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Abstract:

We describe a new computer implementation of electron transfer (ET) theory in extended systems
treated by periodic density functional theory (DFT), including the calculation of the electronic
coupling transition element V4. In particular, the development opens up the full characterization
of electron transfer in the solid state. The approach is valid for any single-determinant
wavefunction with localized character representing the electronic structure of the system, from
Hartree-Fock (HF) theory, to density functional theory (DFT), hybrid DFT theory, DFT+U
theory, and constrained DFT (cDFT) theory. The implementation in CP2K reuses the high-
performance functions of the code. The computational cost is equivalent to only one iteration of
an HF calculation. We present test calculations for electron transfer in a number of systems,

including a 1D-model of ferric oxide, hematite Fe2Os, rutile TiOz, and finally bismuth vanadate
BiVOu.
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1. Introduction:

The theory of electron transfer (ET) in gas and solution phases has a very long history,
dating back to the work of Hush and collaborators' and Marcus and collaborators.?® Fundamentals
of the Marcus model have been investigated in numerous computer simulations of redox reactions
in solution’!'® with a focus on the characterization of the free energy surface, and dealing much
less with the electronic coupling. A number of reviews are also available about electron transfer
investigated by computation and simulation in biochemistry.'*?2 Modeling of charge transport in
the solid state (polarons) has also a long history, with the seminal work of Friedman and Holstein?*,
Emin and Holstein**?%, Austin and Mott?®, and Emin?"° for example, and DFT calculations
reported in recent years.’!>* At the intersection of the solid state and chemistry, the structure and
transport of charge carriers in conducting polymers have been at the forefront of research for many
years.>>* Indeed the experimental work spurred a great deal of theoretical efforts toward the
characterization of carriers by Su, Schrieffer, and Heeger*** with extensions by Bredas and
collaborators in many areas of organics, including organic photovoltaics.*->3 Beyond these studies
recent years have seen a growing interest in obtaining molecular-level details of redox chemistry
at oxide surfaces in electrolyte environments.*!>*%% Lastly, the recent push for renewable energy
and efficient solar-to-electricity and solar-to-fuel conversion materials, has greatly increased the
interest in understanding and manipulating carrier transport in inorganic semi-conductors, 326472
Several of these studies showed already that polaron diffusion mobility extracted from Einstein
diffusion model and DFT-derived ET rates can be within one order of magnitude of experimental
values®!*2%4 with energy barriers within ~ 0.05 eV from experimental values. We refer the reader
to the papers and reviews referenced above to experience the breadth of applications involving ET
computation and simulation.

The work described in the present paper deals with a technical development that enables
ET computation in all of these domains, although the driving force for our research has been the
computation of electron transfer in the solid state. A growing number of studies have appeared
about carrier transport in the literature, most focusing on energetics parameters such as stability
and reorganization energy (in Marcus/Holstein parlance). They often leave out the electronic
coupling Vg that in fact plays a key role as a descriptor of the diabatic or adiabatic nature of ET
as well as enters the rate expression. In a limited number of these studies, the authors resorted to
cluster models to evaluate the electronic coupling. The present work overcomes this shortcoming.

Theoretical studies of ET with m-electron wavefunctions started with Newton and
collaborators using localized quasi-diabatic (non-orthogonal) states *!>7374 Various approaches
to calculating the electronic coupling element were developed’”’® and several molecular
implementations have been available for some time.”**° Many studies using semi-empirical or ab
initio Hartree-Fock (HF) theories have been reported.®!83 With the advent of density functional
theory®*®> (DFT) and the development of the constrained DFT method (cDFT), the interest has
shifted to ET described with DFT and ¢DFT,*! both for molecules and organic solids. +°*%°
Different approaches are used to ‘localize’ the initial and final states of ET, including charge- or
spin-constrained DFT or fragment-based localization. For a recent review, see the work of
Oberhofer et al.**

In the present research, our starting point for localized quasi-diabatic non-orthogonal n-
electron states are molecular or periodic DFT Kohn-Sham wavefunctions with correction for self-
interaction error (hybrid functional DFT '°%1°! or DFT+U %219, Like with HF theory, they offer
a means to obtain localized states without external constraints. Note that our formalism is not
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limited by this ‘requirement’ and can treat cDFT or fragment-projected states as well. We aim to
calculate the electronic coupling matrix element for any type of quasi-diabatic DFT-based states
in molecular or periodic DFT calculations. The present implementation involves a slightly
simplified form of the Farazdel formulation® for spin-unrestricted HF wavefunctions, using the
corresponding orbitals transformation.!® The present work goes beyond the recent work of
Bylaska and Rosso'? in that we can treat periodic DFT-based wavefunctions, including hybrid
functional wavefunctions for molecules and periodic solids, DFT+U wavefunctions, and ¢cDFT
wavefunctions, that are popular in the solid state community. We note that, beyond the issue of
the often prohibitive cost of periodic HF calculations, the use of HF theory is problematic as it
does not account for strong correlation effects existing, for example, in semiconductors.

