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Abstract 

Technological advances now enable routine measurement of mRNA and protein abundances, and 

estimates of their rates of synthesis and degradation that inform on their values and the degree of 

change in response to stimuli. Importantly, more and more data on time-series experiments are 

emerging, e.g. of cells responding to stress, enabling first insights into a new dimension of gene 

expression regulation - its dynamics and how it allows for very different response signals across 

genes. This review discusses recently published methods and datasets, their impact on what we 

now know about the relationships between concentrations and synthesis rates of mRNAs and 

proteins in yeast and mammalian cells, their evolution, and new hypotheses on translation 

regulatory mechanisms generated by approaches that involve ribosome footprinting.  
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The different stages of protein expression regulation 

The seemingly simple task of producing a protein molecule from its gene is in fact highly complex. 

Protein production is regulated in multiple, diverse ways which all act in a controlled, but 

stochastic and highly dynamic manner in what we collectively call ‘gene expression regulation’. 

Gene expression regulation involves synthesis of mRNA and protein via transcription and 

translation, respectively, and degradation of the molecules. Both transcription and translation are 

coordinated by many participating factors and pathways. Roughly 2,000 of the ~20,000 protein-

coding genes in the human genome encode are transcription factors1. A similar fraction of the 

genome appears to regulate the second stage of protein synthesis: the human genome may encode 

as many as ~1,000 RNA-binding proteins and ~1,000 miRNAs which putatively regulate both 

RNA degradation and translation2-4. 

Many additional processes add further complexity to gene expression regulation. Alternative pre-

mRNA splicing generates an average of four transcript variants per human gene5-7. Alternative 

translation initiation and termination can create additional variants. Once a protein is made, ~200 

unique post-translational modifications, including phosphorylation, acetylation, ubiquitination, 

and SUMOylation, can be attached to target it for degradation, change its localization, 

interactions, and functions. Consequently, the Uniprot sequence database comprises >68,000 

human protein variants, produced from just over 20,000 genes8.   

While sometimes overlooked, the degradation of mRNA and protein molecules is as much 

regulated as is their synthesis. mRNA turnover regulation is highly complex, occurring through 

two major pathways.  In rapidly growing cells, most mRNA decay is initiated by removal of the 

m7G cap found on the 5’ end.  However, in some cases decay is initiated by removal of the polyA 

tail – a process called deadenylation 9. Furthermore, the vast majority of protein degradation in 

eukaryotic cells is managed by the proteasome which itself consists of a protease core and 

regulatory caps. Proteasomal degradation is initiated by lysine-48-linked polyubiquitination of the 

target protein – a process regulated by more than 100 ubiquitinating and deubiquitinating 

enzymes in yeast, and hundreds in mammalian cells8, 10, 11. The targets and condition-specific 

activities of these enzymes are only known for a small subset.  

These regulatory processes are further complicated by feedback mechanisms and coupling 

between individual processes12. For example, mRNA degradation has been reported to be coupled 

to both transcription 13 and translation 9, 14. Other work suggests that RNA-binding proteins and 

miRNAs, two entirely different regulators of RNA translation and degradation, can jointly regulate 

the same pathway 15. Therefore, the ‘one gene – one protein’ hypothesis is far from describing gene 

Page 2 of 22Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 3

expression regulation in its entirety, ignoring the plethora of different protein products, their 

interactions, combinatorial regulation, and changes in response to stimuli.  

This review first outlines recent methods that enable large-scale measurements of concentrations 

and rates. We place special emphasis on an approach called ribosome footprinting, which provides 

estimates of translation efficiency and has received much attention with respect to both the 

insights it provides and its limitations. We then discuss new insights into the principles and 

evolution of gene expression regulation from studies using these techniques on yeast and 

mammalian cells. We finish by describing our view of where the field of systems biology of gene 

regulation is headed and what questions are likely to be addressed in the near future. 

Experimental approaches to characterize gene expression regulation 

Excitingly, the last decade has seen enormous technological and methodological advances that 

enable large-scale measurements of the above-described multiple dimensions of gene expression 

regulation – both with respect to measurements of concentrations and rates (Table S1). While 

modifications and interactions can also be measured, they are not the focus of this review. For 

comprehensive reviews of other ‘dimensions’ of gene expression dynamics, see refs. 16, 17.  

