁻); the other carbon atom undergoes a similar process of dehydrogenation and combining with OH⁻ to produce format, which also continues to dehydrogenate and oxidize gradually to carbonate; in addition to the complete In addition to the complete oxidation path, there is also a partial oxidation path in which the carbon-carbon bond is not broken^[17]. EG is first dehydrogenated to produce glyoxal (OHC - CHO), which continues to react with OH-, undergoes further oxidation and addition reactions, and ultimately produces products such as glycolate (HOCH₂COO⁻) and oxalate. A variety of intermediates are generated during the reaction process, in addition to the intermediates in the adsorbed state (HOCH₂CH(OH)O*) and glyoxal mentioned earlier, there are also ethanol aldehydes (HOCH₂CHO), ethanoic acid (HOCH₂COOH), and glycolic acid (OHCCOOH), etc., which are generated at different stages of the reaction and can be transformed with each other through a series of redox reactions. In the electrocatalytic oxidation of EG in alkaline medium, the breaking of carbon-carbon bond is the decisive step of the whole reaction. Due to the large bond

View Article Online energy of the carbon-carbon bond, itsාbትሬትዮቭይግትይሮቲያንዊቆ

overcome a high energy barrier^[31], so it is relatively slow kinetically. At the same time, the type and nature of the catalyst have an important influence on the rate of carbon-carbon bond breaking. Some catalysts with special crystal structures and active sites can effectively reduce the activation energy of carbon-carbon bond breaking and thus accelerate the reaction rate. In acidic media, the concentration of protons (H⁺) is higher in the reaction system, which is significantly different from the reaction mechanism in alkaline media. After adsorption on the electrode surface, the EG molecule first undergoes dissociative adsorption in which the hydrogen atom on one of the hydroxyl groups detaches to form an intermediate in the adsorbed state (HOCH₂CH₂O^{*}) and releases a proton and an electron. Subsequently, the intermediate undergoes further dehydrogenation to produce glyoxal. Glyoxal continues to react with water in an acidic environment and undergoes a series of oxidation and dehydration processes to produce glycolic acid (HOCH₂COOH). Glycolic acid can also continue to oxidize, gradually removing hydrogen atoms and eventually producing carbon dioxide (CO₂). This is a more complex multi-step reaction process involving the transfer of multiple electrons and protons. The main components of the reaction process include intermediates in the adsorbed state (HOCH₂CH₂O*), glyoxal, glycolic acid, oxalic acid (HOOC - COOH), and carbon monoxide (CO). Among them, carbon monoxide is a very critical intermediate product, which has strong adsorption capacity and is easily adsorbed on the active sites on the catalyst surface to form strongly adsorbed COads species^[32], leading to the poisoning of the catalyst and thus inhibiting the further progress of the reaction. In addition, oxalic acid is also an important intermediate product in the reaction process, which can be generated by further oxidation of ethanoic acid and can also under certain conditions undergo decomposition reaction to generate carbon dioxide and other products. While in acidic media, there exist several views on the decisive speed step. One view is that the adsorption and desorption of carbon monoxide on the catalyst surface is the decisive step. Since carbon monoxide binds strongly to the active sites on the catalyst surface, its desorption needs to overcome a high energy barrier, so if carbon monoxide cannot be desorbed from the catalyst surface in time, it will occupy the active sites and hinder the subsequent reaction. Another view is that the further oxidation of ethanoic acid is a decisive step because it involves the breaking and formation of several chemical bonds and the reaction kinetics are relatively slow.

It is the fact that the electrocatalytic oxidation of EG has different reaction mechanisms in different media that also places requirements on the choice of catalyst. For example, the electrochemical oxidation of EG achieved on cobalt, Ni and iron electrodes cannot be carried out under acidic conditions, whereas precious metals are able to achieve the electrochemical oxidation of EG in both acidic and alkaline media. For non-precious metal Fe, Co and Ni electrodes acidic processes react and the adsorption process is blocked. Under acidic conditions, EG molecules need to be adsorbed to the

Journal Name

active sites on the electrode surface for subsequent oxidation reactions. However, the surfaces of cobalt, Ni, and iron electrodes tend to form oxide or hydroxide layers in acidic environments. These surface layers change the properties of the electrode surface, making it difficult for glycol molecules to be adsorbed effectively. For example, iron electrode surfaces may form a precipitated layer of iron hydroxide (Fe(OH)₃) in acidic solutions, preventing glycol molecules from coming into contact with active sites on the electrode surface because it is difficult for the glycol molecules to interact strongly enough with the covered active sites to initiate an oxidation reaction. Not only that, these metals (cobalt, Ni, and iron) have low electrode potentials in acidic environments and are susceptible to oxidation reactions, causing a change in the electron cloud density on the metal surface. This change causes the active sites on the metal surface (usually unsaturated coordination sites of some metal atoms) to be occupied by anions or water molecules in solution. The intermediates produced by the oxidation of EG are unstable under acidic conditions. In the case of aldehyde intermediates generated by EG oxidation, for example, under acidic conditions the aldehydes may undergo further side-reactions with hydrogen ions in solution, rather than following the desired oxidation pathway to carboxylic acids and other end products. In the case of precious metals, the above problems can be effectively avoided due to their stable nature. They effectively adsorb glycol molecules in both acidic and basic media. This is due to the fact that precious metals have suitable atomic spacing and electronic structure, and their surface atoms are able to form chemical bonds or stronger adsorption with functional groups^[33]in the EG molecule. For example, the atoms on the surface of the Pt electrode can combine with the hydroxyl group of the EG molecule through coordination bonding and other ways to fix the EG molecule on the surface of the electrode, and this adsorption can make the chemical bond of the EG molecule undergo a certain degree of polarization, reduce the activation energy required for the reaction, and create favorable conditions for subsequent oxidation reactions. The redox potential of the precious metal electrode is relatively stable in acidic and alkaline media, and will not be easily interfered by the media like cobalt, Ni and iron electrodes. Under acidic conditions, the noble metal electrode can provide a suitable electronic energy state, so that the electrons in the alcohols^[34] molecule can be smoothly transferred to the electrode, promoting the oxidation reaction. Under alkaline conditions, although the solution environment changes, the noble metal electrode can likewise maintain a stable electron transfer channel with the EG molecule by adjusting the electronic state on its surface. For example, in alkaline solution, the noble metal electrode can establish an effective electron transfer path with the EG anion to ensure that the oxidation reaction proceeds in an orderly manner. During the oxidation of EG, the noble metal electrode can also effectively guide the reaction intermediates to follow the

ARTICLE

expected oxidation path. Thus, the surface properties of the precious metal electrode stabilize the reaction intermediates h both acidic and alkaline media. The different breaking of the C-C bond of EG during the reaction process leads to the emergence of different oxidation pathways, which can be classified into C1 pathway and C2 pathway according to the difference of the products of electrocatalytic oxidation. The C1 pathway is a complete oxidation pathway, which indicates that EG is completely oxidized. The single carbon products of the electrocatalytic oxidation of EG include carbon dioxide and formic acid. When oxidized to CO₂, the carbon-hydrogen and carbon-carbon bonds in the molecule of EG in the electrocatalytic process are progressively broken by oxidation, and after a series of intermediate reaction steps, eventually all carbon atoms are completely oxidized and converted into products such as carbonates, and this process involves more electron transfer processes, which can release a total of 10 electrons. Fig. 1a shows two common oxidation products of EG oxidation. Different catalytic electrodes can result in different adsorbed species in the centre, leading to different cleavage positions of the C-C bonds to form different EG oxidation derivatives. In this process of electrocatalytic oxidation of EG achieved by Ni and Co electrodes as anode electrodes in the figure, the oxidation product of the C1 oxidation pathway is formic acid, and the whole process involves 6 electrons in the reaction. As for the C2 pathway, the figure shows that the carbon-carbon bond of the EG molecule is partially broken, not completely disconnected, and part of the carbon chain structure is retained. And this process involves 4 electron transfers in the whole reaction process, and its oxidation product is usually the generation of glycolate. During the reaction process EG is first adsorbed on the electrode surface, then the hydroxyl group is oxidized to form intermediate products such as ethanol aldehyde, which is further oxidized to produce ethanoate and oxalate etc. For this process, a lower degree of oxidation is required, which is more likely to occur under some specific catalysts and reaction conditions, but the selectivity of its oxidation products is lower. One of the C2 products, such as glycolic acid^[35], has a high application value in the chemical field and can be used as a raw material for the synthesis of other organic compounds, so the efficient oxidation of EG to glycolic acid can be focused on in the subsequent investigation process. Ma et al.[36] studied the influence of different catalysts on carbon-carbon bond cleavage using in-situ infrared and Raman spectroscopy, and used in-situ infrared absorption spectroscopy for real-time detection to illustrate the products and intermediates in the reaction process. On this basis, the EGOR catalytic activity of Co and Ni electrodes was further understood. Fig. 1b shows in-situ infrared spectra of Ni and Co electrodes in alkaline electrolyte at different potentials ranging from 0.40 to 1.70 V. Among them, 1580, 1380 and 1350 cm⁻¹ can be considered as the asymmetric stretching vibration of O-C-O format.

Fig. 2 (a) Preparation flowchart of NiVRu-LDHs NAs/NFs, Reproduced with permission. ³³Copyright 2023, John Wiley and Sons. (b) Preparation flowchart of RhCu nanomaterial, Reproduced with permission. ¹⁶Copyright 2021, John Wiley and Sons.

The simultaneous detection of signals in the 1580, 1350 and 1076 cm⁻¹ bands indicate the presence of glycolic acid, and the vibration signals in the 1580 and 1304 cm⁻¹ bands are considered to be the characteristic peak emergence response of oxalates. Therefore, based on the in-situ infrared test results, it is concluded that the oxidation reaction of EG on the surface of Co and Ni can produce formats, glycolates and oxalates. However, on the surface of Co electrode, the band intensity of 1076 cm⁻¹ band is significantly higher, indicating that EG is more easily oxidised to glycolic acid on the surface of Co electrode than Ni electrode, and the most probable oxidation path of different catalysts is further inferred. Therefore, the oxidation of EG will be easier to obtain the target product by reasonable regulation of the catalyst.

3. Synthesis method of transition metal catalyst

3.1 Hydrothermal/solvothermal synthesis strategies

The hydrothermal method is a widely used catalyst synthesis method, which can precisely control the structure, morphology and electronic state of electrocatalysts, and is helpful in the synthesis of materials with high catalytic active sites. In addition, by judicious design of reaction conditions and selection of suitable precursors, electrocatalysts with unique structures^[37], such as nanostructures^[38] and porous structures^[39], can be prepared, which can provide more active sites and increase the contact area between the reactants and the catalyst, thereby improving the efficiency of the catalytic reaction. For example, electrocatalysts with morphologies such as nanowires and nanosheets^[40] synthesised by hydrothermal methods show excellent catalytic activity in electrocatalytic processes such as hydrogen evolution reaction^[31], oxygen evolution reaction^[13,41] and other organic oxidation reactions. In addition, the preparation method can precisely regulate the morphology^[42] of the electrocatalyst by changing the temperature, pressure, reaction time, reactant concentration and other conditions during the synthesis process^[43]. Different morphologies also have different specific surface areas, numbers of exposed active sites and electron transport properties, and thus can meet the needs of different electrocatalytic reactions. On the other hand, in the hydrothermal reaction system, it is easy to introduce other elements or compounds for doping and modification of the electrocatalysts, so as to improve the activity of the catalysts. At present, this preparation method is commonly used for electrocatalysts for EG oxidation. For example, Qian et al.[33] synthesized. NiVRu-LDHs NAs/NF electrode by a simple

Fig. 3 (a) Preparation flow chart of Pd/A-MnO₂, Reproduced with permission. ⁴⁴Copyright 2023, John Wiley and Sons. (b) Composite diagram of NiSe₂, Reproduced with permission. ⁴⁵Copyright 2023, John Wiley and Sons.

one-step hydrothermal method. The detailed synthesis process is shown in Fig. 2a. Ni(NO₃)₂-6H₂O, VCl₃ and urea were dissolved in 30 mL of deionised water, and then RuCl₃ aqueous solution was added to finally obtain the mixed solution at 120°C for 12 hours of hydrothermal reaction to obtain the NiVRu-LDHs electrode material grown on Ni foam. Qiao et al. also used a simple hydrothermal synthesis method to convert CuO into RhCu nano capsules. As shown in Fig. 2b, 2 mL of RuCl₂ solution was added to the Cu₂O nano cube suspension^[16]. The mixture was then reacted at 150°C for 6 hours in a Teflon-lined stainlesssteel autoclave. After cooling, the solid products were collected by centrifugation and washing with deionised water, and finally the RhCu nano cellular electrode material was obtained.