The paper is organized as follows: in section II we present the equations for the electronic
coupling element valid in a molecular case and in a periodic case. In section III we give details of
the implementation in the CP2K code that uses Gaussian-type basis functions as the expansion set
of the one-electron Kohn-Sham (KS) states. In section IV we present and discuss results for a
number of benchmark systems, including hole transfer in He2" and Znz", electron polaron transfer

Figure 1. Spin density of an electron polaron localized on a Ti site in TiO2. We aim to
calculate the rate for the polaron to hop between two Ti sites. The blue spheres are
polaronic Ti atoms, the red spheres are O atoms, and the silver spheres are Ti atoms.

in a 1D chain of OH-bridged Fe ions, in bulk rutile TiOz, and in bulk hematite Fe2O3, and lastly
in bismuth vanadate BiVOas. In Appendix A we elaborate on our choice of the exact n-electron
Hamiltonian for the calculation of V4g as it removes a theoretical ambiguity. In Appendix B we
give essential details of the code implementation.
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2. Formulation and Implementation

For an excellent review of electron transfer theory, we refer the reader to the recent paper
by Bylaska and Rosso. % An electron polaron transfer in an inorganic solid is depicted in Figure
1 (here TiOz2). We are interested in the rate of transfer (hopping) of the electron (polaron) from one
Ti site to another. The localization of the excess electron density induces a lattice relaxation around
the localization site. When the lattice relaxation is limited to the region near the localization site,
we have what is known a small polaron.?> Small polaron transport is prevalent in inorganic and
organic semi-conductors.*”!%  In the two regimes of diabatic and adiabatic transfer, the hop
involves a ‘transfer’ of the lattice distortion from one site to the other.

Just like for molecules, the system can be looked at as a double-well potential, the electron
hops back and forth from one well to the next at some characteristic frequency which depends on
the height of the potential barrier. A schematic representation of the potential energy surface (PES)
of the system as a function of the nuclear coordinates @ is shown in Figure 2. The initial state A
with the left-localized electronic state ¥ resides in a local minimum on the PES that corresponds
to its equilibrium nuclear configuration Q4. The final state B with its right-localized electronic

Energy

Nuclear coordinate

Figure 2. Schematic of the two-well potential energy surface associated with electron or hole
transfer in molecules and in the solid state (reproduced from Farazdel et al. [71]). The solid
curves are the adiabatic surfaces, the dashed lines depict the diabatic states. Q4 and Qs are
the equilibrium coordinates of the A state and B state, and Q. represent the coordinates of the
lowest energy structure on the crossing seam of the diabatic surfaces. A is the reorganization
energy, |AE| is the exothermicity of the electron transfer, Ea is the diabatic activation energy,

Eq is the adiabatic activation energy, and Vs is the electronic coupling between states A and
B.
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state ¥ resides similarly in a local minimum on the PES denoted @g. The two minima may differ
in energy, and the exothermicity is denoted AE.

The quantity V45 shown in Figure 2 plays a key role in ET or polaron transfer theory. It is
related to the “electronic coupling” Hyp = (W4|H|Wg) between states 4 and B, where H is the
total n-electron Hamiltonian (excluding the nuclear kinetic energy and nuclear repulsion terms).
When H4g = 0, the two (diabatic) surfaces 4 and B intersect at a crossing seam where the states
have the same energy and the same nuclear configuration. The ET is then a diabatic transition
governed by the Franck-Condon principle with conservation of energy. When H g # 0, the states
¥ and ¥ do not diagonalize the electronic Hamiltonian H and the degeneracy of the states is
removed. We have an avoided crossing, the two surfaces are now adiabatic surfaces for n-electron
states ¥+ and ¥ with energies E+ (upper state) and E. (lower state) extracted from the 2x2 secular
equation arising from writing the wavefunction of the system as a linear combination of the two
quasi-diabatic states ¥4 and ¥ in the framework of the two-state model:

P.(Q) = Cf(Q)lPA(Q) + CE(Q)LPB(Q)
Y_(Q) = c2(Q)¥4(Q) + c2(QW(Q)
H(Q)C+(Q) = E+(Q)S(Q)C+(Q)