Measuring genome-wide mRNA and protein concentrations 

Standard methods to estimate mRNA and protein concentrations are high-throughput RNA 

sequencing and shotgun proteomics, respectively (Table S1). In most cases, molecular 

concentrations of genes are estimated relative to each other. However, both approaches can be 

used with spike-in reference samples if absolute copy numbers per cell are desired. While RNA-

seq is truly genome-wide, shotgun proteomics has yet to cross that threshold. Individual 

proteomics efforts from laboratories with highest-end instrumentation are now able to identify up 

to ~12,000 proteins in mammalian cells, e.g. ref. 18, but routine measurements identify fewer 

proteins. However, compared to just a few years ago, proteomics has advanced enough to allow 

time-series experiments, measuring the abundance of hundreds to thousands of proteins across 

multiple time points. As a result, the first integrative studies that combine mRNA and matching 

protein concentration measurements have recently been published (Table 1).  

Similarly, new computational tools have emerged that enable statistical significance analysis of 

these time course experiments to extract regulatory information (for focused reviews, see 19, 20). 

For example, a recent study by Jovanovic et al. used a mathematical model involving differential 

equations to estimate translation and protein degradation rates from time-series, pulsed labeling 

data 21. Earlier work in yeast 22 and human 23 applied similar approaches: the change of protein 

concentration over time is modeled as a linear function of protein synthesis based on the mRNA 

concentration and a translation rate, and degradation, based on the existing protein concentration 

and a degradation rate. While a linear model is a very simple approach, it can still reproduce 
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comparatively complex concentration changes for a large fraction of observed patterns 24.  To 

quantify the contributions of the different regulatory levels and identify genes and time points at 

which these significant changes occur, we recently developed a statistical framework called Protein 

Expression Control Analysis (PECA). PECA transforms time-course mRNA and matching protein 

expression data into significance measures of regulation at both the RNA or protein level, resolved 

at a per-time-point basis 25.  

Such computational analyses of time-series data are vital to progress to the next stage of gene 

expression analysis: the dynamics of regulatory systems. They provide highly specific types of 

information at the level of individual genes, but also, in conjunction with other, orthogonal 

information, describe emerging properties of the networks that regulate gene expression. For 

example, time series data can verify the functional interactions between regulators and their 

targets and is instrumental to identification of causal relationships 20. Further, when we applied 

PECA to various yeast time series datasets 25, we detected significantly changing genes at a per-

time-point basis and some cases of regulatory ‘buffering’, i.e. synthesis of mRNA molecules that 

were counteracted by degradation of proteins (and vice versa) – observations that would be 

hidden in static data. 

Measuring rates of synthesis and degradation 

Recent technological developments now allow researchers to move beyond descriptions of 

concentrations to experimental measurements of molecular synthesis and degradation rates 

(Table S1). Classic approaches to estimate rates of mRNA degradation involve shutting off 

transcription with either drugs (e.g. actinomycin and thiolutin) or temperature sensitive yeast 

mutants of RNA polymerase II (rpb1-1)9(Table S1). After inhibiting synthesis, the decreasing 

molecule concentrations are fit to a decay function to estimate degradation rates. However, these 

approaches have two main disadvantages. First, degradation may not follow the assumed decay 

function. Second, these approaches severely disrupt cellular homeostasis, and therefore provide 

poor estimates of the actual degradation rates. For example, thiolutin has been shown to inhibit 

both mRNA synthesis and degradation in yeast26, 27. Even the well-regarded rpb1-1 mutation 

system in yeast appears to decrease transcription only 3-fold at the non-permissive temperature, 

with rates recovering after about one hour 28.  As a result, there is little concordance among mRNA 

degradation rates measured in different studies. 

To circumvent these problems, methods have been developed to measure degradation rates in the 

absence of inhibitors. Instead, pulsed labeling is used to mark preexisting and newly synthesized 

mRNAs or proteins. In the case of RNA, several techniques pulse-label RNA with 4-thio-uridine, a 

non-disruptive analog that can be biochemically enriched after RNA preparation 29, 30(Table S1). 

A time-resolved comparison of the labeled and unlabeled molecules can then be used to estimate 
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both transcription and RNA degradation rates. Datasets first emerged for yeast, but are also now 

available for mammalian cells 23.   

