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ABSTRACT	
	
	 With	the	avalanche	of	DNA/RNA	sequences	generated	in	the	post‐genomic	age,	it	
is	urgent	to	develop	automated	methods	for	analyzing	the	relationship	between	the	
sequences	and	their	functions.	Towards	this	goal,	a	series	of	sequence‐based	
methods	have	been	proposed	and	applied	to	analyze	various	character‐unknown	
DNA/RNA	sequences	in	order	for	in‐depth	understanding	their	action	mechanisms	
and	processes.	Compared	with	the	classical	sequence‐based	methods,	the	pseudo	
nucleotide	composition	or	PseKNC	approach	developed	very	recently	has	the	
following	advantages:	(1)	it	can	convert	length‐different	DNA/RNA	sequences	into	
dimension‐fixed	digital	vectors	that	can	be	directly	handled	by	all	the	existing	
machine‐learning	algorithms	or	operation	engines;	(2)	it	can	contain	the	desired	
features	and	properties	according	to	the	selection	or	definition	of	users;	(3)	it	can	
cover	considerable	sequence	pattern	information,	both	local	and	global.	This	
minireview	is	focused	on	the	concept	of	pseudo	nucleotide	composition,	its	
development	and	applications.	
	
1.	INTRODUCTION	
	
	 The	explosive	growth	of	genomic	sequences	provides	an	unprecedented	
opportunity	to	explore	genetic	variability	and	biological	function	of	organisms	from	
a	very	fundamental	point.	In	genome	analysis,	the	information	is	generally	given	by	
a	statistical	distribution	of	sequence	segments.	So	far,	many	methods	have	been	
proposed	to	decode	the	complicated	genomes	or	DNA/RNA	therein	1‐3.	However,	
most	of	the	existing	methods	were	merely	based	on	the	nucleic	acid	composition	or	
some	short‐range	or	local	sequence	order	effect	without	taking	into	account	the	
physicochemical	properties	of	nucleotide	and	the	long‐range	or	global	sequence	
order	effect.	
	
	 DNA/RNA	sequences	consist	of	four	nucleotides	(A,	C,	G	and	T/U).	Thus,	
according	to	the	formula	given	in	4,	for	a	sequence	of	only	60	nucleotides,	the	
number	of	different	combinations	of	the	four	nucleotides	would	be	
460  1060log4 1.3289 1036 .		Actually,	the	length	of	DNA/RNA	sequences	is	much	
longer	than	60,	and	hence	the	number	of	different	combinations	will	be	

�1.3289 1036 .		For	such	an	astronomical	number	it	is	impracticable	to	construct	a	
reasonable	training	dataset	to	statistically	cover	all	the	possible	different	sequence‐
order	patterns.	Besides,	DNA/RNA	sequences	vary	widely	in	length,	which	poses	an	
additional	difficulty	for	incorporating	the	sequence‐order	information	in	both	the	
benchmark	dataset	construction	and	algorithm	formulation.	Facing	such	a	dilemma,	
can	we	find	an	approach	to	partially	incorporate	the	sequence‐order	effects?	
	
	 Actually,	similar	problem	also	occurred	in	dealing	with	protein/peptide	
sequences.	To	address	it,	the	pseudo	amino	composition	4,	5	or	PseAAC	6,	7	was	
proposed.	In	PseAAC,	a	series	of	correlation	factors	along	a	protein/peptide	chain	is	
introduced	to	approximately	reflect	its	sequence	order	effect.	Ever	since	the	concept	
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of	PseAAC	was	proposed	in	2001	5,	it	has	rapidly	penetrated	into	nearly	all	the	areas	
of	computational	proteomics,	as	reflected	by	the	fact	that	in	the	papers	8‐160,	their	
titles	contain	either	“pseudo	amino	acid	composition”	5	or	“PseAAC”	115,	clearly	
indicating	they	were	the	key	approaches	for	all	these	studies	in	various	areas	of	
computational	proteomics.	Recently,	PseAAC	was	selected	as	one	of	the	key	topics	in	
a	special	issue	for	drug	development	and	biomedicine	161.	Its	impact	to	medicinal	
chemistry	was	also	reported	in	a	recent	review	article	162	in	a	special	issue	163.		
	
	 Stimulated	and	encouraged	by	the	successes	of	PseAAC	in	dealing	with	
protein/peptide	sequences,	the	pseudo	nucleotide	composition	or	PseKNC	was	
introduced	to	predict	methylation	status	of	human	DNA	sequences	164,	identifying	
recombination	spots	145,	165,	predicting	promoters	166,	167,	identifying	translation	
initiation	site	in	human	genes	168,	identifying	splicing	sites	169,	predicting	CpG	island	
methylation	status	170,	predicting	DNase	I	hypersensitive	sites	171,	predicting	
nucleosome	positioning	in	genomes	172,	173,	identifying	microRNA	precursor	174,	175,	
and	predicting	DNA	methylation	sites	176.		
	
	 The	present	minireview	is	to	summarize	the	progresses	of	using	PseKNC	to	deal	
with	DNA/RNA	sequences	in	developing	various	methods	for	genome	analysis,	with	
the	focus	on	those	for	which	a	publically	accessible	web‐server	has	also	been	
established.	
	
			
2.	PSEUDO	NUCLEOTIDE	COMPOSITION	
	
2.1.	Concept	and	Formulation	
	
	 Similar	to	the	formulation	where	a	protein/peptide	sequence	is	denoted	by	P	72,	
here	we	use	D/R	to	represent	a	DNA/RNA	sequence;	i.e.		

	 	 	 (1)		

where	L	represents	the	length	of	a	DNA/RNA	sequence	or	the	number	of	its	
constituent	nucleic	acid	residues,	and	

	 (2)	

denotes	the	nucleic	acid	residue	at	the	 i-th	sequence	position,	and		is	a	symbol	in	
the	set	theory	meaning	“member	of”.	Also,	similar	to	the	general	form	of	PseAAC	72	
for	protein/peptide	sequences,	the	general	form	of	PseKNC	can	be	formulated	as	

	 	 		 (3)	

where	T	is	the	transposing	operator,	the	subscript	Z	is	an	integer,	and	its	value	and	
the	components	 	will	depend	on	how	to	extract	the	desired	features	
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and	properties	from	the	DNA/RNA	sequence	(cf.	Eq.1).	The	form	of	Eq.3	can	cover	
all	the	existing	modes	of	PseKNC,	as	illustrated	below.	