3.2 Wet chemical synthesis strategy

Wet chemical synthesis of electrocatalysts is also an important method of preparation, the conversion of reactants into target electrocatalysts through chemical reactions in a solution system. The core principle is to control the reaction conditions by using the interactions and chemical reactions of ions and molecules in the solution to regulate the composition, structure and performance of the electrocatalysts, e.g., by controlling the parameters such as the reaction temperature, concentration, and pH, the reaction rate, product morphology, and degree of crystallinity can be affected. In the actual synthesis process, appropriate metal salts, metal oxides, organic compounds, etc. can be selected as the reactants according to the composition and structure of the target electrocatalysts, and the specific ratio can be determined. These reactants usually need to be dissolved in suitable solvents to form a homogeneous reaction solution by heating and other methods. As shown in Fig. 3a, Wang et al^[44]. successfully prepared Pd/A-MnO₂ by a two-step wet chemical strategy, reduced KMnO₄ into amorphous MnO₂ using NaH₂PO₂ as a reducing agent, and further introduced ultrafine Pd nanoparticles onto amorphous MnO₂ nanosheets by hydrothermal method. However, the abundant defects on the surface of the amorphous MnO2 nanosheets increased the loading amount of Pd nanoparticles, enhanced the formation of Pd nanoparticles and further improved the catalytic activity of the electrodes. Li et al.^[45] chose the types and proportions of solvents and surfactants as variables to prepare a series of Ni selenide samples with different morphologies, which further proved that the structure can be regulated by wet chemistry. As shown in Fig. 3b, Ni(acac)₂, Se powder and OAM were dissolved in a DDT vial and the resulting solution was then reacted with appropriate amounts of OAM, ODE and OA in a three-necked flask at 230 230°C for 20 minutes to obtain the final sample. Different OAM/ODE/OA ratios were adjusted to obtain NiSe₂ with different geometries.

Fig. 4 (a) Flowchart of preparation of NiCu/NF, Reproduced with permission. ⁴⁶Copyright 2024, American Chemical Society. (b) Composite view of NiS @CC, Reproduced with permission. ⁴⁷Copyright 2024, Springer Nature.

3.3 Electrochemical synthesis strategy

Published on 12 apríl 2025. Downloaded by Fail Open on 7.5.2025 08:18:28

Electrochemical synthesis methods mainly include electrodeposition method, anodic oxidation method, cathode reduction method, electrochemical etching method, etc., with different focuses, for example, electrodeposition method is in the electrolyte containing metal ions, through the application of external electric field, so that metal ions on the surface of the electrode reduction reaction and deposition to form a catalyst, and for the synthesis of glycol oxidation catalyst, a suitable metal salt solution, such as cobalt salt, Ni salt, etc., can be selected to be electrodeposited on a specific electrode to form a specific catalyst. During the synthesis process, the loading, morphology and structure of the catalyst were regulated by controlling the deposition time, potential or current. For example, by changing the time of electrodeposition, the coverage of the catalyst on the electrode surface can be controlled, by changing the potential, the crystallinity and particle size of the catalyst can be influenced, etc. Electrodeposition is also the electrochemical synthesis method that we mainly discuss. Duan et al. chose the electrochemical product method to load Au atoms onto the substrate. For example, as shown in Fig. 4a, Kang et al.^[46] also deposited Cu on NiCu/NF electrodes by cathodic electrodeposition, and the electrode with the best performance was obtained with a suitable deposition time. Then, the active EGOR catalyst is formed after a reconstruction process (R-NiCu/NF), which is scanned by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). As shown in Fig. 4b, Li et al.^[47] prepared a series of Ni sulfidic based heterogeneous interfaces at different potentials by electrodeposition. The electrodes prepared by this method also showed excellent catalytic performance in the EGOR reaction.

3.4 Pyrolytic synthesis strategy

Electrocatalysts with high activity can be synthesized through in-depth study of the pyrolysis mechanism of the target catalysts, selection of suitable precursors and optimization of the pyrolysis conditions. In the pyrolysis strategy, high temperature can promote the reduction and crystallization of metal ions to form metal nanoparticles with specific structures. Fig. 5a shows that Wang et al^[48]. further modified the catalytic material by pyrolysis based on the synthesis of Ni(II)/MSC-ZIF-67. First, Ni(II)/MSC-ZIF-67 electrode material was synthesised by wet chemistry, and then Ni(II)/MSC-ZIF-67 was heated in air at a heating rate of 5°C min⁻¹ at 350°C for 1 h to obtain OMSNi1-Co₃O₄. NaH₂PO₂ and OMS-Ni1-Co₃O₄ were placed in the upstream and downstream of the porcelain boat, respectively, and then heated at 300°C for 1 h to finally obtain the phosphating catalytic electrode OMS-Ni1-CoP. The results show that phosphide has a good application prospect as a catalyst for EG oxidation. As shown in Fig. 5b, Zhang et al.^[49] further phosphide the CoNi-LDH electrode material by the pyrolysis method, and finally obtained the Co₂P-Ni₂P/CC catalyst by reacting in a tube furnace for 4 minutes. The CoNi_{0.25}(OH)₂/NF prepared by the Zhou^[7] team also has excellent EG oxidation performance. Based on the synthesis of CoNi_{0.25}(OH)₂/NF, NaH₂PO₂ was used as the phosphorus source, and the final catalyst was obtained by phosphating at 300°C for 2 hours in a tube furnace. Different synthesis strategies affect the microstructure of electrocatalyst to some extent. A comparison of the different synthesis strategies is shown in Table 1. The different microstructure of the catalyst will also affect the performance of the electrocatalytic oxidation of EG, including crystal structure, surface morphology, particle size, alloying and doping, interface structure and so on. In the crystal structure, the change of lattice parameters, such as the expansion or contraction caused by alloy formation, and different crystal phase states, will affect the exposure of active sites and electron transport, optimize the adsorption energy of intermediate products, and improve the catalytic performance; In terms of surface morphology, high specific surface area can provide more reaction sites, roughness increases the contact

Table 1. Comparison between different synthetic strategies used as catalysts for electrochemical oxidation of EG.

Synthesis strategies	Synthesis strategies Principle		Applicable material Advantages		Limitations	
Hydrothermal/solvot hermal synthesis strategies	Hydrothermal synthesis method refers to the method of synthesis by chemical reaction of substances in aqueous solution under closed conditions.	Hydrothermal synthesis reactor	Metal oxides, hydroxides, etc	 Directly prepare good crystalline powder, Avoid volatilization and pollution of the reactants; The shape and size of the product can be controlled. 	 The pressure resistance of the reaction equipment is high; The reaction process requires high temperature and pressure; 	
Wet chemical synthesis strategy	The catalyst was synthesized by the interaction and chemical reaction of ions and molecules in the solution.	Oil bath pots, water bath pots and other equipment	Metal nanomaterials, metal oxides, metal hydroxides, alloys, etc	 Morphology and size of the product can be accurately controlled; Reaction conditions are relatively mild, Suitable for mass synthesis of two-dimensional metal nanomaterials and other electrocatalysts. 	 The reaction process may need to use a large number of solvents and chemical reagents, and the subsequent separation and purification process is more complicated; The control requirements for reaction conditions are high. 	
Electrochemical synthesis strategy	The principle of electrochemical synthesis revolves around REDOX reaction, ion migration and Nernst equation.	Electrochemical reaction system: electrolytic cell electrode Electrochemical- workstation	Metal nanocrystals, metal elements or alloys	 The morphology, size and structure of the catalyst can be precisely controlled; Synthesis process is carried out at normal temperature and pressure; 	 The synthesis speed is relatively slow; The selection and treatment of electrolyte requires certain technology. 	
Pyrolytic synthesis strategy	The key method of preparing high performance electrocatalyst is to precisely control each link of pyrolysis process.	Tubular furnace Quartz boat ceramic crucible	Carbon-based materials, metal-carbon composite materials, metal phosphide, etc	 Can achieve heteroatom doping, Relatively simple, easy to operate, 	 The pyrolysis process requires precise control of temperature, time and other parameters, Some by-products or impurities may be produced. 	

This journal is © The Royal Society of Chemistry 20xx

ARTICLE

Published on 12 apríl 2025. Downloaded by Fail Open on 7.5.2025 08:18:28

area and promotes the transport of reactants, and surface defects as the active site reduce the activation energy of the reaction. In terms of particle size, nano-sized particles have the advantages of high active site and short transport distance, and uniform size distribution ensures consistent catalytic activity. The synergistic effect of alloying and doping and the regulation of electronic structure can optimize the adsorption energy of intermediates and accelerate the reaction process through the effects of strain ligand and double function. In the interfacial structure, the good metal-carrier interfacial interaction enhances the stability and electron transport, and the special environment of the heterostructure interface promotes the adsorption and activation of reactants. In the following discussion, the relationship between the electronic structure of the catalyst and electrocatalytic EG was discussed.

4. Application of transition metal catalyst in EGOR

4.1 Non-precious metal catalyst

The application of transition metal catalyst in the electrocatalysis of EG has a good application prospect^[50], and the reserves of non-noble metals (such as Ni, cobalt, manganese, etc.) are relatively abundant in nature, and the acquisition and processing costs are low. Therefore, nonprecious metal electrocatalysts have obvious economic advantages in large-scale applications, which can reduce the cost of catalysts in the oxidation process of EG, and are of great significance to improve the economic benefits of related industries. In addition, catalysts with high catalytic activity can be obtained by appropriate design and control. For example, by controlling the crystalline phase, morphology and size of nonprecious metal oxides, more active sites can be exposed to improve the catalytic activity in EG oxidation. However, some intermediates or impurities may be formed during the oxidation of EG. Compared with precious metal catalysts, non-precious metal electrocatalysts have relatively strong anti-poisoning ability to some impurities or intermediates that may lead to catalyst poisoning, and can maintain better catalytic activity. The research on selective electrooxidation of small alcohols^{[51-} ^{53]} with abundant and cheap iron group metal (Fe, Co and Ni) based catalysts is noteworthy. Catalysis based on iron group metals (Fe, Co and Ni) often converts to the corresponding acidic products with high FE.

4.1.1 Ni based catalyst

The Ni-based catalyst has a unique electronic structure, and the unfilled d-orbital can form a strong chemical bond with the reactant molecules (such as EG), thereby promoting the reaction. In the oxidation reaction, the Ni-based catalyst can also effectively activate the C-H and O-H bonds in the EG

molecule, making it easier to oxidise. Liu et al.^[54] synthesised Co-Ni₃N/CC nanosheets supported on Catalon 39 Coth 05 ASOB bifunctional electrocatalyst, the electrode material has a stable crystal structure and excellent EGOR activity. LSV (Fig. 6a) test results show that the Co-Ni $_3$ N/CC catalytic electrode gives priority to low voltage to achieve high current density in the actual reaction process. It has obvious advantages over OER. Fig. 6b shows that the current density achieved by the EGOR reaction at the same voltage is much higher than that of the OER reaction. Fig. 6c reflects the faster reaction kinetics in EGOR. At a low cell voltage of 1.46 V, the current density of the EGOR anode and hydrogen evolution cathode cell can reach 60 mA cm⁻². In situ Raman technique was used to monitor EGOR and indicated that the main active species was NiOOH. At the same time, the DFT calculation results show that Co-Ni₃N/CC has better adsorption energy and Gibbs free energy change for EGOR. The adsorption capacity of the catalytic electrode for EG is not only influenced by the composition of the material, but also by the structure of the material. For example, Li's^[45] research group prepared Ni selenide nanostructures of different shapes and crystalline phases. Due to the different original feed ratio in the synthesis process, the crystal structure is different, which leads to the different performance of the electrocatalytic oxidation of EG. Compared with the spherical structure and beam structure, the branch structure electrode has higher conductivity and lower charge transfer resistance. Not only that, such a high surface coverage of the active species also greatly improves the catalytic performance of the catalyst. In Fig. 6d, the existence of the orthorhombic system was first confirmed by high-resolution transmission electron microscope (HRTEM) and electron diffraction analysis. The details of the orange square region and its corresponding power spectrum reveal the presence of the NiSe₂ cubic lattice in this sample. The electron energy loss spectroscopy (EELS) chemical composition map (Fig. 6e) shows that Ni and Se are uniformly distributed within each particle. As shown in Fig. 6f, the LSV results show that the branched NiSe2 nanoparticles have the best performance, with a current density of up to 96 mA cm⁻² in the electrolyte containing 1 M KOH and 1 M EG at 1.6 V. Fig. 6g shows that the electrode material exhibits higher catalytic activity in EGOR compared to OER in a three-electrode system. In the same year, Liu et al.^[55] synthesised the Ni(OH)₂/NF electrocatalyst. Fig. 7a XRD test results. The successful synthesis of the catalytic electrode shows that the catalyst has excellent electrocatalytic activity and achieves high current density at medium potential, as shown in Fig. 7b and Fig. 7c shows that the catalyst has high FE of format (93.2%) and selectivity (96%) at high current density. The reaction pathway and mechanism of EG oxidation were investigated by combining in situ electrochemical Raman spectroscopy, in situ electrochemical Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. It was further demonstrated that the

large amount of NiOOH substance formed in situ was the actual

active substance for the EG reaction, thus revealing effective

EGOR activity.