_ (c£(@

 (Haa(@  Hap(Q)
Q) = <HAB(Q) HBB(Q)>

_ (S44Q)  S45(Q)

5@ = (5@ sm@) @
with
Hpa(Q) = (F4(@IH(Q)¥4(Q))
Hpp(Q) = (Y (Q)IH(Q)¥5(Q))
Hap(Q) = (Y2 (@) IH(@)I¥5(Q))
544(Q) = (Pa(Q)[¥4(Q)) =1
Sep(Q) = (¥p(@)I¥p(Q)) =1
Sap(Q) = (Y4(@)|¥5(Q)) (1a)
The secular equation has the form:

Hyy—E  Hyg —ES
Hap —ESup Hon—E | = ° @

The separation between the adiabatic surfaces is given by:
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1
1 2
—(Hyy — Hgp)? — (Hyq + Hpp)H, 5S,

A(Q) — E+ —FE = (1 — Sz ) 4( AA BB) ( AA BB) ABYAB (3)

AB +Hy4HppSis + Hip
and by convention
1 Sap(Hya + Hpp)
AB 5 (@ =0Q¢) (1_533){ AB > (4)

Vg is a key quantity that appears in classical®, semi-classical'’’, and quantum mechanical'%:!%
treatment of ET theory. The rate expression that ensues in the diabatic regime is '°:

o, 1 <—[/1 + AE]2>
ET = 7 VaAB 1 €Xp
h amakgT)2 kT

and in the adiabatic case’! it is:

. _Ea
kgr = iv,exp <kB_T)

1

A A2 +4V2)2

R Gt/ L (6)

4 2
In both cases the rate can be determined from the knowledge of A and V4s.

Differences among formalisms and implementations of ET lie in the nature of the quasi-
diabatic m-electron states ¥4 and ¥ and in the expression used for the evaluation of the
Hamiltonian elements H44, Hpp, and H4p. In the present work we use Kohn-Sham states to
determine the quasi-diabatic states and we use the exact n-electron Hamiltonian to determine the
state mixing and their interactions. Important theoretical considerations governing these choices
are expounded upon in the Appendix A below.

In brief, we needed to address two issues. The first one was related to the well-known self-
interaction error of DFT that makes it hard to ‘localize’ electrons. We can use HF and hybrid DFT
theory that are computationally expensive and at times prohibitive in periodic calculations.
Alternately, we can use DFT+U theory that is computationally efficacious and yields charge or
spin-localized states. For Hamiltonian operator, we use the exact n-electron Hamiltonian (as we
would for periodic HF theory) but we used the n-electron KS determinants to set the secular
equation of eq.(2). In essence, we calculate the HF energy and coupling term of the KS-DFT
states. Using the exact n-electron Hamiltonian is now computationally affordable owing to the
availability of efficient computer codes for periodic calculations that can treat the exact exchange
of HF theory'!'"!''3 and the fact that our V4 calculation involves the equivalent of a single HF
iteration, a very tractable cost. For molecular calculations the formalism is rather straightforward
in contrast to periodic calculations that make use of Bloch states with their k-points in the first
Brillouin zone to account for periodicity.!'* the corresponding orbital transformation may be

(5)
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carried out for each k point independently.'® The present implementation in the CP2K code''®

deals solely with the I" point.

Modified formulation of the corresponding orbital transformation for the calculation of
the electronic coupling in ET in the solid state:

The difficulty in evaluating the interaction and overlap terms H4p and S between states 4 and B
arises from the non-orthogonality of the (I-electron states) orbitals a and b. The corresponding
orbital transformation (COT) of King et al.!** defines a unitary transformation of the @ orbitals of
state A and another one for the b orbitals of state B that make the transformed orbitals mutually
orthogonal between states A and B, thus facilitating the calculation of S4s and Hs:

a=|wA

b= |wB

D = A% (ulu)B
a=aV = |y)A

b =bU= |wB

D = (a|b)

d = (alp) = utbv

In eq.(6), |u) denotes the one-electron basis set used in the expansion of the 7-electron states a and
b. We obtain a generalized density matrix P from the transformed orbitals that enables the
calculation of - and 2-electron contributions to the Hamiltonian matrix element H 4p:

sv)}

P = AT

QW = (detU)(detv't) Z P
0 = (Xulo®|x)
N
=] 4
Jj#i
N
prod = n&kk

o = —(dew)(detv*)mrod) Z PuvPis{(uv1A0) = (uo|av)}
uvio

(6)

(7)
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We note that the generalized density matrix P is not symmetric due to the differently localized
states 4 and B. To take advantage of existing functionalities in CP2K that are extensively tuned
for massively parallel processing, we have found it convenient to decompose P into a symmetric
matrix and an anti-symmetric matrix:

P = Psym + Panti

p+pt
Psym: 2

p-rpt
Panti:T

a. Implementation in CP2K

We adapted the implementation by Farazdel in HONDO !¢ to the CP2K '!7 program, which can
deal with periodic calculations. A summary of the steps includes:

1. Obtain the molecular orbitals of both states, 4 and B, at a DFT/HF/Hybrid-
DFT/cDFT/DFT+U level of theory in CP2K.

2. For both alpha and beta spins, do the following:

a. Calculate the overlap matrix D from D = BTSA, where A and B are eigenvectors
of the quasi-diabatic states obtained in step 1, and S is the overlap matrix over the
atomic orbitals.

b. Carry out the COT transformation (one for spin a, and one for spin ) by singular
value decomposition of matrix D, where d = UTDV.

c. U and V are unitary matrices and their determinants are equal to one. This can be
an internal check during implementation.

d. Form the matrices 4, B, T, and the generalized density matrix P .

3. Compute the overlap as S5 = (det U)(det VT)

4. Compute one-electron and two-electron energy contributions to H4p by making use of
CP2K functions for the efficient calculation of the Hartree potential and electron Coulomb
energy as well as the HF exchange energy. In this step, we make use of the partitioning of
the generalized density matrix into a symmetric and an anti-symmetric contribution. The
relevant equations in CP2K are highlighted in Appendix B. Finally, compute V3.

3. Application Examples
In this section we describe test calculations that can be compared with calculations performed with
other codes or previously published calculations. The systems include He-He ™, Zn-Zn®, a one-
dimensional model of iron oxide, hematite Fe2O3, and TiOxz rutile. Lastly we calculate V4p for an
electron polaron transfer in BiVO4 , a semiconductor with strong photocatalytic efficiency.®”*® All
the pictorial representations of atomic systems were made using VMD visualization software. ''®

3.a Hex" dimer

We calculated the electronic coupling for electron transfer in a helium dimer cation He-He'™ using
the HF level of theory in CP2K and our new implementation of V4. We selected a minimal basis
set ' for these all-electron calculations. Results at different inter-nuclear distances were validated
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against the Hondo implementation®® and are shown in Table 1. The data show excellent numerical
agreement with the molecular code (differences less than 10 of the magnitude of V.4, in particular
~ 0.1 cm™ out of ~5000 cm™). What matters here is the excellent numerical accord. These results

validate the correctness of the new V48 module based on the Coulomb engine in CP2K.

He-He(") CP2K CP2K HONDO HONDO
r (A) Vas [emT] [Sas| Vas [em™] |Sas]
2.0 5373.714 | 5.1471E-01 5373.820 | 5.1472E-01
2.5 1754.505 1.5906E-01 1754.527 1.5907E-01
3.0 550.378 | 4.9504E-02 550.381 | 4.9505E-02
3.5 167.995 1.5075E-02 167.995 1.5075E-02
4.0 48.060 | 4.3110E-03 48.060 | 4.3105E-03
5.0 2425 | 2.1647E-04 2425 | 2.1789E-04
6.0 0.051 4.5515E-06 0.051 | 4.5927E-06

Table 1. HeS electronic coupling calculated in CP2K via the COT method with HF orbitals,
compared with HONDQO values for the same method.

3.b Zn>" dimer

We calculated the electronic coupling Vg for electron transfer in a zinc dimer cation, Zn-Zn),
again using the HF level of theory in CP2K. The hole occupies the 4s atomic states of Zn in the
left-localized and right-localized states. Both all-electron and pseudopotential calculations were
performed and results are given in Table 2. We used the DZVP-ALL basis set provided with CP2K
9 for the all-electron calculations. We also used the zinc GTH pseudopotential 222 and
associated basis set with 12 valence electrons. The two levels of theory, GAPW and GPW that use
pseudo potentials yield results in very close numerical accord. The all-electrons results are
somewhat larger. We attribute this fact to the basis set which is different between the all-electron
and the pseudo-potential calculations. The values of V4 decrease with increasing inter-nuclear
distance. Our calculations are in good qualitative accord with the work of Wu and Van Voorhis
using cDFT®® and the work of Cave and Newton using the Generalized-Mulliken-Hush (GMH)
approach.”®