Similar logic applies to measuring protein synthesis and degradation. Time-resolved proteomics 

measurements of differently labeled amino acids, in approaches such as pulsed- and dynamic-

SILAC31, 32, have provided rate estimates for both yeast and mammalian cells (Table S1). One 

challenge with proteomics-based measurements is insufficient coverage, which is further 

decreased when several time points are required. Another challenge lies in the rate of label 

incorporation into the proteins, which can lead to small mass spectrometric peaks below the 

detection limit. Therefore it is very difficult to measure synthesis rates for proteins that are rarely 

translated. To circumvent this challenge, novel approaches have been developed which use a 

methionine-analog or a tagged puromycin translation inhibitor to specifically enrich for newly 

synthesized proteins (Table S1). Such approaches, increase sensitivity and coverage of the 

translation rate measurements – but have they have their own disadvantages by the methionine 

analog affecting cellular homeostasis and not easily penetrating thick cell walls such as those of 

yeast.  

Ribosome profiling – generating hypotheses on translation regulation  

Often, it is not the actual rate that is most interesting in an experiment, but an estimate of the 

efficiency of the process – it may be more informative to learn how a rate is regulated in the cell 

rather than to compare two rate values. Recent years have seen much excitement about a new 

method that combines the resolution and deep coverage of next-generation sequencing with 

measurements of translation efficiency – and to generate hypotheses on the mechanisms 

underlying translation regulation. The method is interchangeably called ribosome profiling, 

ribosome footprinting, or Ribo-seq (Table S1) 33.  

The basic approach is outlined in Table S1 and Figure 2. The data generated by ribosome 

profiling can provide both bulk translation efficiency estimates per gene and nuanced mechanistic 

details of translation with respect to regulatory sequence elements in the mRNA. While 

standardized computational methods for data analysis are still under development, the relative 

number of ribosomes translating an open reading frame (ORF) can be estimated by tallying the 

number of reads that cover each ORF. By comparing these estimates of ribosome load with RNA- 

abundance estimates, the relative efficiency of translation (RPF/mRNA) can be measured. No 

other method provides this information simultaneously at system-wide scale.  

However, ribosome footprinting also has some disadvantages. First, it is one of the most difficult 

experimental methods in RNA biology, involving many different steps. Second, unless used in 

combination with different translation inhibitors and time-resolved measurements34, it does not 

provide actual rate estimates. Furthermore, ribosome footprinting assumes that the number of 
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mRNA-bound ribosomes correlates with translation efficiencies. Although this is likely to be a 

reasonable assumption, a direct comparison of ribosome footprinting and proteomics-based 

identification of newly synthesized proteins is still needed. Finally, the slow uptake of translation 

inhibitors (which may be an essential part of the method) can complicate studies in yeast 35.  

New insights into gene expression regulation 

For many years, comparisons of protein and mRNA concentrations have been limited to steady-

state measurements. Under these conditions, the population averages of protein and mRNA 

concentrations in unperturbed cells do not vary over time, with the molecules produced and 

degraded simultaneously at equilibrium rates. Excitingly, for both baker’s and fission yeast and 

mammalian cells, several time-series datasets of protein and mRNA expression are now available, 

complemented by a few measurements of synthesis and degradation rates (Table 1). These data 

allow for early insights into the principles governing gene regulation in dynamic systems, i.e. cells 

responding to a stimulus. The following sections highlight what we think might be general trends 

and future perspectives in light of these recent advances.  

Relationships between concentrations and rates 

The first question that has been asked for many years addresses the correlation between mRNA 

and protein concentrations within one organism growing at steady state36. A perfect correlation 

between mRNA and protein concentrations would suggest no gene-specific differences in 

translation or protein degradation – but reality is far from that. By 2009, several estimates for the 

protein-mRNA correlation under steady state were available36, but no common trend across 

bacteria and yeast was observed. For mammalian cells, both a computational study in 2010 and an 

experimental approach in 2011 concluded that “transcription is only half the story”37 and protein-

level regulation may be as important as that of the RNA-level23, 38. Similarly, in synchronized cells 

at different cell cycle stages, post-transcriptional regulation has been observed for much of the 

proteome39. However, these findings have been disputed, and reanalysis of the 2011 data showed 

that transcription may indeed do the majority of the regulatory workload, accounting for 56 to 

81% of the overall variation in gene expression40.  