ARTICLE

Fig.5 (a) Preparation flow chart of Ni (II) /MSC-ZIF-67, Reproduced with permission. ⁴⁸Copyright 2022, Elsevier. (b) Composite diagram of Co₂P-Ni₂P/CC, Reproduced with permission. ⁴⁹Copyright 2024, John Wiley and Sons.

4 .1.2 Co based catalyst

The cobalt-based catalyst also has high catalytic activity for the oxidation of EG, which can effectively promote the chemical bond cleavage and oxidation reaction in EG molecules under relatively low temperature and pressure conditions, and improve the reaction rate and efficiency. Ma et al.[36] investigated the oxidation performance of EG on a Co electrode. The catalytic activity of the electrode was investigated by varying the concentration of EG in the electrolyte. For Co and Ni electrodes, the oxidation reaction of EG occurs in alkaline electrolyte, and the reactive sites are usually high valence metal sites, which means that EGOR can easily occur at Co4+ and Ni3+ sites (or CoO₂ and NiOOH sites). Figures 7d-7f show the electrochemical impedance diagrams of the three metals, and when the applied potential reaches 1.60, 1.40, and 1.45 V, respectively, the Fe, Co, and Ni electrodes appear to be clearly semicircular, which indicates that EG oxidation reaction starts to take place. At the occurrence of EGOR, the Co electrode has the lowest reaction potential, and the evolution of the reaction kinetics and phase angle with frequency is consistent with the description of the g-bode phase diagram in Fig. 7, where the decrease of the peak intensity at higher potentials indicates that the electrode facilitates the acceleration of the interfacial charge transfer. When the potential exceeded 1.40 V, the peak position of the Co electrode gradually shifted to higher frequencies and the intensity was significantly weakened, indicating that the surface metal oxidation was accelerated, which led to the rapid oxidation of EG. Thus, these results further confirm that high valence species are essential for fast EGOR. On this basis, a cobalt-Ni metal composite, Co-Ni/CP^[56], was reported, in which high-valent CoOOH species were generated during the initial oxidation process and acted as the main active center for EG oxidation and could be used as a

highly active bifunctional catalyst. Meanwhile, the Ni site has a promoting and stabilizing effect on the active species Co ~ (3+), which enhances the reaction rate of EGOR, and Fig. 7h also reveals the excellent catalytic performance of this catalyst compared to OER. Not only that, Fig. 7i shows that high conversion (>86%) and selectivity (96.3%) can be achieved at high current density (160 mA cm⁻²) for this electrode, which is almost the best among the reported non-precious metal catalysts, providing valuable insights into the mechanism of EGOR with non-precious catalysts. Zhang's [7] research team synthesised a series of Co and Ni phosphides supported on Ni foam (NF) by serial EG properties. In situ electrochemical Raman spectroscopy and synchrotron radiation spectroscopy verified the actual active species in this reaction. As shown in (Fig. 8a) EDS, the three elements are evenly distributed. In the CoNi_{0.25}P material, Ni₂P particles and CoP particles combine to form a CoP-Ni₂P heterojunction, which regulates the electronic structure of the catalyst. The electron movement between the interfaces facilitates the conversion of phosphide into the active material of EG electrocatalytic oxidation, and at the same time reduces the charge transfer resistance to accelerates the electron transport rate and improves the catalytic activity of the catalyst^[57]. Fig. 8b shows that the CoP-Ni₂P catalyst has excellent catalytic activity in an electrolyte containing 0.3 M EG and 1 M KOH, and the initial potential moves to a lower potential (1.22-1.33 V vs. RHE) compared to OER. As shown in Fig. 8c, CoNi_{0.25}P/NF achieves 91.7% FE format and 4.1 mmol cm⁻² h⁻¹ format yield at commercially relevant current density of ~360 mA cm⁻² at 1.8 V (vs. RHE). In the reaction process, the active material is a high valence metal species and there is a surface reconstruction phenomenon similar to the OER reaction, which is also confirmed by in situ Raman spectroscopy. As shown in Fig. 8d, the $CoNi_{0.25}P$ material evolved into a CoNi_{0.25}P/CoNi_{0.25}O_x(OH)_y core-shell structure at the cathode, which was rapidly oxidised at the anode and reconstituted into low crystallinity CoNi_{0.25}P/CoNi_{0.25}O_x(OH)_v to achieve efficient oxidation of EG.

Page 12 of 31

 100 nm
 attraction
 turnet
 turnet</t

4.1.3 Fe based catalyst

There are not many studies on the electrooxidation of EG for iron-based catalysts, but it has been studied by many researchers due to its low cost. The alloy of metallic iron and other metals is a good control strategy, and the unique interfacial structure regulates the electronic structure of the catalyst, so that the catalyst can efficiently electrocatalyst the oxidation of EG to produce efficient oxidation products. However, it is worth noting that it still has very big advantages over other non-precious metals except Ni and Co-based catalysts. The iron-based catalyst has a variety of variable oxidation states, which can participate in the reaction process and promote the chemical bond breaking and oxidation reaction in EG molecules. Sun et al.^[58] found that Fe_3O_4 is highly performance. Experiments showed that when Fe₃O₄ acts as a catalyst, the oxygen atoms in EG can combine with Fe²⁺ and Fe³⁺ combine harvesters, making the carbon atoms on the carbonyl group more electron deficient, making it easier for the oxygen atoms in EG to attack the carbonyl group and form an unstable transition. In the same year, Zhang et al.^[59] found that the PdFe/N-CNT mixed catalysts can be employed to electrocatalyst the conversion of PET waste to valuable formats and hydrogen efficiently and selectively. As shown in Fig. 8e and 8f, the scanning electron microscope (SEM) and transmission electron microscope (TEM) images of PdFe/N-CNT respectively reveal that many well-dispersed spherical nanoparticles are uniformly fixed on the surface of the N-CNT networks. Fig. 8g also shows the elements uniformly dispersed on the substrate material, demonstrating the successful synthesis of the catalyst. Fig. 8h shows that in the mixed solution of 1 M KOH and 0.3 M EG, the

Journal Name

catalyst exhibits significant electrocatalytic oxidation activity towards EG in alkaline medium. When the current density reaches 10 mA cm⁻², only 1.22 V is required and 86.7% format selectivity and 87% Faraday efficiency can be achieved. The PdFe/N-CNT catalyst also showed a lower Tafel slope (64.3 mV dec⁻¹), indicating that the reaction kinetics of the PdFe/N-CNT catalyst was better for EGOR. DFT calculation shows that, as shown in Fig. 8i, the Fe inclusion in PdFe/N-CNT helps to regulate the electronic environment and improve the charge distribution around the Pd atoms, which contributes to the enhanced electrocatalytic activity of PdFe/NCNT, which has an important effect on the adsorption of EG* and OH* on the catalyst surface and the performance of EGOR. The adsorption energies of EG* and OH*on the catalyst surface and the performance of EGOR. The adsorption energies of EG* and OH* on PdFe/N-CNTs and Pd/N-CNTs were calculated based on the optimised adsorption model, which further explained the

dominant role of Fe atom. Lei's^[60]group continued to study the oxidation activity of Fe-based catalyst on EG and Constructed. As shown in Fig. 9a and 9b, Fe atoms were oxidized after electrochemical tuning and their valence states were increased from the original 0 and +2 to +3. In addition, the electrochemical surface area (ECSA) was increased by 86% after the introduction of Fe atoms. As shown in Fig. 9c, suggesting that the presence of Fe effectively enhanced the activity of the catalyst. From the analysis, it can be seen that ET-Pt-Fe has the highest current density and the slowest decay rate. This is because the D-band centre of Pt is shifted down by compressive strain, thereby weakening the adsorption of CO on ET-Pt-Fe and improving its CO oxidation capacity. Fig. 9d further illustrates the stability of the material. After the reaction, Pt/C and PT-Fe decay rapidly to 0.84 A mg/cm² and 0.04 A mg/cm² while ET-Pt-Fe still has a retention rate of 29.1% after 66 hours.

Fig.7 (a) XRD pattern of Ni(OH)₂/NF, (b) LSV curve in EGOR reaction, (c) LSV curve, Reproduced with permission. ⁵⁵Copyright 2023, Elsevier. (d) The electrochemical impedance spectra of Fe electrodes in 1M NaOH with 1 M EG at different potentials, (e) The electrochemical impedance spectra of Co electrodes in 1 M NaOH with 1 M EG at different potentials and (f) he electrochemical impedance spectra of Ni electrodes in 1 M NaOH with 1 M EG at different potentials and (g) the corresponding Bode phase diagram of Co, Reproduced with permission. ³⁶Copyright 2023, Elsevier. (h) LSV curves for EGOR, (i) Conversion rates (EG) and selectivity (GA) for Co/CP, Ni/CP and Co-Ni/CP. Co-Ni/CP had the highest EG conversion (96.3%) and GA selectivity (70.6%), Reproduced with permission. ⁵⁶Copyright 2024, John Wiley and Sons.

Page 14 of 31

Fig. 8 (a) EDX element map of CoNi_{0.25}P, (b) LSV curve of CoNi_{0.25}P in EGOR reaction, (c) FE and formic acid productivity of CoNi_{0.25}P/NF at different potentials, (d) Schematic diagram of the structural evolution of CoNi_{0.25}P catalyst under reaction conditions, Reproduced with permission. ⁷Copyright 2021, Springer nature. (e) HRTEM image of PdFe/N-CNT, (f) HRTEM image of PdFe/N-CNT, (f) Mapping of Pd, Fe, N and C corresponding elements of PdFe/N-CNT (h) LSV graph of EGOR of PdFe/N-CNT, (i) Free energy of EG on PdFe/N-CNT catalyst, Reproduced with permission. ⁵⁹Copyright 2024, Royal Society of Chemistry.

4.1.4 Other electrocatalysts

In addition to Ni, Co and Fe based catalysts, the catalytic activity of Cu based catalysts for organic oxidation was already investigated. Wang et al.^[61] found that the CuO NW electrode has high catalytic activity for EG oxidation, achieving 86.6% format product selectivity and 88% EG conversion Faraday efficiency. The results of product analysis and DFT calculation show that the optimal reaction pathway is the formation of glyoxal intermediates and formic acid by C-C bond cleavage. As

shown in Fig. 10a, SEM images show that CuO nanowires grow uniformly on the surface of the Cu substrate, and the structure of the annealed sample becomes curved and rough, which allows more active area to participate in the reaction during the actual reaction. TEM images further showed that the treated nanowires had a coarser structure, and the lattice spacing confirmed the successful conversion of Cu hydroxide to Cu oxide. In Fig. 10b, the voltametric characteristic curve shows that the Cu-based catalyst has a relatively low initial oxidation potential in PET hydrolysates. At a potential of 1.38 V, the current density of the EGOR is 10 mA cm⁻². Fig. 10c shows that the CuO NW-200 °C electrode has a low Tafel slope of 96

14 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Journal Name

mV/dec⁻¹ and an initial potential of 1.26 V, indicating excellent electrocatalytic activity and a fast reaction rate towards EGOR. The products in the reaction process were monitored and it was found that the EG conversion rate reached 94%, as shown in Fig. 10d and 10e. The reason why the Faraday efficiency of the product does not reach 100% is mainly due to the occurrence of format mineralisation during electrolysis. However, this does not affect the product selectivity of the Cu-based catalysts. To further confirm the selectivity of the catalyst, the possible intermediates and products of the reaction were electrolysed at different potentials and determined by high performance liquid chromatography (HPLC). Fig. 10f Cu-based nanowire electrode has format products >80% at an applied potential of <1.6V, but the Faraday efficiency of formic acid production decreases significantly when the applied electrolytic potential is 1.66V. This is due to deep oxidation of format or water oxidation but does not affect the highly selective oxidation of the by the based catalysts. More than just Cu-based catalysts, Wang's.^[44] team reported a catalyst based on amorphous MnO₂, and Fig. 10g and 10h show the successful synthesis of this electrode material. For EGOR, Mn-OH_{ads} species formed on a-MnO₂ can remove CO_{ads}, thereby improving charge transfer and stability. At the same amorphous MnO₂ is conducive to the regulation of electronic structure. This is because the interaction between Pd and a-MnO₂ causes Pd ions to lose electrons to form a hypervalent state species, and this change in electronic structure will lead to the reduction of the activation barrier of EGOR reaction, thus obtaining excellent EG electrocatalytic oxidation performance.