GAPW GPW
Zn- GAPW with with
Zn(*) | All electron Pseudo- Pseudo- cDFT GMH
potential potential
This work This work This work Ref. 79 Ref. 67
R(A) Vas [em] | Vap[em] | Vap[em!] | Vag[em!] | Vap[cm’]
5.0 1468.753 1227.365 1227.216 1245.491 1593.386
6.0 445.603 279.808 279.797 303.899 474.065
7.0 124.676 56.300 56.300 74.560 136.733
8.0 30.781 8.720 8.720 13.908 37.530
9.0 6.635 1.006 1.006 3.301 9.657




Physical Chemistry Chemical Physics

[Sas| [Sas| [Sas|
5.0 6.1150E-01 | 6.7675E-01 | 6.7675E-01
6.0 1.8670E-01 | 1.5434E-01 | 1.5433E-01
7.0 5.2945E-02 | 3.2611E-02 | 3.2611E-02
8.0 1.3147E-02 | 5.1359E-03 | 5.1358E-03
9.0 2.8482E-03 | 5.9190E-04 | 5.9186E-04

Table 2. Electronic coupling Vag and overlap Sag calculated for Zn3 with CP2K via the COT
method using HF orbitals in this work, compared to ¢cDFT orbitals in ref. 79 and the GMH
formalism in ref. 67.

3.c One-dimensional periodic iron oxide chains

We used CP2K to calculate V4g in one-dimensional periodic chains of 7, 9, and 11
Fe(OH)2(H20)2™" units with one excess electron, following the work of Bylaska and Rosso. '%°
The excess electron was localized on one of the Fe'! atoms making it Fe'!, thus the net effective
charges on the 7-, 9-, and 11-unit cells were +6, +8, and +10 respectively. In these model systems,
the iron atoms are in ferric high spin 3d° states.

Figure 3. Structure of the ferric oxide 1D-model with 7 units. The system is periodic. The
excess electron is localized on the third Fe atom in state A and transfers to the fourth Fe atom
in state B (as depicted with the blue arrow). The orange spheres are Fe atoms, the red spheres
are O atoms, and the white spheres are H atoms.

The localized character of the 4 and B states was monitored through the Mulliken spin population
of the Fe 3d atomic shells, high spin 3¢ for Fe(II) with the localized electron vs. high spin 3d° for
Fe(III). The lengths of the respective unit cells were 21.385 A, 27.495 A, and 33.605 A in the X-
direction. In the Y- and Z- directions, we used a box size of 35 A.

The calculations were done using the GPW method and the HF level of theory for direct
comparison with Bylaska-Rosso.!% A truncated potential with cutoff radius equal to half of the
smallest cell parameter was used for both HF and V4p calculations. A modified DZV basis set '
(in which we removed the f polarization functions from the Fe basis set, the d functions from the

O basis set, and the p functions from the H basis set) and GTH pseudopotentials '2%122 were used
for Fe, O and H atoms. The results are given in Table 3.
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In these calculations (and the calculations below for hematite, rutile, and bismuth vanadate), we
calculated the nine intermediate points along the selected reaction pathway, in addition to
calculating states 0 (state A) and 1 (state B). AG* given in the table refers to the energy of the mid-
point along the ‘reaction pathway’. A is the reorganization energy which is the energy gap between
the left-localized state at its optimized geometry (state 0) and the right-localized state at the
optimized geometry of state 0. In accord with Marcus theory, AG* and A/4 ought to be equal when
the states are quasi-diabatic, with a harmonic potential, and the ET process is thermo-neutral
(localized on a single site). That this is the case in our calculation can be seen in Table 3. The
adiabatic barrier is equal to (AG* - V4 ) .

1D FeD ) ) ) ) ) )
model 7 units 9 units 11 units 7 units 9 units 11 units
(HF theory) (this work) | (this work) | (this work) | (ref. 97) | (ref. 97) | (ref. 97)
AG* (eV) 0.531 0.544 0.528 0.562 0.544 0.607
M4 (eV) 0.521 0.539 0.518 0.521 0.528 0.524
Vag (eV) 0.257 0.239 0.265 0.218 0.222 0.226
Adiabatic 0.273 0.305 0.263 0326 | 0340 | 0.381
barrier (eV)
Overlap [SaB| 0.088 0.081 0.091

Table 3. Vap for ET of an electron polaron in a 1D periodic chain [Fe(OH)2(H20)2"], with n=7,
9, and 11 units calculated with the HF level of theory. AG* is the relative energy of the mid-point
along the reaction pathway, 1 is the reorganization energy, Vg is the electronic coupling, and the
adiabatic barrier is equal to (AG* - Vg )

In Figure 4 we display the alternating character of the Fe-(OH) bonds along the chain for the CP2K
optimized electron polaron state localized on a Fe atom at the middle of the 11-unit chain obtained
with the HF level of theory.
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Figure 4. Fe-OH bonds along the chain. The localized excess electron is at position 0. The
distances in the 7 and 9 unit systems are not distinguishable from those of the 11-unit system.