	 When		

	 	


u
 f

u
K-tuple

Z  4K






		 (4)	

where	 f
u
K-tuple 	is	theu-th component	of	the	K‐tuple	nucleotide	

composition	for	a	DNA/RNA	sequence	(cf.	Eq.1),	we	immediately	obtain	the	
formulation	of	the	K‐tuple	nucleotide	composition	(see	Eq.6	of	177).		

	 When	

	 	


u


fu
 K-tuple

f
i
K-tuple

i1

4K

  w 
j

j1




(1 u  4K )

w
u4K

f
i
 K-tuple

i1

4K

  w 
j

j1




(4K +1 u  4K +)

















		 (5)	

we	obtain	the	formulation	of	the	type‐1	PseKNC	(see	Eq.11	of	177).	The	component	of	


j
in	Eq.5	is	defined	by	

	 	 		 (6)	

where	1 	is	called	the	first‐tier	correlation	or	coupling	factor	introduced	to	reflect	
the	sequence	order	correlation	between	all	the	most	contiguous	K‐tuple	nucleotides	
along	the	DNA	sequence	(Fig.1a);	2 	is	the	second‐tier	correlation	factor	used	to	
reflect	the	sequence	order	correlation	between	all	the	second	most	contiguous	K‐
tuple	nucleotides	(Fig.1b);	3 	the	third‐tier	correlation	factor	used	to	reflect	the	
sequence	order	correlation	between	all	the	third	most	contiguous	K‐tuple	
nucleotides	(Fig.1c);	and	so	forth.	The	number	 	is	an	integer	used	to	reflect	the	
correlation	rank	(or	tier)	and	hence	must	be	smaller	than	(L‐K).		

Page 4 of 36Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 5

	
	 	 When		

	 	


u


fu
 K-tuple

f
i
K-tuple

i1

4K

  w 
j

j=1




(1 u  4K )

w
u4K

f
i
 K-tuple

i1

4K

  w 
j

j=1




(4K +1 u  4K  )

















		 (7)	

we	obtain	the	formulation	of	the	type‐2	PseKNC	(see	Eq.15	in	177).	The	component	of	


j
in	Eq.7	is	defiled	by	(cf.	Fig.2)	

	

	 	

	 	 		 (8)	

	 It	is	instructive	to	point	out	that	with	the	general	formulation	of	Eq.3,	PseKNC	
can	cover	much	more	properties,	features	and	their	intrinsic	patterns,	such	as	
distance‐pair	composition	174,	secondary	structure	status	derived	from	Vienna	RNA	
structure	server	178,	and	the	corresponding	long‐range	or	global	order	information	
used	recently	in	identifying	microRNA	precursors	174,	175,	179,	180.		
	 	
2.2.	Physicochemical	Property	of	Nucleotides	

	 In	Eq.6	the	correlation	function	is	given	by	

	 		 (9)	
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where	R i and	all	the	other	symbols	of	its	kind	can	be	any	valid	nucleic	acid	A,	C,	G,	or	

T/U	(cf.	Eq.1);	 is	the	numerical	value	of	the	-th 	physicochemical	

property	for	the	K‐tuple	nucleotide	 	in	a	DNA/RNA	sequence,	and	

	the	corresponding	value	for	the	K‐tuple	nucleotide	

,	while		is	the	total	number	of	the	correlation	functions	counted.	
As	we	can	see	from	Eq.9,	the	different	physicochemical	properties	considered	are	
taken	into	account	via	a	parallel	manner,	and	hence	the	type‐1	PseKNC	belongs	to	
the	parallel	type	51.				
	 	
	 In	Eq.8,	the	correlation	function	is	given	by	

	 	

		 (10)	

where H  has exactly the same meaning as defined in Eq9; i.e., it is associated with the 

physicochemical properties of the K-tuple nucleotide concerned. As	we	can	see	from	
Eq.10,	the	different	physicochemical	properties	considered	are	taken	into	account	
via	a	series	manner,	and	hence	the	type‐2	PseKNC	belongs	to	the	series	type	4.	For	
both	the	parallel	and	series	types,	there	are	many	choices	to	select	the	desired	
physicochemical	properties,	as	will	be	further	discussed	later.	
	
2.3.	Optimizing	the	Parameters	of	PseKNC		
	

As	it	is,	there	are	three	uncertain	parameters	in	the	PseKNC	formulation.	The	1st	
one	is	K,	which	reflects	the	sequence	pattern	within	the	segment	of	K	nucleotides	for	
DNA/RNA	sequences.	As	we	can	see	from	Eqs.3‐4,	the	dimension	of	PseKNC	
increases	rapidly	with	the	value	of	K.	For	example,	when	K  7 ,	i.e.,	the	sequence	
order	information	considered	is	confined	within	a	segment	of	seven	nucleotides,	the	
dimension	of	the	corresponding	PseKNC	would	be	Z  47  16,384 .	Such	a	high	
dimension	will	cause	the	high‐dimension	disaster	181	as	reflected	by	the	following	
disadvantages:	(i)	the	overfitting problem	that	will	make	the	predictor	with	a	
serious	bias	and	extremely	low	capacity	for	generalization;	(ii)	the	information	
redundancy	or	noise	that	will	bring	about	the	error	of	misrepresentation	resulting	
in	very	poor	prediction	accuracy;	and	(iii)	unnecessarily	increasing	the	
computational	time.	Thus,	in	practical	application,	the	scope	of	K	is	generally	set	at	2,	
3,	or	4.	Accordingly,	the	K‐tuple	nucleotide	approach	can	only	be	used	to	reflect	the	
short‐range	or	local	sequence	order	information	for	DNA/RNA	sequences.	The	
second	parameter	in	PseKNC	formulation	is	 ,	which	stands	for	the	number	of	the	
total	counted	tiers	of	the	long‐range	correlations	along	a	DNA/RNA	sequence,	and	
hence	is	used	for	the	global	sequence	pattern	information.	As	shown	in	Figs.1‐2,	the	
maximum	number	allowed	for	 	in	a	DNA/RNA	sequence	(Fig.1)	is	 (L - K) .	The	
third	parameter	in	PseKNC	formulation	is	the	weight	factor	w,	which	is	used	to	
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adjust	the	weight	between	the	local	and	global	sequence	pattern	effects	(cf.	Eq.5	or	
Eq.7),	and	its	value	is	within	the	range	of	0  w 1.		