Fig. 9 (a) HRTEM image of ET-Pt-Fe, (b) XPS image of Fe element, (c) from left to right: There are three different Fe vacancies on the surface of Fe_2O_3 (112) (yellow, red, silver and purple circles represent Fe atom, O atom, Pt atom and Fe vacancy respectively), the adsorption energy of Pt atom on Fe_2O_3 (112) surface with Fe3+ vacancy, the charge density difference of Pt atom on Fe_2O_3 (112) crystal surface, Fe_2O_3 three adsorption sites on the (112) crystal plane, the adsorption energy of Pt atoms on the surface of Fe_2O_3 (112), the charge density difference of Pt atoms adsorbed on the surface of Fe_2O_3 (112) ,(d) Pt/C, Pt-Fe and ET-Pt-Fe in solution at 60 mV s⁻¹ CV curve, Reproduced with permission. ⁶⁰Copyright 2024, Royal Society of Chemistry.

Page 16 of 31

Journal Name

Fig. 10 (a) SEM image (top left and bottom left) of Cu(OH)₂ NW and TEM(top right)HRTEM image of CuO NW at -200 °C(bottom right), (b) LSV curve, (c) of Cu(OH)₂ and CuO NW electrodes at a potential of 1.40 V In the mixture of 0.1 M KOH with EG, the curve of the current time and charge accumulation time of electrolysis at 1.46 V, (e) the corresponding EG conversion rate, Faraday efficiency and format yield, (f) the Faraday efficiency of format on different electrodes at different electrolytic potentials, Reproduced with permission. ⁶¹Copyright 2022, American Chemical Society. (g) HRTEM image, (h) Corresponding element mapping diagram of Pd/a-MnO₂, (i) Comparison diagram of catalyst durability curve in EGOR reaction, the illustration is a current-time chrono ampere-graph of Pd/a-MnO₂, Pd/ C-MnO₂, Pd and Pt/C for 4000 s at 0.8 V in 1 M KOH with 0.6 M EG, Reproduced with permission. ⁴⁴Copyright 2023, John Wiley and Sons.

As shown in Fig. 10i, after 100 cycles, it is observed that the current density of Pt/C decreases significantly, and the current density of Pd nanoparticles decreases sharply. The decrease in current density may be due to the presence of toxic species and intermediates, resulting in a decrease in active centers. It was found that Pd/a-MnO₂ decay rate was relatively slow, which also confirmed that the presence of MnO_2 reduced the adsorption of toxic species and intermediates on the catalyst surface, thus improving the stability of the catalyst.

4.2 Precious metal catalyst

It is well known that the catalytic activity of non-precious metal catalysts is relatively low, but in recent years, the research on non-precious metal catalysts has made continuous progress, and the activity of some new non-precious metal catalysts has been gradually improved. Carbide, nitride, sulfide non-precious metal catalysts can also show certain catalytic activity under specific conditions. This is due to the scarcity and high value of the precious metals themselves, and their high preparation cost, which limits the extensive use of precious metal catalysts in large-scale industrial applications, so vigorous efforts have been made to develop more abundant non-precious metal catalysts for EG electrocatalytic oxidation reactions. However, the high activity of noble metals in the electrochemical oxidation reaction of EG is undeniable. For example, the d electron orbitals of noble metals, such as Pt and Pd, are not filled, and it is easy to adsorb reactants on the surface, and the strength of adsorption is moderate, which is conducive to the formation of the intermediate 'active compounds', and it is able to promote the electrocatalytic oxidation of EG more efficiently. Secondly, the precious metal is easier to adsorb reactants on the surface than the other metals. Secondly, compared with non-precious metals, noble metals have higher selectivity,

Fig. 11 (a) CV of Pt (+0.6 \rightarrow -0.3)/Au, Pt and Au electrodes in 0.6 M NaOH with 0.1 M glycol at a scanning rate of 60 mv s⁻¹, Reproduced with permission. ⁶³Copyright 2010, Elsevier. (b) HRTEM images of PtCu/Pd₇₇Cu core-shell TDNs, (c) CV curves of different catalysts at 60 mV/s scanning rate in the electrolyte, (d) ECSA histogram of different catalysts, (e) I-t curves of different catalysts in electrolyte solution at 1.0 M KOH with 1.0 M EG, Reproduced with permission. ⁶⁴Copyright 2022, American Chemical Society. (f) HAADF-STEM images of Pt/Ni(OH)₂-3 electrocatalysts, (g) EGOR properties of different samples, (h) and (i) properties of other elements, Reproduced with permission. ⁶⁵Copyright 2024, John Wiley and Sons.

which can more effectively control the reaction in the direction of the target product and reduce the occurrence of side reactions. Therefore, exploring how to efficiently utilize precious metal catalysts is also an issue of concern. Research into precious metal catalysts for EG oxidation initially focused on the elemental precious metals. Among them, Pt ,Pd^[62], Rh and other noble metals show some catalytic activity due to their unique electronic structure and chemical properties The unique electronic structure of precious metals has a key effect on the performance of electrocatalytic oxidation of EG, which is mainly reflected in three key aspects: D-band centre location, electron orbital hybridization and electron cloud distribution. The location of the centre of the d band plays an important role in the adsorption capacity and the detachment of the reaction intermediates. The degree of its proximity to the Fermi level determines the interaction strength between the precious metal atoms and the adsorbents. The appropriate location can promote the adsorption and activation of EG, ensure the

smooth progress of the reaction, and ensure the timely desorption of the intermediates to avoid its occupying the active site and hindering the subsequent reaction. Electron orbital hybridization affects the charge transfer between catalyst and reactant. Reasonable hybridization can optimize the electron cloud distribution and migration ability, accelerate the charge transfer and enhance the reaction activity. At the same time, in alloys or complexes, the synergies brought about by hybridization can further optimize the active site and enhance the catalytic performance. The electron cloud distribution affects the contact between the reactant and the catalyst active site through steric hindrance effect. Too dense electron cloud will prevent EG from approaching the active site and reduce the reaction rate, while appropriate electron cloud distribution can reduce the hindrance and increase the reaction rate. In addition, it also determines the selectivity of the reaction, and the different electron cloud distribution makes the catalyst have a preference for different reaction paths, and

ARTICLE

then affects the product distribution. However, research during this period has mainly focused on the simple noble metal catalyst and the understanding of its catalytic performance is still relatively preliminary. For example, using simple pt black as a catalyst, but the catalytic efficiency is relatively low and the stability needs to be improved. With the development of nanotechnology, researchers began to pay attention to the effect of the morphology of noble metal catalysts on their catalytic performance. By controlling the synthesis methods and conditions, noble metal nanomaterials with different morphologies, such as nanoparticles, nanorods, nanowires and nanosheets, have been prepared. These nanomaterials with different morphologies have different specific surface area, surface energy and electronic structure, which affect their catalytic performance for glycol oxidation. For example, the nanoflake Pt catalyst showed higher catalytic activity than the nanogranular Pt catalyst in EG oxidation due to its large specific surface area and special electronic structure. To further improve the performance of precious metal catalysts, researchers have begun alloying precious metals with other metals. Alloying can change the electronic structure and lattice parameters of precious metals, thereby improving their catalytic activity and stability. For example, the catalytic performance of Pt for EG oxidation has been improved by forming alloys with Cu, Ni and other metals to take advantage of the electronic and synergistic effects of Cu and Ni. In addition to binary ternary or even multi-component noble metal composite catalysts, multi-metal composite catalysts have gradually become the focus of research. These multi-metal composite catalysts can combine the advantages of multiple metals and further improve the catalytic performance of EG oxidation through synergistic effects. There are studies on the preparation of Pt-silver-Cu ternary nanosheet assembly, which shows excellent electrocatalytic performance in EG oxidation reaction, and the mass activity is far more than that of monometal and binary catalysts. The following is a summary of several precious metal catalysts.

4.2.1 Pt based catalyst

Jin et al.^[63] synthesized Pt-Au alloys, demonstrating the excellent performance of precious metal catalysts for EG oxidation. Pt is deposited on the surface of the polycrystalline Au electrode by electrodeposition, and the presence of Pt indeed improves the activity of the catalyst, because pt provides a large number of reaction sites for oxidation and thus increases the reaction rate. Previous work has shown that the peak current density of Pt electrode is higher than that of Au electrode in electrocatalytic oxidation of EG under alkaline conditions, and conversely, the peak current density of Pt electrode. As can be seen from Fig. 11a, due to the presence of Pt, the peak potential of

the electrode shifts negatively by about 0.46V, and the peak current density also increases signifieantly, 1000 feet indicates that Pt significantly improves the catalytic activity of the catalyst. Pu et al.^[64] constructed a core-shell structure catalyst for the oxidation reaction of EG. Among them, the structure of alloyed Pt-M nuclei can better regulate the electronic effect and show excellent stability in the electrocatalysis process. Fig. 11b is a typical TEM image of a PtCu/PtCu core-shell tripod, indicating that the catalyst has a stable tripod structure. After CV test, ECSA values of different catalysts were obtained (Fig. 11c and 11d). Compared with other samples, the samples after the introduction of Pt had a larger ECSA value. This may be due to the fact that the unique structure of the catalyst provides abundant active centres for the catalytic reaction, thus improving the catalytic activity. The

PtCu/PtCu core-shell tripod, indicating that the catalyst has a stable tripod structure. After CV test, ECSA values of different catalysts were obtained (Fig. 11c and 11d). Compared with other samples, the samples after the introduction of Pt had a larger ECSA value. This may be due to the fact that the unique structure of the catalyst provides abundant active centres for the catalytic reaction, thus improving the catalytic activity. The results of chrono current test show that the catalyst has excellent stability. The PtCu/Pt77Cu TDNs/C always maintains the highest current density for 7200 seconds (Fig. 11e), and retains the maximum specific activity of 8.9 mA/cm² and mass activity of 6.8 A mg⁻¹ after the reaction. Song^[65]research group synthesized a single-atom Pt1/Ni(OH)₂ electrocatalyst, which showed excellent electrocatalytic oxidation of EG by loading only one millionth of precious metal Pt. In order to confirm the existence of Pt, the AC HAADF-STEM test proved that Pt elements were uniformly distributed in the composite materials as atoms (Fig. 11f), and did not exist in the form of nanoparticles. The content of Pt was 0.8wt % by inductively coupled plasma mass spectrometry (ICP-MS). As shown in Fig. 11g, the current density of the sample impregnated for 3 h at voltages greater than 1.4 V was greater than 600 mA/cm², indicating excellent catalytic activity. In addition, the etching strategy is widely applicable to other Pt group metals as shown in Fig. 11h and Fig. 10i. The synthetic electrodes containing these noble metals all showed good performance in the oxidation of EG, but were slightly less effective than Pt.

4.2.2 Pd based catalyst

Ambriz-Pelaez et al.^[66] synthesized Pd-MoO_x Oscar nanomaterials for the oxidation of EG. The EGOR activity of the electrode material was tested with 0.3 M KOH as electrolyte, and the concentration of EG was changed from 0.1 to 1 M. The catalytic activity of different materials is shown in Fig. 12a, and a summary of the activity at different EG concentrations is shown in Fig. 12b. It can be seen that the combination of Pd and other materials can indeed improve the activity of the electrode, and appropriate EG concentration is also the key to improve the catalytic activity. Wei et al.[11] synthesized PdSb with rich defect structure to electrochemically convert PET EG into the high- value chemical glycolic acid. p-d orbital hybridization in PdSb

Journal Name

Fig. 12 (a) LSV curves of different electrode materials at 0.3 M KOH as electrolyte and 20 mV s⁻¹ as scanning rate activation region, (b) Relationship between current density and temperature of Pd/C and Pd-MoO_x materials, Reproduced with permission. ⁶⁶Copyright 2019, Elsevier. (c) HRTEM image of PdSb bimetal, (d) LSV curve in 0.1M EG with 1 M KOH solution (e) Selectivity of product in EGOR process, (f) Faraday efficiency of GA, Reproduced with permission. ¹¹Copyright 2024, Elsevier. (g) TEM diagram of Rh/RhOOH (h) Mass normalized CV and (i) ECSA curves of EGOR in N₂-saturated 1 M KOH + 1 M EG solution with different electrocatalysts at a scanning rate of 60 mV s⁻¹, Reproduced with permission. ⁶⁷Copyright 2022, John Wiley and Sons.

bimetal can promote the C-C bond break of EG and the rapid oxidation of -OH, thus enhancing the catalytic performance of PdSb bimetallic alkenes. High Angle toroidal dark field scanning HAADF-STEM images of PdSb, shown in Fig. 12c, demonstrate the successful preparation of ultra-thin 2D nanosheets. TEM images further confirmed the presence of perforation structures in the nanosheets, which contribute to the transport of electrons and increase catalytic activity. LSV (Fig. 12d) test results show that when the current density reaches 10 mA · cm⁻², the required potential of EGOR reaction is 0.9 V lower than that of OER. The activity of PdSb bimetal is obviously better than that of other catalysts. At the optimum potential of 0.76 V, the selection rate of glycolic acid is 92.0% (Fig. 12e), and the Faraday efficiency can reach 93.4% (Fig. 12f). These results all prove that PdSb has excellent properties in EGOR. In addition, the structure of PdSb remained basically unchanged after the reaction, which further indicated that the catalyst had excellent stability.