Moving from steady-state to dynamic systems, an experimental study in dendritic cells responding 

to lipopolysaccharide (LPS) treatment estimated that mRNA levels (set by both transcription and 

degradation) explain 59 to 68% of the variance in protein levels21 – again placing the main 

workload in gene expression regulation on transcription. The authors find that RNA-level 

regulation governs the response of newly synthesized proteins, while protein-level regulation is 

more important for concentration adjustments of preexisting proteins with basic cellular functions 

21. During the LPS response, mRNA changes drive the overall expression response, and even for 

down-regulated mRNAs the discrepancy to changes in protein concentrations can be explained by 
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a combination of slow and delayed protein degradation and translation21. The study partially 

contrasts earlier findings in yeast responding to osmotic stress, where the correlation between 

protein and mRNA abundances was stronger for up-regulated than for down-regulated genes, 

suggesting that protein-level regulation is dominant with respect to protein removal22. One of the 

reasons for these drastic reprogramming choices might lie in the fact that these studies subjected 

cells to very large and rapid perturbations. Further nuances and implications of the relationship 

between protein and mRNA concentrations in the cell are discussed in an excellent review in ref. 

41. 

A second, very basic question involves the ranges of concentrations and rates that were found – 

and again a somewhat surprising picture emerged. For example, although RNA-seq is arguably 

more sensitive compared to proteomics – collecting millions of reads compared to tens of 

thousands of spectra – the dynamic range of mRNA concentrations seems consistently smaller 

than that of protein concentrations 23, 42. For example, RNA concentrations in mammalian cells 

vary over four to five orders of magnitude, starting from 0.1 molecule per mammalian cell on 

average – while protein concentrations have been found to cover up to six or even up to 12 orders 

of magnitude 18, 42. For example, ribosomes each contain dozens of ribosomal proteins and exist in 

copy numbers as high as ten million per mammalian cell 43.  

Similarly, the rates of synthesis and degradation vary enormously between genes, but are in 

general much larger at the protein level compared to the RNA level (Figure 1). For example, yeast 

transcription rates range between 0.03 and 0.5 mRNA copies per minute and RNA half-lives range 

from 2 to 60 minutes, but vary under different conditions (Table S1)26, 28, 30.  Transcription rates 

in mammalian cells range between 0.1 and 100 mRNA copies per cell per hour 23. In comparison, 

proteins are much more stable than mRNA, with median half-lives of hours if not days, and 

mammalian translation rates vary from 0.1 to 105 proteins per mRNA per hour across genes 

(Table 1). However, estimates gained from ribosome profiling analyses placed this range much 

smaller, spanning only two orders of magnitude33 – a finding that might be due to technical 

limitations. In sum, proteins, compared to mRNA, have a larger dynamic range in rates of 

synthesis and degradation, delivering one explanation for the fact that overall protein 

concentrations are much larger than mRNA concentrations.  

Speculations on reasons and consequences of different rates 

As a refined view of gene expression regulation slowly emerges (Figure 1), we can begin to ask 

questions as to why rates of mRNA and protein synthesis and degradation may have evolved to 

their current values, and how, these rates produce very different expression response patterns to 

internal or environmental challenges on a per-gene basis. This question is especially interesting if 

one assumes that well-adapted biological systems must be capable of mounting large and rapid 

responses to the fluctuations found in the wild, while remaining robust to transient perturbations. 
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The ability to change concentrations rapidly and drastically depends greatly on the absolute 

concentration: it is much easier to change small concentrations than large ones. As described 

above, mRNAs are usually expressed at concentrations lower than those of proteins (Figure 1), 

which allows for very fast and large fold-changes while not requiring much absolute synthesis and 

degradation due to low molecule numbers. In contrast, changing the concentrations of proteins, 

which are often higher than those of the corresponding mRNAs, by only a small amount requires 

enormous efforts with respect to translation or degradation and a large energy expense. Therefore 

unsurprisingly, stimulus-dependent fold-changes observed at the mRNA-level are often much 

larger than those seen for proteins21, 22, 44. This consideration is perhaps one explanation for the 

small effects on translation often seen by regulators such as miRNAs and RNA-binding proteins45, 

46.  