In	a	brief	way,	the	three	parameters	and	their	roles	in	PseKNC	can	be	
formulated	as	

	

	 	

K, number of nearest nucleotides for local pattern

, number of correlation tiers for global pattern

w, weight to adjust the effcts of K and  

 










	 (11)

	 	

and	their	values	are	determined	via	a	optimization	process	with	respect	to	various	
concrete	problems	and	hence	the	final	results	will	be	case	by	case.		 		
 				
3.	APPLICATIONS	
	
	 Genome	analysis	can	help	in‐depth	understanding	many	complicated	biological	
processes	in	cell	network,	and	reveal	the	molecular	mechanisms	of	genetic	diseases	
or	disorders.	Therefore,	it	is	highly	demanded	from	both	basic	research	and	drug	
development	to	develop	sequence‐based	tools	to	timely	perform	genome	analyses	
on	uncharacterized	DNA/RNA	sequences.	Listed	below	are	some	recent	reports	of	
using	the	PseKNC	approach	to	conduct	genome	analyses.	
	
3.1.	Identify	Recombination	Spots	
	
	 Meiosis	and	recombination	are	the	two	opposite	aspects	coexisting	in	a	DNA	
system	(Fig.3).	They	are	two	indispensible	aspects	for	cell	reproduction	and	growth.	
The	process	of	meiosis	is	a	special	type	of	cell	division	by	which	the	genome	is	
divided	in	half	to	generate	daughter	cells	for	participating	in	sexual	reproduction,	
while	the	process	of	recombination	is	to	produce	single‐strand	ends	that	can	invade	
the	homologous	chromosome.	Therefore,	a	combination	of	the	two	processes	plays	a	
very	important	role	in	driving	the	evolution	via	generating	natural	genetic	
variations.	Interestingly,	rather	than	in	a	random	manner	across	a	genome,	the	
recombination	occurs	with	higher	probability	in	some	genomic	regions	called	
“hotspots”,	while	with	lower	probability	in	those	called	“coldspots”.	Identification	of	
recombination	spots	(hotspots)	may	provide	very	useful	information	for	in‐depth	
understanding	the	reproduction	and	growth	of	cells.	Using the concept and approach 
of PseKNC, two predictors were developed for identifying the	recombination	spots	in	
DNA.	One	is	called	“iRSpot‐PseDNC”	165	and	the	other	called	“iRSpot‐TNCPseAAC”	145.	
Also,	a	publically	accessible	web‐server	for	each	of	the	two	predictors	has	been	
established.	Their	website	addresses	are	given	in	Table	1.	Particularly,	their	success	
rates	in	identifying	the	recombination	spots	are	remarkably	higher	than	the	method	
in	which	only	the	k‐mar	frequencies	were	used	to	incorporate	the	short‐range	or	
local	sequence	order	effects	182.		

  
3.2.	Identify	Nucleosome	Positioning	
	
 The	basic	unit	of	eukaryotic	chromatin	is	nucleosome,	which	contains	a	147	
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bp	core	DNA	183	tightly	wrapped	in	1.67	left‐handed	superhelical	turns	around	a	
histone	octamer	(Fig.4).	Participating	in	many	cellular	activities,	nucleosomes	play	
significant	roles	in	these	biological	processes.	Facing	the	explosive	growth	of	
genome	sequences	discovered	in	the	postgenomic	age,	it	is	highly	demanded	to	
develop	high	throughput	tools	for	rapidly	and	effectively	identifying	the	nucleosome	
positioning	sequences.	Using	the	concept	and	approach	of	PseKNC,	two	web‐server	
predictors,	named	“iNuc‐PhysChem”	172	and	“iNuc‐PseKNC”	173,	were	developed	to	
identifying	nucleosome	positioning	in	genome.	Also,	their	web‐servers	have	been	
established,	as	listed	in	Table	1.	Again,	the	predictors	thus	obtained	have	
remarkably	outperformed	the	previous	ones	(see,	e.g.,	184,	185).	

	
3.3.	Predict	Promoters	
	
	 Promoter	is	a	region	of	DNA	that	determines	the	transcription	of	a	particular	
gene.	Based	on	the	discrete	wavelets	transform	and	PseKNC,	Zhou	et	al.	166	develop	a	
method	to	predict	promoters.	The	sigma‐54	promoters	(Fig.5)	are	unique	in	
prokaryotic	genome	and	responsible	for	transcripting	carbon	and	nitrogen‐related	
genes.	Recently,	using	PseKNC	and	incremental	feature	selection	technique,	Lin	et	al.	
167	developed	a	predictor,	called	“iPro54‐PseKNC”,	for	identifying	sigma‐54	
promoters	in	prokaryote.	Its	web‐server	is	given	in	Table	1	as	well.	Compared	with	
the	corresponding	previous	work	186	without	using	PseKNC,	iPro54‐PseKNC	167	is	
much	more	accurate	and	catch	the	real	features	of	sigma‐54	promoters.		
	