4.2.3 Rh based catalyst

As a new element of Pt group, Rh is widely used in various electrocatalysis fields due to its good catalytic activity and high inherent corrosion resistance. Mao et al.^[67] applied Rh metal to in-situ reconstruction of glycol-assisted seawater cracking. Due to its unique metal structure and Rh/RhOOH heterogeneous structure, Rh/RhOOH metal can perform well in HER, (overpotential 29 mV) and EGOR. Fig. 12g shows the morphology and structure of the electrode material. As shown at Fig. 12h, in the Rh mass normalization and ECSA normalized CV curves, the ECSA of Rh/RhOOH is 60.28 m² g⁻¹, which is higher than that of RhOOH NSs (41.72 m²g⁻¹), Rh metale (30.64 m²g⁻¹) and Pt/C (66.79 m²g -1). It indicates that it has more active sites. Fig. 12i shows that in 1 M KOH with 1 M EG solution, Rh/RhOOH also has better electrocatalytic performance for EGOR than the comparison sample, with lower initial potential

This journal is © The Royal Society of Chemistry 20xx

vanoscale Accepted Manuscri

Journal Name

and higher mass activity (MA) and specific activity (SA). The results show that Rh/RhOOH metal has better electrocatalytic performance for EGOR. Jiang.^[10] and his team synthesized a PtRh alloyed dendritic nano assembly in which a low concentration of Rh atoms is introduced into the Pt lattice, resulting in tensile strain, which not only improves HER performance but also further improves EGOR reactivity, achieving a current density of 10 mAcm⁻² with a voltage of only 0.66 V. In this paper, the electrode material in the EGOR-coupled HER reaction is described in detail.

4.2.4 Ru based catalyst

ARTICLE

 of Ru/Ni₂P/NF nanoarray. The three elements in a remember of Ru/Ni₂P/NF nanoarray. distributed, indicating the successful synthesis of Ru/Ni2P/NP. Fig. 13b shows that the oxidation activity of EG is higher after the addition of ruthenium atoms. The oxidation performance of EG of Ru/Ni₂P/NF nanocomposites was tested in an electrolyte containing 0.6 M EG and 1 M KOH, and the initial potential of catalyst was lower than that of OER. EGOR response current increases sharply at 1.36 V \simeq 1.4 V, which is much higher than OER. At the same time, the DFT calculation shows that the adsorption energy of OH⁻ under different electrocatalyst models is shown in Fig. 13c. The adsorption energy value of Ru/Ni₂P/ NF nanocomposite is -4.32 eV, which is lower than Ru (-3.347 eV) and Ni₂P (-3.609 eV). It is further demonstrated that the adsorption site after the addition of ruthenium can effectively capture EG molecules and promote the oxidation of EG. liu et al.^[78] synthesized a self-supported Cu(OH)₂ nanowire array on Cu foam.

Fig.13 (a)Element mapping diagram of Ru/Ni₂P/NF, (b) LSV curves in 1M electrolyte containing EG and without EG, the adsorption energy of (c) OH and H* on Ru/Ni₂P catalyst, Reproduced with permission, ⁶⁸Copyright 2021, American Chemical Society. (d) the high resolution of Cu₂O, the LSV performance comparison diagram of different catalysts, (e)EGOR and OER, (f) the voltage comparison under different current densities, Reproduced with permission. ⁷⁸Copyright 2023, Elsevier. (g) XRD pattern of Ru, S-Ni (OH)₂, (h) Comparison of EGOR performance and LSV performance of OER, (i) Comparison of various electrochemical parameters of different catalysts radar diagram, Reproduced with permission. ⁶⁹Copyright 2024, Royal Society of Chemistry.

ARTICLE

Journal Name

Fig. 14 PtRh_{0.02}@NWs (a) HER performance comparison diagram, (b) Tafel slope diagram, (c) CV curves of PtRh_{0.02}@Rh NW, PtRh_{0.02}@Rh NW, PtRh_{0.034}@Rh NW, PtRh_{0.1}@Rh NW in 0.1 M KOH with 0.6 M EG, Reproduced with permission. ¹⁰Copyright 2022, Royal Society of Chemistry. (d)TEM image of h-Ru-Cu_xO, (e) LSV, (f) Schematic diagram of Faraday efficiency of format and H₂ production in HER//EGOR reaction system in a two-electrode system, Reproduced with permission. ⁷⁸Copyright 2023, Elsevier.

The Cu(OH)₂/CF nanowire array was converted into Cu_xO/CF after solvent heat treatment, showing EGOR electrocatalytic performance. The self-supported nano-array catalyst h-Ru- Cu_xO/CF , prepared by loading atomic Ru on $Cu(OH)_2/CF$, also showed high electrocatalytic activity in HER. As shown in Fig. 13d, the lattice spacing corresponds to the Cu oxide (2 0 0) and (-1 1 1) crystal faces respectively, demonstrating the successful synthesis of the substrate material. As shown in Fig. 13e, the initial potential of the electrode material in EGOR reaction is lower than that in OER reaction, and it has better catalytic activity than other catalysts, with higher current density (Fig. 13f) at the same potential. In addition, Cu_xO/CF and h-Ru-Cu_xO/CF are used as anode and cathode to construct a HER//EGOR paired electrolytic system without film. The system can reach the current density of 10 mA cm⁻² at a voltage of 1.26 V, and is also a difunctional catalyst with excellent performance. li et al.^[69] synthesized Ru - and S-doped Ni hydroxide cross network structure on Ni foam (NF) by etching method. The nanoarray structure of Ru, S-Ni(OH)₂ can provide more abundant active sites, and the three elements of Ru Ni and O are evenly distributed, which also confirms the successful synthesis of Ru, S-Ni(OH)₂ electrode materials. Fig. 13g XRD results finally prove that the material is successfully synthesized and the current density can reach 1000 mA cm⁻² (Fig. 13 h) at a potential of about 1.4 V in the EGOR reaction. The radar chart

(Fig. 13i) also evaluated the excellent activity of the catalyst in terms of impedance and Tafel slope.

Based on the above discussion, the performance of different catalysts in the electrocatalytic EG oxidation reaction is also compared (Table 2), and the performance of different catalysts when coupled with other reactions is further discussed below.

ARTICLE

Journal Name

Table 2. Comparison between the performance of different catalysts.

	Catalyst composition	Microstructure	Electrolyte	Activity mA cm ⁻² @RHE	Specific surface area	Stability Decay(%)@time	Ref.
Non-precious metal catalyst	Co-Ni ₃ N/CC	Co-Ni ₃ N/CC nanosheets loaded on carbon cloth	1 M KOH+0.1 M EG	1.46V@60 mA cm ⁻²	78 mV dec ⁻¹		54
	NiSe ₂	branched NiSe ₂ nanoparticles	1 M KOH+1 M EG	1.60V@96mA cm ⁻²	_	45.4%@10h	45
	Co-Ni/CP	Nanoarray structure	1 M KOH+1 M EG	1.42V@30mA cm ⁻²	39 mV dec ⁻¹	0 @24 h	56
	CoNi _{0.25} P/NF	Nanoarray structure	1 M KOH+0.3 M EG	1.7V@350mA cm ⁻²	58.1 mV dec ⁻¹		7
	PdFe/N-CNTs	PdFe alloy nanoparticles uniformly dispersed on the surface of N-CNT	1 M KOH+0.3 M EG	1.28V@100mA cm ⁻²	54.3 mV dec ⁻¹	~25% @15 h	59
	CuO NW- 200 °C	Nanowire structures grown on the surface of Cu substrate	1 M KOH+0.1 M EG	1.38V@10mA cm ⁻²	54.3 mV dec ⁻¹	_	61
Precious metal catalyst	Pt1/Ni(OH)2	Nanoarray structure	1 M KOH+1 M EG	1.444V@10mA cm ⁻²	_		65
	PdSb	nanosheet	1 M KOH+1 M EG	0.62@10mA cm ⁻²		22.7% @2000 CV	11
	Rh/RhOOH	nanosheet	1 M KOH+1 M EG	_	83 mV dec ⁻¹	@2.7 h	67
	Ru/Ni ₂ P/NF	nanosheet	1 M KOH+0.5 M EG	1.37V@100 mA cm ⁻²	_	~42%@10 h	68

Fig. 15 (a)TEM diagram of Pd₆₇Ag₃₃, (b) Lattice expansion diagram, (c) electrocatalytic performance diagram of anode EGOR, (d) CV diagram in 1M KOH with 1M EG, (e) CO₂RR performance diagram, (f) Faraday efficiency diagram of cathode CO₂RR reduction products, Reproduced with permission. ⁸²Copyright 2024, National Academy of Sciences. EGOR // NITRR reaction system in a two-electrode system, (g) Schematic diagram (h) Performance diagram (i) Schematic diagram of Faraday efficiency of product generation, Reproduced with permission. ⁸⁵Copyright 2024, John Wiley and Sons.

4.3 Application in EGOR with other reactions

The study of coupling EG with other reactions has a green and sustainable application prospect. To develop more efficient catalyst, improve the selectivity and conversion of the reaction, reduce the production of by-products to achieve efficient EG oxidation reaction. For example, coupling the oxidation reaction of EG with the HER of electrolytic water is one of the current research hotspots. In this coupled system, EG, as an organic substrate, undergoes oxidation at the anode, replacing the traditional OER, thereby reducing the overpotential of the anode reaction, improving the efficiency of hydrogen production, and converting EG into valuable chemicals. EG can be electrooxidized to formic acid while producing hydrogen at the cathode^[48,70-76]. In this section, EG oxidation and other reaction coupling are discussed.

4.3.1 EGOR couples HER

Hydrogen energy as a kind of clean energy has been concerned^[77], and electrolysis of water to produce hydrogen is a more common method. EG oxidation has a lower oxidation potential and can be used as an alternative reaction to OER to achieve high efficiency hydrogen production. Jiang et al.^[10] designed and synthesized Rh-atom-modified PtRh nanowires (PtRh_{0.02}@RhNWs). The electrode material exhibits excellent performance in both HER and EGOR and is used as a bifunctional catalyst. This is mainly due to the strain effect of the electrode material induced by interfacial engineering, which further tunes the electrode structure of the material and facilitates the introduction of heteroatomic active centers and the induction of lattice strain, leading to efficient EGOR and HER performance. First, electrochemical tests were performed in 0.1 M KOH solution and 0.1 M KOH seawater solution (pH=13.8) at a scanning rate of 10 mV/s in a three-electrode system. LSV curve

ARTICLE

Published on 12 apríl 2025. Downloaded by Fail Open on 7.5.2025 08:18:28

shows (Fig. 14a) that when the current density reaches 10 mA cm⁻² in the test process of PtRh_{0.02}@Rh nanowires, the overpotential is only 30.6 mV, which is much lower than that of Pt nanowires (99.7 mV) and JM-Pt black (122.3 mV). The Tafel slope value of 39.1 mV dec⁻¹ indicates that PtRh_{0.02}@Rh nanowires exhibit a faster HER reaction kinetics (Fig. 14b), indicating that the HER process follows the Heyrovsky-Volmer mechanism. Even if the industrial application, in 0.1 M KOH electrolyte seawater solution, the overpotential can reach 46.8 mV, still has excellent HER activity. At the same time, the EGOR property of the electrode material was determined, again in an alkaline seawater solution containing 0.6 M EG. The test results show that the peak current density of PtRh_{0.02}@Rh nanowire EGOR is 1.26 A mg⁻¹, indicating that the electrode has excellent electrocatalytic activity for EG (Fig. 14e). The high mass activity also further indicates that the modification of Rh atoms on the surface of Pt NW effectively improves the catalytic activity of EGOR.