Gene functions may place particular constraints on mRNA and protein synthesis and degradation 

rates. For example, consider the differing requirements of transcription factors (TFs) and 

ribosomal proteins (RPs). During vegetative growth, TFs often function with few protein copies 

while RPs are required at very high copy number. However, the two classes of genes may have 

similar mRNA concentrations (Figure 3, example I). Upon a stimulus, transcription factors are 

often the first responders to cellular signals, requiring rapid production and fold changes in a 

switch-like manner. Such a fast response could be enabled by rapid translation or slow protein 

degradation. Therefore, it is unsurprising that ribosomes and other highly expressed proteins have 

large translation rates which change drastically during a stimulus to enable changes in absolute 

protein copy numbers34, 47. Similarly, the temporal response patterns might differ based on gene 

function. As a first line of response to signals, transcription factors often require rapid production 

and large fold-changes in a switch-like manner, while house-keeping genes such as ribosomes or 

enzymes may not need such a fast response. The low total concentrations of TFs also enables their  

rapid degradation, leading to pulse-like responses.  

In addition to the desired signal shape, concentration, and response time, different genes may 

differ in their requirements for accuracy and robustness to variation in gene expression levels – 

which can be achieved by specific combinations of transcription and translation rates (Figure 3, 

example II). For some genes, the accuracy in producing the correct amount might be crucial for 

their function, while others function well even if their cell-to-cell concentration varies. Therefore, 

the concentrations of some proteins may change stochastically over time more than those for 

others. A computational study in yeast suggested such a scenario: high transcription rates 

combined with low translation rates lead to less noise in final protein concentrations than the 

opposite case48.  

Interestingly, recent work suggests that gene expression noise is subject to purifying selection for 

at least one yeast gene 49. Thus, "Nothing in Biology Makes Sense Except in the Light of Evolution" 
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(Theodosius Dobzhansky, 1973) may also apply to the evolution of different rates of synthesis and 

degradation – and the time is ripe for models and hypotheses that explain these selection 

processes.  

Ribosome profiling glances into mechanisms of translation regulation 

Ribosome profiling reports ribosome positions at the level of codons or even nucleotides – 

providing unique insights into possible mechanisms that affect translation efficiency of genes, for 

example with respect to codon usage. Although many codons can be used to specify the same 

amino acid, most organisms show clear usage preferences.  Genes with abundant mRNA generally 

use codons that are decoded by abundant tRNA, suggesting that this codon usage bias contributes 

to increased translation efficiency of abundant mRNA transcripts. To examine this relationship, 

many researchers have attempted to extract codon-specific translation elongation rates from 

ribosome profiling data (Table 1), however these studies resulted in markedly varying 

conclusions. Some suggest that rare codons stall translation50, but this effect is not seen after 

correcting for amplification and sequencing biases present in ribosome profiling datasets51. 

However, all of this work was done with datasets from yeast grown in log-phase at steady-state, 

and, similar to the discussions above, it is possible that the codon usage bias becomes more 

important during dynamic gene expression regulation, e.g. during meiosis or mating. 

Further, mapping the genomic locations of ribosome profiling reads has revealed that ribosomes 

often bind to unexpected regions in the RNA. The most prominent of these include eukaryotic 

mRNA transcript leader sequences (TLSs, also known as 5’ UTRs). Translation within TLSs often 

occurs in regions termed upstream ORFs (uORFs). While uORF translation has been known for 

decades anecdotally52, ribosome profiling suggested that it may be much more widespread than 

previously appreciated and that uORFs often make use of start codons differing from the canonical 

AUG sequence 53. In fact, roughly ~10,000 uORFs are proposed to function in translation 

regulation during yeast meiosis54. 