The results are in good agreement with the work of Rosso and Dupuis'?® and Bylaska and Rosso!®,
all of them using HF theory but different basis sets. The polaronic wave of bond length alternations
attenuates at ~ five Fe atoms away from the reduced Fe atom.

For the 7-unit system, we used also the BLYP+U level of theory'?*!2’ with different +U values on
the 3d atomic orbitals of Fe. The results are shown in Table 4. Here the wavefunction accounts for
some electron correlation effects, leading to a lowering of the diabatic barrier. With increasing +U
values (on Fe), the overlap S4g decreases, a sign that the excess electron resides in an orbital that
is more and more tightly localized.

BLYP+U | BLYP+U | BLYP+U | BLYP+U | BLYP+U | BLYP+U
U=5 U=6 U=7 U=8 U=9 | U=10
AG* (eV) 0.443 0.444 0.443 0.441 0.469 0.469
M4 (V) 0.405 0.407 0.383 0.391 0.424 0.425
Vi (V) 0.127 0.172 0.178 0.178 0.171 0.160
Adiabatic 0.317 0.273 0.265 0.263 0.297 0.310
barrier (eV)
Overlap [Sas| | 0.329 0.179 0.115 0.084 0.063 0.048

Table 4. V.4g for a periodic chain of 7-units [Fe(OH)2(H20)2"]7 calculated with BLYP+U orbitals
and different +U value. AG* is the energy of the mid-point along the reaction pathway, A is the
reorganization energy, Vag is the electronic coupling, and the adiabatic barrier is equal to (AG*
- V)
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3.d Bulk hematite Fe203

We calculated V4 for electron transfer in the basal plane of bulk hematite, using the BLYP+U
orbitals level of theory. A 3x3x1 supercell was used with cell parameters [a=14.725 A, b=14.725
A, c=13.267 A], and [a=90, =90, y=120]. A modified DZV basis set ''* (DZVP basis set without
f polarization functions on Fe and without d functions on O) was used for both Fe and O atoms
along with GTH pseudopotentials.

An excess electron was localized on one of the Fe atoms as state 4 and on a neighbor Fe atom in
the basal plane as state B. We used +Uetr values = 6.0 eV, 8.0 eV, and 10.0 eV applied to the 3d
orbitals of Fe. Iordanova et al. '?® reported a value of Vg~ 0.19 eV for a basal plane hop in high
spin configuration, to be compared to ~ 0.04 eV obtained here. We note that the reorganization
energy calculated with BLYP+U increases with the value of +U. It remains smaller than with the
HF theory. The diabatic barrier AG* is found to be somewhat smaller with periodic BLYP+U
theory than with cluster HF theory. Vg is smaller with BLYP +U compared with cluster HF.
Overall the accord is satisfactory given the differences in levels of theory between the two
calculations (cluster HF vs. periodic BLYP+U), in basis sets, and lastly in the use of a cluster
model for the V4p calculation by lordanova et al.
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Figure 5. Fex0s3 hematite supercell with layers of spin-up [blue B] and spin-down [green W]
densities on Fe' atoms. The hop between two Fe atoms in a basal plane is marked in blue
color. For clarity, the spin density contours are turned off for the down spin in the top picture.
The orange spheres are Fe atoms, the red spheres are O atoms.

Hematite BLYP+U, BLYP+U, BLYP+U, HF cluster
Fe20s U=6¢eV U=8¢V U=10eV Ref. 117
AG* (eV) 0.218 0.265 0.290 0.380
M4 (eV) 0.200 0.253 0.294 0.355
Vg (eV) 0.040 0.042 0.045 0.190
Adiabatic
barrier (V) 0.178 0.223 0.245 0.190
Overlap |Sas| 0.023 0.016 0.011

Table 5. Vas for electron transfer in basal plane for bulk hematite from BLYP+U orbitals using
CP2K. AG* is the energy of the mid-point along the reaction pathway, A is the reorganization
energy, Vg is the electronic coupling, and the adiabatic barrier is equal to (AG* - Vag ).
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3.e Bulk rutile TiO:>

This test calculation involved Vg for electron transfer in the c-direction for bulk rutile TiO2. We
used a DFT+U level of theory based on the PBE exchange correlation functional. '*” We used the
SZV basis set ' for both Ti and O atoms to generate the localized states in a 3x3x5 supercell
[a=13.869 A, b=13.869 A, c=14.907 A], [a=90, =90, y=90]. The results obtained for different
+U values on the 3d atomic shell of Ti are shown in Table 6.