In recent years, researchers have paid more and more attention to the coupling reaction of EGOR and HER. Liu et al.^[78] also constructed a self-supporting nanoarray electrocatalyst h-Ru-Cu_xO, which combined multiple advantages of interface reconstruction and self-supporting hierarchical structure, and showed excellent catalytic activity during practical testing. The HAADF-STEM image of h-Ru-Cu_xO/CF (Fig. 14d) shows that the catalyst has a hierarchical structure and a rough surface, which both provides abundant active centres and facilitates electron migration, thus accelerating mass transfer and bubble release. Moreover, the rich cavity structure of the structure also further accelerates the transfer of electrons (Fig. 14e). The electrochemical test results showed that the h-Ru-Cu_xO/CF electrode materials were able to reach different current densities (10, 100, 200 mA cm⁻²) at lower potentials, which further demonstrated the excellent catalytic activity of the catalysts. In the electrolysis system consisting of HER // EGOR, a current density of 10 mA cm⁻² can be achieved with only 1.26 V, which is about 610 mV lower than that of the all-water reaction, confirming that the coupling of EGOR and HER can achieve efficient hydrogen production. Figure 14f shows that the format FE at the anode of the electrolysis cell exceeds 90%, and the FE at the cathode for the reaction with HER can reach nearly 100% H₂. In fact, the electrocatalytic oxidation of EG coupled with hydrogenation reaction has already a certain economic value. During the reaction process, it can produce a variety of high value-added chemicals, such as formic acid and glycolic acid, to meet the needs of multiple fields, and it can also provide clean hydrogen for the hydrogen energy industry, creating considerable revenue. At the same time, it can reduce the energy consumption of hydrogen production by electrolysis of water and utilize cheap glycol raw materials, effectively saving costs. It can even convert the glycol in waste plastics and industrial wastewater into useful products and realize resource recycling.

4.3.2 EGOR couples with other reactions

Journal Name

and carbon dioxide reduction reactions^{179.8110.38}(RCH^{NR}85⁰PAB Pd₆₇Ag₃₃ electrocatalyst reported^[82] just this year, due to the unique electronic structure of both EG oxidation and electrochemical CO2 reduction reaction. This is because the transfer of neutrons of Pd₆₇Ag₃₃ from Ag to Pd results in an increase in the electron filling of the Pd d-band and a downward shift in the Pd D-band centre. This downward shift in the D-band centre weakens the binding strength on the catalyst and promotes the desorption of the carbonyl intermediates, which is critical for inhibiting C-C bond breakage and improving selectivity for C2 products. Meanwhile, aberration-corrected large-angle toroidal dark-field scanning HAADF-STEM images reveal a large number of amorphous regions, defects, and boundaries. In contrast, Pd shows regularly arranged lattice stripes, indicating the presence of lower defects that lead to changes in electron distribution that provide more reaction sites. The HRTEM diagram shows (Fig. 15a) that the lattice spacing of the (111) crystal faces of Pd is 2.244Å, while the lattice spacing of Pd₆₇Ag₃₃ in the same region is 2.328 Å. This is due to lattice expansion of Pd₆₇Ag₃₃ resulting in lattice strain caused by Ag alloying into the Pd lattice (Fig. 15b). As shown in Fig. 15c, LSV results show that when EG is present in the electrolyte, the Pd₆₇Ag₃₃ catalytic electrode requires only 0.63 V voltage to reach 10 mA cm⁻². At the same time, the catalytic electrode also has a low Tafel slope during the reaction process, which is due to the precise regulation of the electron and lattice structure leading to its excellent oxidation kinetics. As shown in Fig. 15d, the excellent catalytic activity of the catalyst is further confirmed, and the unique electronic structure of Pd₆₇Ag₃₃ inhibits the toxicity of CO, thereby facilitating the electrochemical CO₂, which provides a high current density of 10.8 mA cm⁻² at -0.36V (Fig. 15e). It also provides a maximum Faraday efficiency of 92.6% for FA production at -0.27V. (Fig. 15f). In the whole reaction process, glycol can not only be obtained through various ways such as petrochemicals and biomass conversion, but also be extracted from waste plastics and other recyclables to achieve the recycling of resources, which greatly reduces the cost of raw material procurement. Carbon dioxide, as a major industrial waste gas, is relatively less difficult to collect and less costly, and its resourceful utilization through coupling reaction further reduces the enterprise's expenditure on raw materials. In terms of energy consumption, compared with the traditional electrolysis of water to produce hydrogen, carbon dioxide reduction and other separate highenergy chemical reactions, the coupling reaction cleverly exploits the synergy between the two reactions, optimizes the efficiency of energy use, reduces the overall cost of energy consumption, and makes the production process more economical and efficient, which improves the economic efficiency of the enterprise.

Recently, researchers have also chosen to couple EG oxidation

In addition to coupling with carbon dioxide reduction reaction (CO_2RR) , EG oxidation reaction and nitrate reduction reaction can also be coupled.^[82-84] Nitrate reduction reaction is a typical multi-electron reaction process. It is an urgent problem to select a suitable catalyst to achieve nitrate reduction. Lv et al.^[85] reported IR-doped CuPd (Ir-CuPd) single crystal mesoporous

Journal Name

nano-tetrahedrons (SMTs) and further explored their use as highly active, stable, and selective electrocatalysts for alkaline EGOR electrocatalytic activity. At the same time, the catalyst showed good electrocatalytic performance in the coupled electrocatalysis of EGOR and nitrate reduction reaction (NITRR). The catalytic electrode has a stable structure and the elements are uniformly distributed in a concave tetragonal form. The size is between 63 and 86 nm, and there are old pores in the interior. As shown in Fig. 15g, a dual-motor test system was constructed in the H-type battery for testing ((+) EGOR // NITRR (-)), where the anode was the EGOR and the NITRR was the cathode reaction. Compared with the traditional HER, the reaction system has a lower initial potential, indicating that the catalyst as a bifunctional catalyst has a high efficiency catalytic electrode. Fig. 15h shows that Ir-CuPd has higher electrocatalytic efficiency and lower energy consumption in the coupling system of glycol oxidation and nitrate reduction reactions. A higher selectivity of the catalyst was obtained in a two-electrode coupling system compared to a half-reaction (Fig. 15i). The dual-function Ir-CuPd SMT exposes the highest Faraday efficiency of 66.2% at 2.4 V in anode EGOR electrocatalysis and 96.4% at 2.6 V in cathode NITRR electrocatalysis. This further proves that Ir-CuPd catalyst is an efficient bi-functional electrocatalytic catalyst. As one of the main pollutants of eutrophication in water bodies, the reduction of nitrate to harmless nitrogen or usable ammonia nitrogen has far-reaching significance for environmental protection. The nitrate reduction product, ammonia nitrogen, can be used as an important chemical raw material, which is widely used in many industries such as fertilizers and pharmaceuticals, and can be directly used in industrial production to reduce the cost of raw material procurement. The oxidation process of EG can also produce oxidation products with certain economic value, which realizes the efficient use and recycling of resources and reduces the dependence on primary resources.

5. Conclusion and Outlook

Many studies have shown that transition metal catalysts have promising applications in the field of EG oxidation. Although catalysts based on transition metal noble metals are relatively rare ^[41,86-89], it has been reported that loading a small amount of noble metal single atoms on non-precious metal catalysts can lead to high catalytic performance ^[19,43,80,91]. Therefore, the selection of suitable synthetic methods can often purposefully modulate the morphology, structure and size of the catalysts, and the use of more advanced characterisation tests can further reveal the micro-mechanisms of EG oxidation and the underlying reasons for the excellent performance, leading to the preparation of highly active catalysts. Despite the great progress in transition metal catalysed EG oxidation, there are still some challenges to be solved.

The mechanism is not well understood: for the oxidation of EG, different oxidation pathways are caused by different

ARTICLE

intermediates during the reaction.^[92-96] The ideal is to achieve complete oxidation through the C1 path Way 1991 1021 423 1182 1180 128 electrons and achieving higher energy efficiency, ultimately resulting in valuable value-added products. However, due to the inappropriate adsorption energy of many transitions metal electrocatalysts with intermediate products, the C-C bond breaking ability is weak, and the reaction is mainly incomplete oxidation through C2 pathway, which is difficult to achieve high energy conversion efficiency. In situ characterization techniques, such as in-situ infrared spectroscopy and in-situ Xray absorption spectroscopy, were used to monitor the changes in the structure and electronic state of the catalyst during the reaction process in real time, so as to deeply understand the catalytic reaction mechanism and the factors affecting the C-C bond fracture, providing a basis for the design and optimization of the catalyst.

Limited reaction sites of catalysts: Currently prepared transition metal catalysts have limited ability to resist poisoning. In the oxidation reaction of EG, the intermediate products produced during the reaction may be adsorbed on the surface of the catalyst, leading to the catalyst poisoning and reducing its catalytic activity. For example, CO, a common intermediate in glycol oxidation reactions, is easily adsorbed on the surface of the transition metal, occupying the active site and affecting the performance of the catalyst. When the active site of the transition metal electrocatalyst is partially covered or blocked, the utilization of the active site is not high, which affects the rate of catalytic reaction. This requires the purposeful regulation of more exposed active sites during the synthesis process, such as the use of nanotechnology to prepare transition metal electrocatalysts with specific morphology and size, such as nanoparticles, nanowires, nanosheets, etc., which can increase the specific surface area and the number of active sites of the catalyst, and improve the catalytic performance.

Single regulation strategy: The current regulation strategy for transition metal catalysts mainly focuses on single atom doping^[97] and alloying. Single atom catalyst has high atomic utilization and unique electronic structure, which has great potential in EG oxidation reaction. By precisely controlling the dispersion and coordination environment of transition metal atoms on the support, efficient monatomic catalysts can be prepared. For example, loading precious metal single atoms on a non-precious metal catalyst, for example, the precious metal is dispersed on the carrier in the form of single atoms, can improve the atomic utilization and increase the number of active sites. However, the choice of carrier is particularly important, 1) porous material carrier^[98-103], these carriers have a large surface area and rich pore structure, can provide more active sites, and help the diffusion of reactants and products. For example, the precious metal catalyst with alumina as the carrier has a good catalytic effect in the glycol oxidation reaction. 2) Two-dimensional material carriers: twodimensional materials such as graphene, transition metal disulfide, etc., have also become ideal carriers for precious metal catalysts due to their unique electronic structure and physical properties. Two-dimensional materials can interact with precious metals, regulate the electronic structure of precious metals, and improve the activity and selectivity of catalysts. Although single-atom catalysts have been proven to have good application prospects, more catalysts are needed, such as interface engineering to regulate the electronic structure of the catalyst to achieve high activity^[42,104-106].

Challenge of Combined Factors: The oxidation performance of EG is not only affected by the catalyst, but temperature and pressure are also important factors affecting the oxidation reaction of EG. Appropriately increasing the reaction temperature and pressure can improve the reaction rate, but too high temperature and pressure may lead to catalyst deactivation or side reactions. Therefore, researchers need to optimise the reaction temperature and pressure to improve the efficiency and selectivity of EG oxidation; choosing the right concentration of reactants can also improve the reaction rate and yield, so many aspects need to be considered to achieve efficient EG oxidation. In addition, the study of transition metal catalysis for electrocatalytic EG oxidation has also had a positive impact on related fields, providing key technological support for the development of new types of fuel cells and electrolysers, which is expected to improve the efficiency of energy conversion, reduce energy consumption, and reduce environmental pollution^[107-110]. This work further elaborates that the coupling of EG with other reactions, such as carbon dioxide reduction reaction coupling, not only achieves efficient oxidation of EG, but also solves the problem of energy pollution, which is of far-reaching significance for future sustainable development.

In conclusion^[111], this work focuses on the summary of transition metal catalysts currently used for the electrocatalytic oxidation of EG. Firstly, the mechanism of electrocatalytic oxidation of EG is explained, and furthermore, different synthetic strategies currently used for the synthesis of the catalysts are summarized, providing a reference synthetic strategy for the design and preparation of subsequent catalysts for the electrocatalytic oxidation of EG. Subsequently, the common non-precious metal catalysts^[112-116] and precious metal catalysts are summarized and their excellent properties are explained. Finally, the opportunities and challenges for the future are explained, which will provide a reference for the future investigation of efficient catalysts for the electrocatalytic oxidation of EG and their effects on EGOR to effectively control the intermediate products of EG and ultimately produce the target oxidation products.

Author contributions

Hongjing Wu: conceptualization, formal analysis, investigation, visualization, writing - original draft. Xiaoyue Zheng, Jiajia Liu, and Yanru Yuan: investigation, visualization. Yuquan Yang, Chenjing Wang, Li Zhou, and Lulu Wang: investigation, formal analysis. Binbin Jia and Xiaoyu Fan: conceptualization, formal analysis, writing review & editing. Jinlong Zheng: conceptualization, formal analysis, writing - review & editing, resources, supervision, funding acquisition.

Conflicts of interest

There is no conflict to declare.

Data availability

No primary research results, software or code have been included and no new data were generated or analyzed as part of this review.

Acknowledgements

This work was financially supported by National Natural Science Foundation of China [52271200] and Guangdong Basic and Applied Basic Research Foundation [2024A1515010393].

Notes and references

[1] Du M, Xue R, Yuan W, et al, Tandem Integration of Biological and Electrochemical Catalysis for Efficient Polyester Upcycling under Ambient Conditions, Nano Letters, 2024 24 9768-9775. [2] Tournier V, Topham C M, Gilles A, et al, An engineered PET depolymerase to break down and recycle plastic bottles, Nature, 2020 580 216-219.