Other ribosome profiling experiments revealed that ribosomes often associate with RNAs thought 

to be non-coding. For example, Ingolia and colleagues reported that candidate long non-coding 

RNAs (lncRNAs) from mouse embryonic stem cells were often bound by ribosomes34. Other data 

support translation of short ORFs in non-coding RNAs 55, 56, however further evidence indicates 

that most ncRNAs do not encode functional proteins57, 58 – raising the question whether binding 

by ribosomes indeed leads to translation of the mRNA or not. One possibility is that ribosome 

association may function as a surveillance mechanism to degrade improperly localized ncRNA via 

nonsense mediated decay. 
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Conservation and divergence of concentrations and rates 

Above we discussed the impact and consequences of the variation in mRNA and protein 

concentrations across genes within one organism. We now examine the role of these processes 

across organisms, during evolution (Figure 4). For example, mRNA abundances of orthologous 

genes vary greatly between species. This variation has been observed in comparisons across 

kingdoms, including yeast59, Drosophila60, 61, mice62, and humans63. Despite this widespread 

variation in mRNA abundance, more recent work suggests that protein abundance is less 

divergent. In a comparison of D. melanogaster and C. elegans proteome and transcriptome 

expression data, Schrimpf and colleagues discovered that the correlation between these species’ 

protein abundance was higher than that seen for their mRNA abundance64. Soon after, Laurent et 

al. expanded this analysis to eight organisms and reported that increased conservation of protein 

abundance could be found in comparisons across all domains of life, including, E. coli, S. 

cerevisiae, and humans65. More recently, the same phenomenon was observed in comparisons of 

lymphoblastoid cell lines derived from humans, chimpanzees, and rhesus macaques66: selection 

pressures to conserve protein concentrations across organisms appear to be higher than those on 

mRNAs. A study in mouse and human cells showed that strong conservation may also apply to 

protein degradation rates 67 – although rates appear to vary across subcellular localizations68.  

The fact that variation in mRNA abundance between species is not necessarily mirrored at the 

protein level suggests that post-transcriptional processes act to buffer evolutionary changes in 

expression regulation69. Indeed, comparisons of mRNA abundance and turnover rates in yeast 

revealed that mRNA degradation often offsets evolutionary differences in mRNA levels70. Other 

work has found that translation regulation buffers species differences in mRNA abundance71, 72. 

These studies compared translation efficiency and mRNA abundance in S. cerevisae and S. 

paradoxus using ribosome profiling and found that roughly a quarter of the transcriptome 

exhibited changes in translation efficiency that were biased toward reducing interspecies 

differences in protein production. While the observed extent of this “translational buffering” varies 

between studies73, a more recent comparison of S. cerevisiae and S. uvarum (bayanus) identified 

even more translational buffering than earlier studies74, potentially due to precise control of 

environmental differences by co-culturing the two species.   

The molecular mechanisms underlying post-transcriptional buffering remain unclear. 

Interestingly, many trans-acting factors have been found responsible for buffering via mRNA 

turnover70 and translation72. In many of these cases, buffering is likely mediated by proteins that 

function at multiple levels of gene expression. For example, the yeast RNA binding protein Rpb4 

appear to affect both transcription and translation, as do the CCR4/Not complex and Not5ref.75. In 

other cases, buffering of species differences in mRNA levels was mediated by cis-acting factors. 

For example, swapping promoter elements between S. cerevisiae and S. paradoxus was sufficient 
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to reproduce species differences in mRNA turnover76. Interestingly, promoter sequences have also 

been shown to determine the subcellular localization and translation efficiency of mRNAs induced 

during glucose starvation in yeast77. Regardless of the exact mechanisms responsible, it appears 

that transcription, mRNA turnover, and translation are intimately coupled in yeast in a manner 

that generally increases the robustness of gene expression, i.e. the conservation of protein 

expression levels across organisms. 

Outlook 

Large-scale methods are now in place to measure both mRNA and protein concentrations and 

their rates of synthesis and degradation (Table S1), and first datasets have become available that 

describe these aspects of gene expression regulation in dynamic systems (Table 1)16. After some 

earlier insights, we may wonder where the field might be headed. One of the next goals should be 

to obtain more time-series datasets from different organisms and tissue types under a variety of 

conditions. These data will help evaluate the general trends already observed in yeast and 

mammalian cells (Table 1). For example, studies in yeast have shown that under stress, the cells 

appear to strictly regulate either synthesis or degradation of a given protein, but not both24, and 

we do not know if this finding is conserved across organisms.  