Figure 6. Rutile TiO:2 with an iso-surface of the spin density of an electron localized on a Ti
atom. The hop between two Ti atoms is marked in blue color in the [001] direction. The silver
spheres are Ti atoms, the red spheres are O atoms, green spheres are the polaronic Ti atoms.

Rutile TiO2 U=6¢eV U=8¢eV U=10eV ref. 119
AG* (eV) 0.269 0.275 0.280 0.288
M4 (eV) 0.263 0.274 0.281 0.288
Vag (eV) 0.230 0.149 0.129 0.200
b[:r(rliiZEE(f\(;) 0.039 0.126 0.152 0.088
Overlap [SaB| 0.061 0.003 0.017

Table 6. Vs for electron transfer in the c-direction for bulk TiO: from PBE+U orbitals. AG* is
the energy of the mid-point along the reaction pathway, 1 is the reorganization energy, Vg is the
electronic coupling, and the adiabatic barrier is equal to (AG* - Vg ).
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Deskins et al. '*® reported Vg values of ~ 0.2 eV for a c-direction hop from cluster calculations.
Our calculated value is of the same order of magnitude. In particular, there is a good match between
the A reorganization energies.

3.f Bulk ms-BiV O+

Our last test calculation involves V4p calculation for an electron polaron transfer in bismuth
vanadate BiVOs4 (BVO). BVO is a semiconductor that exhibit promising performance toward
overall water splitting.%” In previous work we characterized electron polaron and hole polaron
transport in monoclinic ms-BVO, obtaining the reorganization energy with plane wave periodic
PBE+U wavefunctions and ¥4 with a small model cluster HF calculation.’’ Here our calculation
was for an electron polaron transfer from a V atom to a nearest neighbor in the (021) direction in
bulk BVO.

Figure 7. ms-BiVO4 with an iso-surface of spin density for an electron localized at a V atom.
The hop between two V atoms is indicated in blue color. The green spheres are polaronic V
atoms, silver spheres are V atoms, the red spheres are O atoms, and purple spheres are Bi
atoms.

We used a DFT+U level of theory based on the PBE exchange correlation functional. 2 We used
the SZV basis set!'"® for both V and O atoms to generate the localized states in a 3x3x1 supercell
[a=15.587 A, b=15.281 A, c=11.704 A], [a=90, p=90, y=90.383]. The results obtained for
different +U values on the 3d atomic states of V are shown in Table 7. The calculated values of
Vg and of the diabatic activation barrier are in good accord with our earlier work. In particular,
V4g 1s small.

. PBE+U PBE+U

BiVO: U=6eV | U=8eV
AG* (eV) 0.295 0.305
M4 (eV) 0.295 0.288
Vg (eV) 0.010 0.040

Adiabatic

barrier (eV) 0.285 0.265
Overlap |SaB| 0.113 0.078
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Table 7. Vas for electron transfer in the (021) direction in bulk BiVO4 from PBE+U orbitals. AG*
is the energy of the mid-point along the hopping pathway, A is the reorganization energy, Vg is
the electronic coupling, and the adiabatic barrier is equal to (AG* - Vg ).

4. Conclusions

In this paper we reported a new implementation of a method for the calculation of the electronic
coupling matrix element V45 of ET theory in periodic systems. We presented test calculations that
highlight the capability of the new module that is embedded in the CP2K code, as described in the
Appendix B. The capability allows the complete characterization of ET in the solid state via the
two localized quasi-diabatic state Marcus/Holstein model of polaron. It can be used for any single
determinant representation of the electronic structure of the system from HF, DFT, hybrid DFT,
DFT+U, or ¢DFT theory. Results are given for a number of test systems including iron oxide
models, hematite Fe2Os, titanium dioxide TiO2, and bismuth vanadate BiVOas. The computer code
re-uses several of the high-performance computing functions of CP2K. The method requires only
the equivalent of one iteration of an HF calculation. The ability to calculate H4p for localized
states allows the complete treatment of polaron transport in semiconductors at the periodic DFT
level of theory.

5. Acknowledgements

PB gratefully acknowledges the guidance of Dr. Nina Tyminska in designing our early polaron
calculations and in assisting with the pictorial representation of localized polarons. MD
acknowledges many stimulating discussions with Prof. Jochen Blumberger. We dedicate this paper
to Prof. Michiel Sprik for his seminal and stimulating contributions to theories, methods,
developments, and studies of electron transfer in the condensed phase and of redox reactivity at
solid-liquid interfaces. We gratefully acknowledge start-up funds from University at Buffalo, and
support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences,
under Award Number(s) DE-SC0019086. We thank Prof. Juerg Hutter and other participants on
the CP2K user forum for assistance and guidance about the methods and their implementations in
CP2K. We also acknowledge support from the Center for Computational Research at the
University at Buffalo.