[3] Yan Y, Zhou H, Xu S-M, et al, Electrocatalytic Upcycling of Biomass and Plastic Wastes to Biodegradable Polymer Monomers and Hydrogen Fuel at High Current Densities, Journal of the American Chemical Society, 2023 145 6144-6155. [4] Kim M S, Chang H, Zheng L, et al, A Review of Biodegradable Plastics: Chemistry, Applications, Properties, and Future Research Needs, Chemical Reviews, 2023 123 9915-9939.

[5] De Luna P, Hahn C, Higgins D, et al, What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science, 2019 364 eaav3506.

[6] Hilbrands A M, Goetz M K, Choi K-S, C-C Bond Formation Coupled with C-C Bond Cleavage during Oxidative Upgrading of Glycerol on a Nanoporous BiVO₄ Photoanode, Journal of the American Chemical Society, 2023 145 25382-25391.

[7] Zhou H, Ren Y, Li Z, et al, Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H₂ fuel, Nature Communications, 2021 12 4679.

[8] Shi Q, Tang W, Kong K, et al, Electrocatalytic Upgrading of Plastic and Biomass-Derived Polyols to Formamide under Ambient Conditions. Angewandte Chemie International Edition, 2024 63 e20240758.

[9] ASHOK K, VIJH², Anodic oxidation-of-ethylene-glycol-on-Pta-mechanistic-study, Canadian Journal of Chemistry, 1971 49 94257271.

Jiang X, Dong Z, Zhang Q, et al, Decoupled hydrogen [10] evolution from water/seawater splitting by integrating Ethylene Glycol oxidation on PtRh_{0.02}@Rh nanowires with Rh atom modification, Journal of Materials Chemistry A, 2022 10 20571-20579.

[11] Wei X, Shen Z, Wei R, et al, Engineering p-d orbital hybridization in PdSb bimetallene for energy-saving H₂

Journal Name

View Article Online

DOI: 10.1039/D4NR05000B

Published on 12 apríl 2025. Downloaded by Fail Open on 7.5.2025 08:18:28

Journal Name

production parallel upgrade plastic waste, Chemical Engineering Journal, 2024 498 155104.

[12] Li Z, Yan Y, Xu S-M, et al, Alcohols electrooxidation coupled with H_2 production at high current densities promoted by a cooperative catalyst, Nature Communications, 2022 13 147.

[13] Li L, Cao X, Huo J, et al, High valence metals engineering strategies of Fe/Co/Ni-based catalysts for boosted OER electrocatalysis, Journal of Energy Chemistry, 2023 76 195-213.
[14] Muzammil A, Haider R, Wei W, et al, Emerging transition metal and carbon nanomaterial hybrids as electrocatalysts for water splitting: a brief review, Materials Horizons, 2023 10 2764-2799.

[15] Wang H, Jiang B, Zhao T-T, et al, Electrocatalysis of Ethylene Glycol Oxidation on Bare and Bi-Modified Pd Concave Nanocubes in Alkaline Solution: An Interfacial Infrared Spectroscopic Investigation, ACS Catalysis, 2017 7 2033-2041.

[16] Qiao B, Yang T, Shi S, et al, Highly Active Hollow RhCu Nanoboxes toward Ethylene Glycol Electrooxidation, Small 2021 17 2006534.

[17] Yang X, Yao K X, Ye J Y, et al, Interface-Rich Three-Dimensional Au-Doped PtBi Intermetallics as Highly Effective Anode Catalysts for Application in Alkaline Ethylene Glycol Fuel Cells, Advanced Functional Materials, 2021 31 2103671.

[18] Qi J, An Z, Li C, et al, Electrocatalytic selective oxidation of Ethylene Glycol: A concise review of catalyst development and reaction mechanism with comparison to thermocatalytic oxidation process, Current Opinion in Electrochemistry, 2022 32 100929.

[19] Qin Y, Zhang W, Wang F, et al, Extraordinary p–d Hybridization Interaction in Heterostructural Pd-PdSe Nanosheets Boosts C–C Bond Cleavage of Ethylene Glycol Electrooxidation, Angewandte Chemie International Edition, 2022 61 e202200899.

[20] Zhang Y, Zhang D, Qin Y, et al, Ultra-fast phosphating synthesis of metastable crystalline phase-controllable ultra-small MP_x/CNT (M=Pd, Pt, Ru) for polyalcohol electrooxidation, Journal of Energy Chemistry, 2022 72 108-115.

[21] Yang W, Yang X, Jia J, et al, Oxygen vacancies confined in ultrathin Nickel oxide nanosheets for enhanced electrocatalytic methanol oxidation, Applied Catalysis B: Environmental, 2019 244 1096-1102.

[22] Li Y, Li F, Zhao Y, et al, Iron doped cobalt phosphide ultrathin nanosheets on Nickel foam for overall water splitting, Journal of Materials Chemistry A, 2019 7 20658-20666.

[23] Wang T-J, Xu G-R, Sun H-Y, et al, Anodic hydrazine electrooxidation boosted overall water electrolysis by bifunctional porous Nickel phosphide nanotubes on Ni foam, Nanoscale, 2020 12 11526-11535.

[24] Zhao F, Yuan Q, Nie S, et al, Modified electronic structure and enhanced hydroxyl adsorption make quaternary Pt-based nanosheets efficient anode electrocatalysts for formic acid-/alcohol-air fuel cells, Journal of Energy Chemistry, 2024 92 142-150.

[25] Lv H, Lv F, Qin H, et al, Single-Crystalline Mesoporous platinum and platinum - Copper Nanocubes for Highly Efficient

Electrochemical CO₂. Reduction. CCS Chemistry, 2022 rd 1376 1385. DOI: 10.1039/D4NR05000B

[26] Liu K, Cao P, Chen W, et al, Electrocatalysis enabled transformation of earth-abundant water, nitrogen and carbon dioxide for a sustainable future. Materials Advances, 2022 3 1359-1400.

[27] Liu X, Dai L, Carbon-based metal-free catalysts, Nature Reviews Materials, 2016 1 16064.

[28] Chauhan N L, Juvekar V A, Sarkar A, Oxidation of Ethylene Glycol: Unity of chemical and electrochemical catalysis, Electrochemical Science Advances, 2021 2 e2100092.

[29] Chauhan N L, Dameera V, Chowdhury A, et al, Electrochemical oxidation of Ethylene Glycol in a channel flow reactor, Catalysis Today, 2018 309 126-132.

[30] Fan D, Guo K, Hao Q, et al, Ultrathin RhCuAgPd/Pd nanowire heterostructures for Ethylene Glycol electrooxidation, Chemical Communications, 2022 58 7773-7776.

[31] Fan D, Yao H, Sun L, et al, 2D PtRhPb Mesoporous Nanosheets with Surface - Clean Active Sites for Complete Ethanol Oxidation Electrocatalysis, Advanced Materials, 2024 36 2407940.

[32] Lv H, Guo X, Sun L, et al, A universal strategy for fast, scalable, and aqueous synthesis of multicomponent palladium alloy ultrathin nanowires, Science China Chemistry, 2021 64 245-252.

[33] Qian Q, He X, Li Z, et al, Electrochemical Biomass Upgrading Coupled with Hydrogen Production under Industrial-Level Current Density, Advanced Materials, 2023 35 2300935.

[34] Wang Y, Lv H, Sun L, et al, Ultrathin and Wavy PdB Alloy Nanowires with Controlled Surface Defects for Enhanced Ethanol Oxidation Electrocatalysis, ACS Applied Materials & Interfaces, 2021 13 17599-17607.

[35] Sun L, Lv H, Xiao J, et al, Enzymatic Mesoporous Metal Nanocavities for Concurrent Electrocatalysis of Nitrate to Ammonia Coupled with Polyethylene Terephthalate Upcycling, Advanced Materials, 2024 36 2402767.

[36] Ma X-Y, Ma H-Z, He S-H, et al, The electrocatalytic activity and selectivity of EG oxidation into value-added chemicals at iron-group electrodes in alkaline media, Materials Today Physics, 2023 37 101191.

[37] Rabis A, Rodriguez P, Schmidt T J, Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges, ACS Catalysis, 2012 2 864-890.

[38] Feng X, Yang L, Zhang L, Sustainable solar-and electrodriven production of high concentration H_2O_2 coupled to electrocatalytic upcycling of polyethylene terephthalate plastic waste, Chemical Engineering Journal, 2024 482 149191.

[39] Lin G, Li H, Xie K, Twisted Surfaces in Porous Single Crystals to Deliver Enhanced Catalytic Activity and Stability, Angewandte Chemie International Edition, 2020 59 16440-16444.

[40] Guo Z, Liu M, Ga L, et al, Terbium-doped cobalt-based metal–organic frameworks for electrocatalytic hydrogen production and polyethylene terephthalate plastic upcycling, Chemical Engineering Journal, 2024 496 154062.

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 20xx

Published on 12 apríl 2025. Downloaded by Fail Open on 7.5.2025 08:18:28

[41] You M, Du X, Hou X, et al, In-situ growth of rutheniumbased nanostructure on carbon cloth for superior electrocatalytic activity towards HER and OER, Applied Catalysis B: Environmental, 2022 317 121729.

[42] Jiao L, Wei W, Li X, et al, Value-added formate production from selective Ethylene Glycol oxidation based on cost-effective self-supported MOF nanosheet arrays, Rare Metals, 2022 41 3654-3661. [43] Zhang K, Wang C, You H, et al, Advanced Plasmon-driven Ethylene Glycol oxidation over 3D ultrathin Lotus-like PdCu nanosheets, Chemical Engineering Journal, 2022 438 135666.

[44] Wang Y, Liu J, Yuan H, et al, Strong Electronic Interaction between Amorphous MnO₂ Nanosheets and Ultrafine Pd Nanoparticles toward Enhanced Oxygen Reduction and Ethylene Glycol Oxidation Reactions, Advanced Functional Materials, 2023 33 2211909.

[45] Li J, Li L, Ma X, et al, Selective Ethylene Glycol Oxidation to Formate on Ni Selenide with Simultaneous Evolution of Hydrogen, Advanced Science, 2023 10 2300841.

[46] Kang H, He D, Yan X, et al, Cu Promoted the Dynamic Evolution of Ni-Based Catalysts for Polyethylene Terephthalate Plastic Upcycling, ACS Catalysis, 2024 14 5314-5325.

[47] Li R-C, Zhang X-Y, Qu Z-Y, et al, One-step controlled electrodeposition Ni sulfides heterointerfaces favoring the desorption of hydroxyl groups for efficient hydrogen generation, Rare Metals, 2024 43 4377-4386.

[48] Wang N, Li X, Hu M-K, et al, Ordered macroporous superstructure of bifunctional cobalt phosphide with heteroatomic modification for paired hydrogen production and polyethylene terephthalate plastic recycling. Applied Catalysis B: Environmental, 2022 316 121667.

[50] Wan T, Huang X, Li S, et al, Fabrication of 3D hollow acorn-shell-like PtBi intermetallics via a surfactant-free pathway for efficient Ethylene Glycol electrooxidation, Nano Research, 2023 16 6560-6567.

[51] Kong F, Liu X, Song Y, et al, Selectively Coupling Ru Single Atoms to PtNi Concavities for High-Performance Methanol Oxidation via d-Band Center Regulation, Angewandte Chemie International Edition, 2022 61 e202207524.

[52] Zhang Y, Liu X, Liu T, et al, Rhombohedral Pd–Sb Nanoplates with Pd-Terminated Surface: An Efficient Bifunctional Fuel-Cell Catalyst, Advanced Materials, 2022 34 2202333.

[53] Shang Q, Tang N, Qi H, et al, A platinum single-atom catalyst toward efficient activation of molecular oxygen for cinnamyl alcohol oxidation, Chinese Journal of Catalysis, 2020 41 1812-1817.

[55] Liu K, Wang Y, Liu F, et al, Selective electrocatalytic reforming of PET-derived Ethylene Glycol to formate with a

Faraday efficiency of 93.2% at industrial-level current densities, Chemical Engineering Journal, 2023 473 **P45292**()39/D4NR05000B [56] Lin Y, Chen Y, Ren H, et al, Inspiration of Bimetallic Peroxide for Controllable Electrooxidizing Ethylene Glycol Through Modulating Surficial Intermediates, Advanced Functional Materials, 2024 34 2404594.

[58] Sun Q, Zheng Y-Y, Yun L-X, et al, Fe₃O₄ Nanodispersions as Efficient and Recoverable Magnetic Nanocatalysts for Sustainable PET Glycolysis, ACS Sustainable Chemistry & Engineering, 2023 11 7586-7595.

[59] Zhang H, Liu Z, Li H, et al, PdFe alloy nanoparticles supported on nitrogen-doped carbon nanotubes for electrocatalytic upcycling of poly (ethylene terephthalate) plastics into formate coupled with hydrogen evolution, Journal of Materials Chemistry A, 2024 12 15984-15995.