Additional datasets would also help inform the discussion on the relative importance of 

transcription versus translation. As often in biology, the answer may be a diplomatic “it depends” 

– on the type of stimulus, the amount of protein that is needed, the response time required, the 

desired signal shape, or the required accuracy in exact copy numbers (Figure 3). Different rates 

can achieve these scenarios. For example, in cells responding to LPS treatment, transcription plays 

enables rapid synthesis of functionally relevant proteins, while protein degradation acts more 

slowly and removes pre-existing functions21. In comparison, translation regulation plays major 

roles in both yeast and mammalian cell responses to environmental challenges or the circadian 

rhythm44, 78-80. Evidence for coupling among transcription, translation, and mRNA turnover 

processes further complicates this picture – and we are only beginning to understand the impact 

of such coupling12.  

To evaluate how much these first insights apply in general – across conditions or organisms – we 

need not only more datasets, but also tools to analyze the data efficiently, specifically 

incorporating the dynamics of gene expression changes. While the quantitative analysis of RNA-

sequencing and shotgun proteomics data is comparatively standardized, complex methods, such 

as ribosome profiling still lag behind with respect to informatics tools. The largest challenges lie in 

appropriate normalization and internal calibration to obtain, for example, reliable quantification 

of changes in ribosome binding between different regions of an mRNA or cross-normalization of 

transcription and translation data.  
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The future will likely also bring more integrative studies that combine several different techniques 

to examine multiple aspects of gene expression within one system, e.g. proteomics and 

transcriptomics measurements combined with translation and degradation assays. Importantly, 

theses studies need to carefully consider which type of measurement fits the biological question 

best and the relative sources of bias and error inherent to each method. While providing essential 

information on the mechanisms of translation regulation, ribosome profiling does not necessarily 

provide translation rates; a type of information gained from pulsed-labeling proteomics 

techniques (Table S1). Future integrative studies will demand increasingly advanced analysis 

techniques – an area that will also see much future development. Mathematical techniques, such 

as higher order singular value decomposition81-83, may be used to extract patterns that are 

common and specific to sets of diverse data matrices. We are at the beginning of an exciting era 

that moves towards a new dimension of gene expression analysis: that of the dynamics of a 

response, and the intricate interplay between the multiple regulatory processes that control 

protein production.  
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Figures/ Tables  

Figure 1. Annotating the Central Dogma of Molecular Biology 

An illustrated version of the Central Dogma of Molecular Biology shows that, thanks to the 

emergence of new technologies, we can now quantify the concentrations and rates that produce 

and degrade mRNAs and proteins. Estimates are for mammalian cells, taken from different 

sources (see text and mainly ref. 23). Numbers are for illustration purposes and represent overall 

estimates.  
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Figure 2. Ribosome profiling 

Cell cultures are treated with cycloheximide and lysed in a buffer that maintains ribosome/mRNA 

associated polysomes. Polysomes are split into two fractions. Nuclease digestion of one fraction 

removes mRNA fragments not protected by ribosomes. Ribosome protected fragments (RPFs) are 

then purified and cloned into high-throughput sequencing libraries (left). mRNA is purified from 

the second fraction, fragmented by base hydrolysis, and cloned into sequencing libraries (right).  

Libraries are then sequenced to deep coverage. 

 

  

Page 14 of 22Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 15

 
 

Figure 3. Possible outcomes of different rates of synthesis and degradation 

Different rates of synthesis and degradation can result in different concentrations and 

concentration changes over time. Example I. While having similar RNA concentrations, protein B 

(e.g. a transcription factor) is much more abundant than protein A (e.g. a ribosomal protein). 

Upon a stimulus (red arrow), RNA concentrations switch to a new steady-state through increased 

transcription. For protein B, despite large changes in translation rate, the response time to double 

the protein concentration (red bracket) is much slower compared to protein A. Example II. At 

steady-state, transcription for protein B is faster than for protein A which, at similar RNA 

degradation rates, results in B’s RNA being more abundant than that for A. The resulting protein 

concentrations might be very similar. However, due to comparatively slow translation, B’s protein 

concentration is much noisier over time than that for A.  
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Figure 4. Comparisons of mRNA and protein concentrations among and between species 

Shown are simple comparisons of mRNA and protein concentrations, which revealed a surprising 

observation when compared across organisms (see text, ref. 84). A. mRNA and protein levels are 

positively correlated in both C. elegans and H. sapiens.  B. Interspecies comparisons show higher 

conservation of protein levels than of mRNA. As more datasets become available, we are beginning 

to understand how mRNA and protein synthesis and degradation rates contribute to the evolution 

of gene expression.  
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Table 1. Example datasets on dynamic gene expression regulation 

Examples of recently published datasets providing first insights into the dynamics of eukaryotic 

gene expression regulation are shown below. While attempting to cover a range of published 

datasets, this collection may not be comprehensive.  