3.4. Identifying	Translation	Initiation	Sites	
	
	 Translation	is	a	key	process	for	gene	expression,	by	which	the	information	
carried	by	the	messenger	RNA	(mRNA)	is	decoded	by	ribosome	complex	to	produce	
a	specific	protein	(or	peptide)	chain	according	to	the	rules	specified	by	the	genetic	
code.	Translation	proceeds	in	four	phases:	(1)	initiation,	(2)	elongation,	(3)	
translocation,	and	(4)	termination	187.	As	illustrated	in	Fig.6,	during	the	first	
initiation	process,	a	proper	start	position	on	the	mRNA	will	be	identified.	The	region	
at	which	the	translation	initiated	is	called	the	Translation	Initiation	Site	(TIS).	
Timely	identification	of	TIS	is	very	important	for	conducting	in‐depth	genome	
analysis.	It	is	by	the	genetic	translation	process	that	the	information	carried	by	the	
messenger	RNA	(mRNA)	is	decoded	by	ribosome	complex	to	produce	a	specific	
protein	(or	peptide)	chain	according	to	the	rules	specified	by	the	genetic	code.	
Recently,	by	means	of	the	PseKNC	approach,	a	predictor	called	“iTIS‐PseTNC”	was	
developed	for	identifying	TIS	site	in	human	genes	168.	The	corresponding	web‐server	
has	also	been	established,	and	its	website	address	is	given	in	Table	1.	The	success	
rates	achieved	by	iTIS‐PseTNC	168	are	higher	than	those	by	StartScan 188.	To	our	best	
knowledge,	the	latter	was	the	best	predictor	in	identifying	the	human	TIS	prior	to	
the	appearing	of	iTIS‐PseTNC	168.		
	
3.5.	Predict	DNA	Methylation	Status	and	Sites	
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 9

	 Predominantly	occurring	on	cytosine	within	a	CG	dinucleotide,	DNA	methylation	
is	a	covalent	modification	of	DNA	catalyzed	by	DNA	methyltransferase	enzyme	
(DNMT)	(Fig.7).	The	DNA	methylation	sites	are	occupied	by	various	proteins,	
including	methyl‐CpG	binding	domain	(MBD)	proteins;	the	MBD‐containing	proteins	
can	recruit	varieties	of	histone	deacetylase	(HDAC)	complexes	and	chromatin	
remodeling	factors,	causing	chromatin	compaction	and	transcriptional	repression	as	
well.	By	either	impeding	the	binding	of	transcriptional	proteins	to	the	gene	or	
bonding	to	the	MBD,	DNA	methylation	may	affect	the	transcription	of	genes.	It	plays	
a	significant	role	for	epigenetic	gene	regulation	in	life	development;	it	also	plays	a	
crucial	role	in	developing	nearly	all	types	of	cancer.	Therefore,	knowledge	of	DNA	
methylation	sites	is	important	for	both	basic	research	and	drug	development.	To	
meet	such	demand,	a	web‐server	predictor	called	“iDNA‐Methyl”	176	was	developed,	
and	its	web‐site	address	is	given	in	Table	1.	Meanwhile,	by	using	the	PseKNC	
approach	as	well,	a	method	for	predicting	the	methylation	status	of	human	DNA	
sequences	164	and	a	method	for	predicting	the	CpG	island	methylation	status	170	
were	also	developed.	It	is	interesting	to	note	that	the	model	trained	on	the	data	from	
CD4+	T	lymphocyte	cell	was	also	applicable	to	other	human	tissues/cell	types	and	
that	the	predictive	accuracy	by	the	model	of	using	PseKNC	170	are	higher	than	that	by	
only	using	the	trinucleotide	composition.	
	
3.6.	Detect	Splicing	Sites		
	
 In	eukaryotic	genomes,	exons	that	code	for	proteins	are	typically	interrupted	by	
introns,	the	non‐coding	regions	of	genes.	The	borders	between	exons	and	introns	
are	called	splice	sites	(Fig.8).	A	splice	site	can	be	located	at	either	the	upstream	or	
the	downstream	part	of	an	intron.	For	the	former,	it	is	called	the	5’	splice	site	or	
donor	site;	for	the	latter,	it	is	called	the	3’	splice	site	or	acceptor	site.	The	vast	
majority	of	the	donor	and	acceptor	sites	are	canonical	or	regular	splice	sites	that	are	
characterized	by	the	presence	of	the	GT	and	AG,	respectively.	During	RNA	splicing,	
both	the	donor	and	acceptor	sites	will	be	recognized	by	a	large	macromolecule	
called	spliceosome	that	is	comprised	of	more	than	300	proteins	and	five	small	
nuclear	RNAs	(snRNAs	U1,	U2,	U4,	U5,	and	U6)	189.	Once	the	splice	sites	are	
recognized,	the	spliceosome	will	remove	introns	through	two	sequential	
transesterification	reactions	(Fig.8).	Removing	introns	from	precursor	messenger	
RNA	(pre‐mRNA)	so	that	exons	can	be	joined	together	to	form	mature	mRNA	is	an	
essential	step	of	gene	expression.	Therefore,	to	better	understand	the	splicing	
process	and	mechanism,	it	is	important	to	accurately	detect	the	splice	sites	in	the	
genome.	To	address	this,	a	predictor	called	“iSS‐PseDNC”	169	was	developed	for	
detecting	the	splice	sites	by	incorporating	the	six	DNA	local	structural	properties	
into	the	PseKNC	formulation.	Of	the	six	properties,	three	are	local	translational	
(slide,	shift,	and	rise)	and	three	local	angular	(roll,	tilt,	and	twist).	Meanwhile,	it	was	
observed	that	the	accuracy	based	on	the	dinucleotide	composition	alone	is	lower	
than	that	based	on	the	pseudo	dinucleotide	composition	169,	once	again	indicating	
the	importance	of	global	sequence	order	effects	incorporated	in	PseKNC	177,	190.			
	
3.7.	Identify	DNase	I	hypersensitive	Sites		
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	 DNase	I	hypersensitive	sites	(DHSs)	are	those	chromatin	regions	in	genome	
where	the	structural	density	is	loose	and	exposing,	making	them	accessible	by	
DNase	I	enzyme	to	degrade	the	structure.	Therefore,	DHSs	are	sensitive	to	the	
cleavage,	and	they	are	associated	with	a	wide	variety	of	regulatory	DNA	elements.	
Knowledge	about	the	locations	of	DHS	is	helpful	for	deciphering	the	function	of	non‐
coding	genomic	regions.	In	view	of	this,	a	method	was	proposed	to	identify	DHS	
with	PseKNC	171.	