[60] Lei H, Ma N, Li K, et al, Low Pt loading with lattice strain for direct Ethylene Glycol fuel cells, Energy & Environmental Science, 2024 17 7792-7802.

[61] Wang J, Li X, Zhang T, et al, Electro-Reforming Polyethylene Terephthalate Plastic to Co-Produce Valued Chemicals and Green Hydrogen, The Journal of Physical Chemistry Letters, 2022 13 622-627.

[62] Gao F, Zhang Y, You H, et al, Solvent-Mediated Shell Dimension Reconstruction of Core@Shell PdAu@Pd Nanocrystals for Robust C1 and C2 Alcohol Electrocatalysis, Small, 2021 17 2101428.

[63] Jin C, Sun C, Dong R, et al, Pt modification of gold and electrocatalytic oxidation of Ethylene Glycol on Pt-modified Au electrodes, Electrochimica Acta, 2010 56 321-325.

[64] Pu H, Dong K, Zhang T, et al, Regulation of the shell thickness and shell components in PtCu/PdCu core–shell tripods for Ethylene Glycol and glycerol oxidation reactions, Journal of Materials Chemistry A, 2022 10 10614-10624.

[65] Song M, Wu Y, Zhao Z, et al, Corrosion Engineering of Part-Per-Million Single Atom Pt/Ni(OH)₂ Electrocatalyst for PET Upcycling at Ampere-Level Current Density, Advanced Materials, 2024 36 2403234.

[66] Ambriz-Peláez O, Durón S, Olivas A, et al, Effect of molybdenum content on the morphology and electronic characteristics of $Pd-MoO_x$ nanomaterials and activity evaluation for EG electro–oxidation, Applied Surface Science, 2019 498 143842.

[67] Mao Q, Deng K, Yu H, et al, In Situ Reconstruction of Partially Hydroxylated Porous Rh Metallene for EG-Assisted Seawater Splitting, Advanced Functional Materials, 2022 32 2201081.

[68] Ma G, Yang N, Xue Y, et al, Ethylene Glycol Electrochemical Reforming Using Ruthenium Nanoparticle-Decorated Ni Phosphide Ultrathin Nanosheets, ACS Applied Materials & Interfaces, 2021 13 42763-42772.

[69] Li Y, Liu X, Wang K, et al, Oxygen vacancy assisted Ru-Ni(OH)₂ for efficient ethylene glycol electrooxidation reaction, Inorganic Chemistry Frontiers, 2024 11 6889-6897.

Journal Name

[70] Liu X, Han Y, Guo Y, et al, Electrochemical Hydrogen Generation by Oxygen Evolution Reaction-Alternative Anodic Oxidation Reactions, Advanced Energy and Sustainability Research, 2022 3 2200005.

[71] Arshad F, Haq T U, Hussain I, et al, Recent Advances in Electrocatalysts toward Alcohol-Assisted, Energy-Saving Hydrogen Production, ACS Applied Energy Materials, 2021 4 8685-8701.

[72] Fan L, Ji Y, Wang G, et al, High Entropy Alloy Electrocatalytic Electrode toward Alkaline Glycerol Valorization Coupling with Acidic Hydrogen Production, Journal of the American Chemical Society, 2022 144 7224-7235.

[73] Mondal B, Karjule N, Singh C, et al, Unraveling the Mechanisms of Electrocatalytic Oxygenation and Dehydrogenation of Organic Molecules to Value-Added Chemicals Over a Ni–Fe Oxide Catalyst, Advanced Energy Materials, 2021 11 2101858.

[74] Wang L, Zhu Y, Wen Y, et al, Regulating the Local Charge Distribution of Ni Active Sites for the Urea Oxidation Reaction, Angewandte Chemie International Edition, 2021 60 10577-10582.

[75] Wang T, Cao X, Jiao L, et al, Progress in Hydrogen Production Coupled with Electrochemical Oxidation of Small Molecules, Angewandte Chemie International Edition, 2022 61 e202213328.

[76] Xu Y, Zhang B, Recent Advances in Electrochemical Hydrogen Production from Water Assisted by Alternative Oxidation Reactions, Chem Electro Chem, 2019 6 3214-3226.

[77] Wang Z, Li J, Zhang Q, et al, Facilitating Formate Selectivity via Optimizing eg* Band Broadening in NiMn Hydroxides for Ethylene Glycol Electro-Oxidation, Angewandte Chemie International Edition, 2024 63 e202411517.

[78] Liu L, He Y, Ma D-D, et al, Directional editing of selfsupported nanoarray electrode for adaptive paired-electrolysis, Journal of Colloid and Interface Science, 2023 640 423-433.

 $[79] Wang G, Chen J, Ding Y, et al, Electrocatalysis for CO_2 conversion: from fundamentals to value-added products, Chemical Society Reviews, 2021 50 4993-5061.$

[80] Tang C, Zheng Y, Jaroniec M, et al, Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals, Angewandte Chemie International Edition, 2021 60 19572-19590.

[81] Zhu P, Wang H, High-purity and high-concentration liquid fuels through CO_2 electroreduction, Nature Catalysis, 2021 4 943-951.

[82] Junliang C, Fangzhou Z, Min K, et al, Unveiling synergy of strain and ligand effects in metallic aerogel for electrocatalytic polyethylene terephthalate upcycling proceedings of the National Academy of Sciences, PNAS, 2024 121 e2318853121.

[83] Xiao L, Dai W, Mou S, et al, Coupling electrocatalytic cathodic nitrate reduction with anodic formaldehyde oxidation at ultra-low potential over Cu_2O , Energy & Environmental Science, 2023 16 2696-2704.

[84] Han S, Li H, Li T, et al, Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism, Nature Catalysis, 2023 6 402-414.

[85] Lv H, Mao Y, Yao H, et al, Ir-Doped Cupdu Single Crystalline Mesoporous Nanotetrahedrons for Ethylethe Given Oxidation Electrocatalysis: Enhanced Selective Cleavage of C–C Bond, Angewandte Chemie International Edition, 2024 63 e202400281.

[86] Bae S-Y, Mahmood J, Jeon I-Y, et al, Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction, Nanoscale Horizons, 2020 5 43-56.

[87] Geng B, Yan F, Zhang X, et al, Conductive CuCo-Based Bimetal Organic Framework for Efficient Hydrogen Evolution, Advanced Materials, 2021 33 2106781.

[88] Hong C-B, Li X, Wei W-B, et al, Nano-engineering of Rubased hierarchical porous nanoreactors for highly efficient pHuniversal overall water splitting, Applied Catalysis B: Environmental, 2021 294 120230.

[89] Tan Q, Xiao R, Yao X, et al, Non-oxygen anion-regulated in situ cobalt based heterojunctions for active alkaline hydrogen evolution catalysis, Chemical Engineering Journal, 2022 433 133514.

[90] Lv F, Zhang W, Sun M, et al, Au Clusters on Pd Nanosheets Selectively Switch the Pathway of Ethanol Electrooxidation: Amorphous/Crystalline Interface Matters, Advanced Energy Materials, 2021 11 2100187.

[91] Gao F, Zhang Y, Ren F, et al, Universal Surfactant-Free Strategy for Self-Standing 3D Tremella-Like Pd-M (M = Ag, Pd, and Au) Nanosheets for Superior Alcohols Electrocatalysis, Advanced Functional Materials, 2020 30 2000255.

[92] Zhuang T-T, Pang Y, Liang Z-Q, et al, copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide, Nature Catalysis, 2018 1 946-951.

[93] Lv H, Sun L, Wang Y, et al, Highly Curved, Quasi-Single-Crystalline Mesoporous Metal Nanoplates Promote C-C Bond Cleavage in Ethanol Oxidation Electrocatalysis, Advanced Materials, 2022 34 2203612.

[94] Yoon Y, Hall A S, Surendranath Y, et al, Tuning of Silver Catalyst Mesostructure Promotes Selective Carbon Dioxide Conversion into Fuels, Angewandte Chemie International Edition, 2016 55 15282-15286.

[95] Hoang T T H, Verma S, Ma S, et al, Nanoporous copper– Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO_2 to Ethylene and Ethanol, Journal of the American Chemical Society, 2018 140 5791-5797. [96] Lu Q, Rosen J, Zhou Y, et al, A selective and efficient electrocatalyst for carbon dioxide reduction, Nature Communications, 2014 5 3242.

[97] Yu H, Zhou T, Wang Z, et al, Defect-Rich Porous platinum Metallene for Enhanced Alkaline Oxygen Reduction Electrocatalysis, Angewandte Chemie International Edition, 2021 60 12027-12031.

[98] Seh Z W, Kibsgaard J, Dickens C F, et al, Combining theory and experiment in electrocatalysis: Insights into materials design, Science, 2017 355 eaad4998.

[99] Wang W, Lv F, Lei B, et al, Tuning Nanowires and Nanotubes for Efficient Fuel - Cell Electrocatalysis, Advanced Materials, 2016 28 10117-10141.

View Article Online DOI: 10.1039/D4NR05000B

Published on 12 apríl 2025. Downloaded by Fail Open on 7.5.2025 08:18:28

[100] Zeb Gul Sial M A, Ud Din M A, Wang X, Multimetallic nanosheets: synthesis and applications in fuel cells, Chemical Society Reviews, 2018 47 6175-6200.

[101] Iqbal M, Kaneti Y V, Kim J, et al, Chemical Design of platinum-Based Nanoarchitectures for Catalytic Applications, Small, 2019 15 1804378.

[102] Prabhu P, Lee J-M, Metallenes as functional materials in electrocatalysis, Chemical Society Reviews, 2021 50 6700-6719.
[103] Sun L, Lv H, Feng J, et al, Noble-Metal-Based Hollow Mesoporous Nanoparticles: Synthesis Strategies and Applications, Advanced Materials, 2022 34 2201954.

[104] Zhang L, Yu S, Zhang J, et al, Porous single-crystalline AuPt@Pt bimetallic nanocrystals with high mass electrocatalytic activities, Chemical Science, 2016 7 3500-3505.

[105] Ye L, Xi S, Li H, et al, Surface Engineering in Mesoporous Single Crystal to Enhance Pseudocapacitance, Advanced Functional Materials, 2020 31 374-384.

[106] Li W, Xie K, Porous Single Crystals at the Macroscale: From Growth to Application, Accounts of Chemical Research, 2023 56 374-384.

[107] Kibria M G, Edwards J P, Gabardo C M, et al, Electrochemical CO_2 Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design, Advanced Materials, 2019 31 1807166.

[108] Li Y, Wang M, Liu X, et al, Catalytic Transformation of PET and CO_2 into High-Value Chemicals, Angewandte Chemie International Edition, 2022 61 e202117205.

[109] Bhattacharjee S, Andrei V, Pornrungroj C, et al, Reforming of Soluble Biomass and Plastic Derived Waste Using a Bias-Free $Cu_{30}Pd_{70}$ Perovskite Pt Photoelectrochemical Device, Advanced Functional Materials, 2021 32 2109313.

[110] Li Y, Sun Y, Qin Y, et al, Recent Advances on Water-Splitting Electrocatalysis Mediated by Noble-Metal-Based Nanostructured Materials, Advanced Energy Materials, 2020 10 1903120.

[111] Chen H, Yang W, Zhang J, et al, Divergent Geminal Alkynylation–Allylation and Acylation-Allylation of Carbenes: Evolution and Roles of Two Transition-Metal Catalysts, Journal of the American Chemical Society, 2024 146 4727-4740.

[112] Liang Y, Wang J, Liu D, et al, Ultrafast Fenton-like reaction route to FeOOH/NiFe-LDH heterojunction electrode for efficient oxygen evolution reaction, Journal of Materials Chemistry A, 2021 9 21785-21791.

[113] Wang C, Jin L, Shang H, et al, Advances in engineering RuO_2 electrocatalysts towards oxygen evolution reaction, Chinese Chemical Letters, 2021 32 2108-2116.

[114] Zhang W, Jiang X, Dong Z, et al, Porous Pd/NiFeO_x Nanosheets Enhance the pH-Universal Overall Water Splitting, Advanced Functional Materials, 2021 31 2107181.

[115] Zhang X, Yan F, Ma X, et al, Regulation of Morphology and Electronic Structure of FeCoNi Layered Double Hydroxides for Highly Active and Stable Water Oxidization Catalysts, Advanced Energy Materials, 2021 11 2102141.

[116] Zhang Z, Wang C, Ma X, et al, Engineering Ultrafine NiFe-LDH into Self-Supporting Nanosheets: Separation-and-Reunion Strategy to Expose Additional Edge Sites for Oxygen Evolution, Small, 2021 17 2103785.

Data availability

No primary research results, software or code have been included and no new data were generated or analyzed as part of this review.