 

mRNA and matching 
protein time-series 
analysis Organism Condition  Number of time points 

Approx. 
#genes Ref 

Fournier, Mol Cell 
Proteomics 2009 Yeast 

Rapamycin 
treatment 7 6,000  85 

Vogel, Mol Cell Proteomics 
2011 Yeast Oxidative stress 8 800  44 

Lee, Mol Sys Bio 2011 Yeast Osmotic stress 6 2,500  22 

Lackner, Genome Biology 
2012 Yeast (S. pombe) Oxidative stress 5 2,100  86 

Gruen, Cell Reports 2014 Nematode worms Development 7 3,000 87 

Ly, eLIFE 2014 Mammalian cells Cell cycle 3-6 6,000  88 

Eichelbaum, Mol Cell Prot 
2014 Mammalian cells LPS treatment 3-4 4,800 89 

Robles, PLoS Gen 2014 Mammalian cells Circadian rhythm 16 3,000 80 

Kristensen, Mol Sys Bio 
2013  Mammalian cells Differentiation 3-5 1,900 90 

Jovanovic, Science 2015 Mammalian cells LPS treatment 6 2,300  21 

           

Transcription rates 
   

Rate (median or 
typical range)     

Pelechano, PLoS One, 
2010 Yeast Normal 2 to 30 mRNAs/hr 4,700  26 

Miller, Mol Sys Bio 2011 Yeast 
Normal and 
osmotic stress 

1 to 600 mRNAs/cell 
cycle 5,200 29 

Schwanhaeusser, Nature 
2011 Mammalian cells Normal 2 mRNA/hr 5,000 23 

           

RNA degradation     
Half-life (median or 
typical range)     

Wang, PNAS, 2002 Yeast Normal 20 min (3 to 90 min) 4,700  91 

Neymotin, RNA, 2004 Yeast Normal 15 min 5,200  30 

Miller, Mol Sys Bio, 2011 Yeast 
Normal and 
osmotic stress 11 min 5,200  29 

Munchel, Mol Sys Bio, 
2011 Yeast Normal and stress 20 min 5,200  92 

Yang, Genome Res, 2003 Mammalian cells Normal 2 hrs 1,000s  93 

Dolken, RNA, 2008 Mammalian cells Normal 20 min to 48 hrs 1,000s  94 

Friedel, Nucl Acid Res, 
2009 Mammalian cells Normal 4.5 to 5.1 hrs 8,000  95 

Schwanhaeusser, Nature 
2011 Mammalian cells Normal 7.6 to 9 hrs 5,000  23 

           

Translation rates    
Rate (median or 
typical range)     

Schwanhaeusser, Nature 
2011 Mammalian cells Normal 

140 
proteins/(mRNA*hr) 5,000  23 
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Ingolia, Cell 2011 Mammalian cells Normal 5.6 codons/sec 20,000  34 

           

Protein degradation     
Half-life (median or 
typical range)     

Belle, PNAS 2006 Yeast Normal 4 to 161 min 3,750  96 

Christiano, Cell Reports 
2014 Yeast Normal 8.8 to 12.0 hrs 4,000  97 

Yen, Science 2008 Mammalian cells Normal 0.5 to 2 hrs 8,000  98 

Doherty, J Proteome Res 
2009 Mammalian cells Normal 6 min to 10s of hrs 600  31 

Price, PNAS 2010 Mammalian cells Normal 72 to 216 hrs 2,500  99 

Cambridge, J Prot Res 
2011 Mammalian cells Normal - 4,100 67 

Schwanhaeusser, Nature 
2011 Mammalian cells Normal 46 hrs 5,000  23 

Boisvert, Mol Cell 
Proteomics 2012 Mammalian cells Normal 20 hrs 8,000  100 
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