	
3.8.	Identify	microRNA	Precursors		
	
	 Being	a	small	non‐coding	RNA	molecule,	the	microRNA	(miRNA)	plays	an	
important	role	in	transcriptional	and	post‐transcriptional	regulation	of	gene	
expression.	So	far	over	1000	miRNAs	have	been	encoded	by	the	human	genome,	and	
hence	they	are	widely,	although	still	poorly	characterized,	deemed	as	important	
regulators.	They	are	also	involved	in	many	other	important	biological	processes,	
such	as	translation	of	mRNAs,	affecting	stability,	and	negatively	regulating	gene	
expression	in	post‐transcriptional	processes	(Fig.10).	It	has	been	observed	in	many	
cancers	and	other	disease	states	that	there	exist	abnormal	expressions	of	miRNAs,	
implying	that	they	are	deeply	involved	in	these	diseases,	particularly	in	
carcinogenesis.	Accordingly,	discriminating	the	real	pre‐miRNAs	from	the	false	ones	
(such	as	hairpin	sequences	with	similar	stem‐loops)	is	important	for	both	basic	
research	and	miRNA‐based	therapy.	Base	on	the	concept	of	PseKNC,	two	predictors	
were	developed	for	identifying	the	real	pre‐miRNAs	or	true	microRNA	precursors:	
One	is	called	“iMcRNA”	175,	and	one	called	“iMiRNA‐PseDPC”	174.	The	corresponding	
web‐servers	have	also	been	established,	and	their	website	addresses	are	given	in	
Table	1.			
	
	 Because	the	PseKNC	approaches	have	been	increasingly	used,	recently	three	
flexible	web‐servers	have	been	established	177,	190,	191,	and	their	website	addresses	
are	given	below	

	 	

PseKNC http://lin.uestc.edu.cn/pseknc/default.aspx 

repDNA http://bioinformatics.hitsz.edu.cn/repDNA/

PseKNC-General http://lin.uestc.edu.cn/server/pseknc









		 (12)	

where	the	PseKNC	web‐server	177	contains	38	and	12	built‐in	physicochemical	
properties	for	dinucleotides	and	trinucleotides,	respectively,	which	can	be	selected	
by	users	to	generate	their	desired	modes	of	PseKNC	for	DNA	sequences;	the	repDNA	
web‐server	191	can	generate	various	modes	of	PseKNC	for	DNA	sequences	by	
incorporating	user‐defined	physicochemical	properties	and	sequence‐order	effect;	
the	PseKNC‐General	web‐server	allows	users	to	select	their	desired	ones	from	more	
than	100	built‐in	physicochemical	properties	to	generate	PseKNC	for	both	DNA	and	
RNA	sequences,	and	it	also	allows	users	to	calculate	PseKNC	with	the	properties	
defined	by	their	own.	
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4.	SOME	REMARKS	ON	COMPUTATIONAL	GENOME	ANALYSIS	
	
4.1.	Metrics	for	Measuring	the	Prediction	Quality	
	
	 In	conducting	genome	analysis,	we	are	often	facing	a	binary	(two‐lass)	
classification	problem;	i.e.,	for	a	given	segment	or	site	of	DNA/RNA	sequence,	
whether	its	outcome	is	positive	or	negative	such	as	those	listed	in	the	1st	or	2nd	
column	of	the	following	equation			

	 	

Recombination hotspot Recombination coldspot

Nucleosome linker
Promoter Non-promotor

Translational initiation site Non-TIS
Methylation site Non-methylationsite

Splicing site Non-splicing site

Hypersensitive site Non-hypersensitive site

True pre-miRNA False pre-miRNA



















		 (13)	 	

To	this	kind	of	binary	classification	problem,	the	following	set	of	metrics	were	often	
used	to	measure	the	prediction	quality	

	 	

Sn 
TP

TP+FN
                                                   

Sp 
TN

TN+FP
                                                   

Acc 
TP+TN

TP+TN+FP+FN
                                   

MCC 
(TP  TN) (FP  FN)

(TP+FP)(TP+FN)(TN+FP)(TN+FN)



















		 (14)	

where	TP	represents	the	true	positive;	TN,	the	true	negative;	FP,	the	false	positive;	
FN,	the	false	negative;	Sn,	the	sensitivity;	Sp,	the	specificity;	Acc,	the	accuracy;	MCC,	
the	Mathew’s	correlation	coefficient	192.	The	metrics	formulated	in	Eq.14	is	not	
easy‐to‐understand	for	most	experimental	scientists,	and	hence	here	we	would	
prefer	to	use	the	following	formulation	as	done	in	a	series	of	recent	publications	
(see,	e.g.,	133,	134,	146,	148,	149,	193):	
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Sn  1
N



N  , 0  Sn 1

Sp  1
N



N  , 0  Sp 1

Acc  1
N

  N


N   N  , 0  Acc 1

MCC =  

1
N



N  
N



N 







1
N

  N


N 





 1

N
  N



N 







, 1 MCC 1






















			 (15)	

where	N  is	the	total	number	of	the	positive	samples	investigated	while	N
 	the	

number	of	positive	samples	incorrectly	predicted	to	be	of	negative	sample;	N  the	

total	number	of	the	negative	samples	investigated	while	N
 the	number	of	the	

negative	samples	incorrectly	predicted	to	be	of	positive	sample.	According	to	Eq.15	
we	can	easily	see	the	following.	When	N

  0 	meaning	none	of	the	positive	samples	

was	mispredicted	to	be	negative,	we	have	the	sensitivity	Sn  1;	while	N
  N  	

meaning	that	all	the	positive	samples	were	mispredicted	negative,	we	have	the	
sensitivity	Sn  0 .	Likewise,	when	N

  0 	meaning	none	of	the	negative	sample	

was	mispredicted,	we	have	the	specificity	Sp  1;	while	N
  N meaning	all	the	

negative	sample	were	incorrectly	predicted	to	be	of	positive	sample,	we	have	the	
specificity	Sp  0 .	When	N

  N
  0 	meaning	that	none	of	the	positive	samples	

and	none	of	the	negative	samples	was	incorrectly	predicted,	we	have	the	overall	
accuracyAcc  1;	while	N

  N  and	N
  N meaning	that	all	the	positive	

samples	and	all	the	negative	samples	were	mispredicted,	we	have	the	overall	
accuracyAcc  0 .	The	Matthews	correlation	coefficient	MCC	is	usually	used	for	
measuring	the	quality	of	binary	classifications.	When	N

  N
  0 	meaning	that	

none	of	the	positive	samples	and	none	of	the	negative	samples	was	mispredicted,	we	
have	MCC  1;	when	N

  N  / 2 	and	N
  N  / 2we	have	MCC  0 	meaning	no	

better	than	random	prediction;	when	N
  N  and	N

  N we	have	MCC  1	
meaning	total	disagreement	between	prediction	and	observation.	As	we	can	see	
from	the	above	discussion,	it	is	much	more	intuitive	and	easier‐to‐understand	when	
using	Eq.15	to	examine	a	predictor	for	its	four	metrics,	particularly	for	its	Mathew’s	
correlation	coefficient.		
	

Note	that,	of	the	four	metrics	in	Eq.14	or	15,	the	most	important	for	a	predictor	
are	Acc	and	MCC:	the	former	stands	for	its	overall	success	rate,	and	the	latter	for	its	
stability;	in	contrast,	the	other	two	metrics	Sn	and	Sp	are	used	only	for	its	the	partial	
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success	rates	at	different	angles.	Therefore,	it	is	usually	by	optimizing	the	Acc	and	
MCC	to	determine	the	three	parameters	of	Eq.11.		

	
Also,	it	should	be	pointed	out	that	the	metrics	given	in	Eqs.14‐15	are	valid	only	

for	the	single‐label	systems;	for	the	multi‐label	systems	(see,	e.g.,	194‐201,	we	should	
use	a	set	of	more	complicated	metrics	as	defined	by	Eq.16	of	a	review	paper	202.	
	
4.2.	Optimizing	Imbalanced	Training	Datasets		
	
	 Many	existing	predictors	developed	for	conducting	genome	analysis	were	
trained	by	a	skewed	training	dataset	in	which	the	number	of	the	negative	samples	is	
overwhelmingly	larger	than	that	of	the	positive	ones.	For	example,	in	the	benchmark	
dataset	used	to	train	the	predictor	iMcRNA	175	for	identifying	the	microRNA	
precursors,	there	were	1,612	true	pre‐miRNAs	or	positive	samples	and	8,489	false	
pre‐miRNAs	or	negative	samples.	In	other	words,	the	original	benchmark	dataset	is	
very	imbalanced:	the	size	of	the	negative	subset	is	more	than	five	times	the	size	of	
the	positive	subset.	Although	this	might	reflect	the	real	world	where	the	false	pre‐
miRNAs	or	non‐miRNA	precursors	are	always	the	majority	compared	with	the	true	
pre‐miRNAs	or	miRNA	precursors,	a	predictor	trained	with	such	a	skewed	
benchmark	dataset	would	have	the	consequence	that	many	miRNA	precursors	
might	be	mispredicted	as	non‐miRNA	ones	203.	Actually,	what	is	really	most	
intriguing	for	basic	research	and	drug	development	is	the	information	of	the	
positive	samples.	Therefore,	it	is	important	to	find	an	effective	approach	to	optimize	
the	unbalanced	benchmark	dataset	and	minimize	the	consequence	of	this	kind	of	
misprediction.		
	
	 In	the	study	of	identifying	the	microRNA	precursors	175,	to	balance	the	size	of	
negative	subset	with	that	of	positive	one,	the	authors	adopted	the	random	selection	
treatment;	i.e.,	they	randomly	picked	1,612	samples	from	8,489	non‐miRNA	
precursors	to	form	the	negative	subset,	and	make	both	positive	and	negative	
subsets	have	a	same	size.		
	
	 Recently,	a	more	effective	treatment,	the	so‐called	“optimizing	imbalanced	
training	datasets”	(OITD)	treatment	was	introduced	176,	204.	The	OITD	treatment	
consists	of	the	following	two	steps.		
	
	 The	first	step	is	a	subset‐reducing	operation	by	removing	some	redundant	
negative	samples	from	the	negative	subset	via	the	following	three	procedures:	(1)	
for	each	sample	in	the	training	dataset,	find	its	three	nearest	neighbors;	(2)	if	the	
sample	belongs	to	the	negative	subset	and,	of	its	three	nearest	neighbors,	at	lease	
two	belong	to	the	positive	subset,	then	remove	the	sample	from	the	negative	training	
dataset;	(3)	if,	however,	it	belongs	to	the	positive	subset,	then	removed	should	be	
those	of	its	nearest	neighbors	that	belong	to	the	negative	subset.	For	example,	in	the	
study	of	identifying	DNA	methylation	sites	176,	originally	there	were	787	positive	
samples	and	1,639	negative	samples.	It	was	via	the	subset‐reducing	operation	that	
522	negative	samples	were	removed	making	the	negative	subset	only	contain	
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(1,639 522)  1,117 	samples.			
	
	 The	second	step	is	a	subset‐expanding	operation	by	creating	some	hypothetical	
samples	for	the	positive	subsets	via	the	linear	interpolation	scheme,	which	can	be	
likened	to	the	seed‐propagation	approach	in	205	and	the	Monte	Carlo	sampling	
approach	in	206,	207	for	expanding	the	positive	subsets.	In	the	aforementioned	study	
205,	it	was	via	the	subset‐expanding	operation	that	330	positive	hypothetical	
samples	were	created	and	added	into	the	positive	subset	making	it	also	contain	
(787  330)  1,117 samples.		
	
	 As	we	can	see	from	above,	after	the	OITD	treatment,	the	original	skewed	training	
dataset	constructed	for	studying	DNA	methylation	sites	176	has	become	a	perfectly	
balanced	one	with	both	the	positive	and	negative	subsets	having	a	same	size	of	
1,117	samples.		

	 It	is	instructive	to	point	out	that	the	training	dataset	generated	via	the	OITD	
treatment	may	contain	some	hypothetical	data	that	are	not	experiment‐confirmed	
samples.	Will	it	affect	the	objectivity	in	evaluating	the	quality	of	a	predictor	trained	
by	such	a	dataset?	The	answer	is	absolutely	no.	This	is	because	the	data	obtained	via	
the	OITD	treatment	are	only	used	for	training	a	predictor	but	not	for	testing	it.	All	
the	cross‐validations	must	be	carried	out	strictly	based	on,	and	only	on,	the	
experiment‐confirmed	data.	When	doing	cross‐validation	to	test	the	predictor,	only	
the	original	experiment‐confirmed	data	will	be	used.	In	other	words,	none	of	
hypothetical	samples,	such	as	the	330	hypothetical	positive	samples	created	by	the	
subset‐expanding	operation	in	176,	will	be	used	for	testing	the	predictor	in	counting	
its	score.	But	on	the	other	hand,	all	the	experiment‐confirmed	samples,	including	
those	removed	during	the	subset‐reducing	operation	such	as	the	522	negative	
samples	in	176,	will	be	used	as	tested	data	for	its	score‐counting.	To	realize	this	kind	
of	testing	procedure,	a	special	cross‐validation,	the	so‐called	“target‐jackknife”	test	
was	introduced,	as	elaborated	in	176.		

	 The	advantage	of	using	the	OITD	treatment	to	optimize	the	imbalanced	training	
datasets	is	quite	obvious,	as	shown	in	Table	2.	It	can	be	seen	from	the	table	that,	for	
a	same	prediction	model,	the	one	trained	with	the	dataset	treated	by	OIDT	is	
remarkably	superior	to	the	one	without	such	a	treatment,	particularly	in	the	overall	
success	rate	(Acc)	and	Mathew	Correlation	Coefficient	(MCC).	The	former	stands	for	
the	overall	accuracy	of	a	predictor,	and	the	latter	for	its	stability.		
	
5.	CONCLUSIONS	AND	FUTURE	EFFORTS	
	
	 Being	an	extension	of	pseudo	amino	acid	composition	or	PseAAC	used	to	
formulate	the	samples	of	protein/peptide	sequences,	the	pseudo	K‐tuple	nucleotide	
composition	or	PseKNC	can	be	used	to	formulate	the	samples	of	DNA/RNA	
sequences.		As	demonstrated	by	a	series	of	reports	8‐160,	PseAAC	has	been	widely	
used	in	many	areas	of	computational	proteomics,	it	is	anticipated	that	PseKNC	will	
be	increasingly	and	widely	used	in	various	areas	of	computational	genetics	and	
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genomics	as	well.	
	
	 Particularly,	with	the	development	of	RNA	sequencing	technology,	more	and	
more	non‐coding	RNA	transcripts	(such	lncRNAs)	will	be	available.	In	our	future	
work,	we	will	apply	the	PseKNC	to	this	realm.	
	
	 As	pointed	out	in	7,	208,	user‐friendly	and	publicly	accessible	web‐servers	
represent	the	future	direction	for	developing	practically	more	useful	analysis	
methods	and	predictors,	we	shall	make	efforts	to	also	establish	a	web‐server	for	
predicting	the	CpG	island	methylation	status	170,	detecting	the	splicing	sites	169,	and	
identifying	DNase	I	hypersensitive	sites	171,	as	mentioned	in	Section	3.	
	 	
	 In	conducting	genome	analyses,	we	are	often	facing	the	highly	imbalanced	or	
skewed	datasets,	in	which	the	negative	samples	are	overwhelmingly	larger	than	the	
positive	ones.	The	method	Optimizing	Imbalanced	Training	Datasets	or	OITD	
treatment	developed	very	recently	is	a	very	effective	approach	to	deal	with	this	kind	
of	problems.	We	shall	adopt	the	OITD	treatment	to	improve	the	web‐serves	listed	in	
Table	1	as	well	as	to	develop	new	methods	for	genome	analyses.	
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Table	1.	List	of	web‐servers	developed	with	PseKNC	for	genome	analysis	and	their	
website	addresses.		

Server’s	name	 Target	 Website	address	

iRSpot‐PseDNCa	 Recombination	
spot	

http://lin.uestc.edu.cn/server/iRSpot‐PseDNC		

iRspot‐TNCPseAACb	
Recombination	
spot	

http://www.jci‐bioinfo.cn/iRSpot‐TNCPseAAC		

iNuc‐PhysChemc	
Nucleosome	
positioning	 http://lin.uestc.edu.cn/server/iNuc‐PhysChem		

iNuc‐PseKNCd	
Nucleosome	
positioning	

http://lin.uestc.edu.cn/server/iNuc‐PseKNC		

iPro54‐PseKNCe	 Promoter	 http://lin.uestc.edu.cn/server/iPro54‐PseKNC		

iTIS‐PseTNCf	
Translation	
initiation	site	

http://lin.uestc.edu.cn/server/iTIS‐PseTNC		

iDNA‐Methylg	
DNA	
methylation	
site	

http://www.jci‐bioinfo.cn/iDNA‐Methyl		

iMcRNAh	
MicroRNA	
precursor	

http://bioinformatics.hitsz.edu.cn/iMcRNA/serv
er		

iMiRNA‐PseDPCi	
MicroRNA	
precursor	

http://bioinformatics.hitsz.edu.cn/iMiRNA‐
PseDPC/		

a	See	165.	
b	See	145.	
c	See	172.	
d	See	173.	
e	See	167.	
f	See	168.	
g	See	176.	
h	See	175.	
i	See	174.	
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Table	2.	A	comparison	of	success	rates	for	predictors	trained	by	the	datasets	before	
and	after	the	OITD	treatment.		

Network 
system 

Status of 
training 
dataset 

Success rates a 

Acc (%) MCC Sn (%) Sp (%) 

Drug-GPCR 

Before 
OIDT 
treatment b 

85.50 0.6775 80.00 88.30 

After OIDT 
treatment c 90.32 0.8066 97.58 86.69 

Drug-
channel 

Before 
OIDT 
treatment d 

87.27 0.7233 86.30 87.76 

After OIDT 
treatment c 88.78 0.7643 91.98 87.17 

Drug-
enzyme 

Before 
OIDT 
treatment e 

91.03 0.8039 90.81 91.14 

After OIDT 
treatment c 92.56 0.8429 95.99 90.84 

Drug-NR 

Before 
OIDT 
treatment f 

89.15 0.7519 79.07 94.19 

After OIDT 
treatment c 93.02 0.8453 91.86 93.60 

a	The	rates	reported	in	this	table	were	obtained	by	the	rigorous	cross‐validations	on	
the	original	experiment‐confirmed	datasets.	
b	The	drug‐GPCR	system	is	for	studying	the	interaction	between	drugs	and	G‐protein	
coupled	receptors	(GPCRs)	in	cellular	networking.	Before	the	OITD	treatment,	the	
training	dataset	used	for	the	predictor	iGPCR‐Drug	129	was	very	unbalanced,	with	
620	positive	samples	and	1,240	negative	samples.	
c	See	204	for	the	details	of	the	corresponding	training	dataset	obtained	after	the	OITD	
treatment.		
d	The	drug‐channel	system	is	for	studying	the	interaction	between	drugs	and	ion	
channels.	Before	the	OITD	treatment,	the	training	dataset	for	the	predictor	iCDI‐
PseFpt	130	contained	1,372	positive	samples	and	2,744	negative	samples.			
e	The	drug‐enzyme	system	is	for	studying	the	interaction	between	drugs	and	
enzymes.	Before	the	OITD	treatment,	the	training	dataset	for	the	predictor	iEzy‐
Drug	209	contained	2,719	positive	and	5,438	negative	samples.			
f	The	drug‐NR	system	is	for	studying	the	interaction	between	drugs	and	nuclear	
receptors.	Before	the	OITD	treatment,	the	training	dataset	for	the	predictor	iNR‐
Drug	210	was	with	2,719	positive	samples	and	5,438	negative	samples.  
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FIGURE	LEGENDS	
	
Figure	1.	A	schematic	drawing	to	show	the	1st	or	parallel	type	of	PseKNC.		Panel	(a)	
reflects	the	correlation	mode	between	all	the	most	contiguous	K‐tuple	nucleotides,	
panel	(b)	that	between	all	the	second‐most	contiguous	K‐tuple	nucleotides,	and	
panel	(c)	that	between	all	the	third‐most	contiguous	K‐tuple	nucleotides.	P1	
represents	the	first	K‐tuple	nucleotide,	i.e.,	R1R2...RK ,	along	the	DNA/RNA	
sequence;	P2	the	second	K‐tuple	nucleotide	 ;	P3	the	third	K‐tuple	

nucleotide	 ;	and	so	forth.	L*  L K 	is	the	maximum	number	allowed	
for	the	K‐tuple	nucleotides	in	a	L‐bp	long	DNA/RNA	sequence.	
	
Figure	2.	A	schematic	drawing	to	show	the	2nd	or	series	type	of	PseKNC.		Panel	
(a1/a2)	reflects	the	correlation	mode	between	all	the	most	contiguous	K‐tuple	
nucleotides,	panel	(b1/b2)	that	between	all	the	second‐most	contiguous	K‐tuple	
nucleotides,	and	panel	(c1/c2)	that	between	all	the	third‐most	contiguous	K‐tuple	
nucleotides,	and	so	forth.		See	the	legend	of	Fig.1	and	the	text	for	further	
explanation.	
	
Figure	3.	An	illustration	to	show	the	process	of	meiosis	and	recombination	in	a	DNA	
system.	
	
Figure	4.	A	schematic	illustration	to	show	the	basic	structure	of	nucleosome.	Each	
nucleosome	consists	of	approximately	147	base	pair	of	DNA	wrapped	�1.67 	turns	
around	a	histone	octamer.	See	the	text	for	further	explanation	
	
Figure	5.	A	schematic	illustration	to	show	the	basic	structure	of	σ54	promoter	and	
its	biological	process.	
	
Figure	6.	A	schematic	map	to	show	the	initiation	region	of	translation	process	
initiates.	
	
Figure	7.	A	schematic	drawing	to	show	the	process	of	DNA	methylation.	
Catalyzed	by	DNA	methyltransferase	(DNMT),	a	methylation	group	(Me)	is	binding	
to	the	base	cytosine	(C)	via	a	covalent	bond.	
	
Figure	8.	A	schematic	drawing	to	show	the	pathways	of	RNA	splicing.	(a)	The	2'OH	
of	the	branchpoint	nucleotide	within	the	intron	(solid	line)	carries	out	a	nucleophilic	
attack	on	the	first	nucleotide	of	the	intron	at	the	5'	splice	site	(GU)	forming	the	lariat	
intermediate.	(b)	The	3'OH	of	the	released	5'	exon	then	performs	a	nucleophilic	
attack	at	the	last	nucleotide	of	the	intron	at	the	3'	splice	site	(AG).	(c)	Joining	the	
exons	and	releasing	the	intron	lariat.	
	
Figure	9.	A	schematic	drawing	to	show	DNase	I	hypersensitive	sites	in	chromatin.		
	
Figure	10.	An	illustration	to	show	biogenesis	of	miRNAs	and	the	process	mRNA	
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degradation.	MiRNA	genes	are	transcribed	by	RNA	polymerase	II,	resulting	in	the	
primary	transcripts	termed	as	pri‐miRNAs,	which	are	typically	60‐70	nucleotides.	
The	pri‐miRNAs	are	processed	by	the	enzyme	drosha	to	release	the	hairpin‐shaped	
intermediates	(pre‐miRNAs),	followed	by	being	exported	into	the	cytoplasm	by	
exportin	V	and	Ran‐GTP	cofactor,	and	then	cleaved	by	the	enzyme	dicer	to	yield	
miRNA/miRNA*	duplexes.	
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Figure	1	

	
	

	
	 	

(a) 

(b) 

(c) 

P1 P2 P3 P4 P5 P6 P7 PL* 

P1 P2 P3 P4 P5 P6 P7 PL* 
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Figure	2	
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Figure	3	
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Figure	4	
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Figure	5	
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Figure	6	
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Figure	7	
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Figure	8	
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Figure	9	
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Figure	100	
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