6. APPENDIX A: Considerations about localized states and Vag calculations

The essential differences between several formalisms and implementations of ET lie in the nature
of the quasi-diabatic n-electron states ¥4 and ¥ and in the expression used for the evaluation of
the Hamiltonian elements H 4, Hpg, and Hp. In the recent of work of Bylaska and Rosso!% valid
for molecular and periodic calculations, ¥4 and ¥ are HF states, and H is the total n-electron
Hamiltonian, the evaluation of which introduces exact exchange terms requiring exact exchange
integrals as in HF theory. In the work of Van Voorhis and collaborators * using ¢DFT, the ¥4
and ¥ n-electron states are Kohn-Sham-like states for which constraints have been applied to
enable charge or spin localization, and the Hamiltonian terms in eq.(1) are taken as the DFT Kohn-
Sham Hamiltonian. Strictly speaking, the DFT Hamiltonian for 4 is not the same as the
Hamiltonian for B since the DFT Hamiltonian is state-specific through the functional of the
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density. As such the KS Hamiltonian depends on the electron density of state 4 or B respectively,
albeit it is the case that EX° = Ef* when the ET process is thermo-neutral.

If we denote H(1,2,...,n) the total m-electron Hamiltonian operator, and Hx(1,2,...,n) and
Hp(1,2,..., n) the Kohn-Sham operators for state 4 and state B respectively, it follows that:

H,(1,2,..,n) # H(1,2,...,n)

Hz(1,2,..,n) # H(1,2,...,n)

ESS = (WXS|H (1,2, .., n)|PXS) = (PLS|H(L,2, ..., n)|PXS)

EXS = (WKS|Hp(1,2, ..., n) |WKS) = (WES|H(1,2, ..., n) | PES) (A.1)

We can project the occupied Kohn-Sham (KS) I-electron states onto the Hartree-Fock I-electron
states (occupied and unoccupied):

(015 3%, o on ™) = (@17, 98T, o, HF) X Cliymy
(@12, 05, o on°P) = (@, @3, ..., ) X Cliymy “-2

where the C’s are Mxn matrices, M is the total number of I-electron HF states, and n is the number

of I-electron occupied KS states. It follows that we can expand the KS determinant as a linear

combination of excited HF determinants, following Lowdin'*’:

a a,b a,b,c
— HF HF HF
WS = ¢ WHF + Z Cina¥ila + Z Cijoab¥ijoap T Z Cijkoabc¥ijkoape T (A.3)
i ij ijk
HF yHF HF . . . .
In eq.(A3) Wy Wi jap Yijkape - denote singly-, doubly-, triply-excited, ... determinants
where occupied orbital i, j, k, ... have been replaced by unoccupied orbitals a, b, ¢, ... . In effect

we can expand the KS determinant as a configuration interaction (CI) expansion involving the HF
determinant plus singly-excited determinants plus doubly-excited determinants plus ... n-excited
determinants.' It emerges that a single determinant K wavefunctions can be conceived as very
compact representations of complex CI wavefunctions based on excited HF determinants. In
particular, in our case, they have the desired character of representing ‘localized’ states, but in
addition, they also capture a description of electron correlation that HF wavefunctions do not.

We can apply the variational principle to the two KS n-electron states using the total n-electron
Hamiltonian to obtain the ‘best’ linear combination. This is what is expressed in egs. (1 and 2).
W, = WSS + cfPES

Hyp = (WL H(1L,2 - n) |W55)
Hpp = (V5 [H(1,2 - n)|PE®)
Hyp = (Y5 H(1L,2 - n)|W5)
The diagonal terms in the secular equation in eq. (2) of the main text are now the ‘exact’ energies

associated with the KiS determinants (using the exact n-electron Hamiltonian). The off-diagonal
terms can be calculated through the usual formalism of the “corresponding orbital transformation”

(A.4)
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(COT) that is a bi-orthogonalization procedure applicable to spin-polarized states as described
below. Lastly, we note that Marcus/Holstein theory does not tell us how to build the quasi-diabatic
states: we may use “localized” HF states, “localized” DFT states, “DFT+U" states, “hybrid DFT”
states, or “constrained DFT” states. The formalism is applicable to molecular systems as well as
periodic systems, and the computational cost for the calculation of Vg is equivalent to one
iteration of a HF calculation.

7. APPENDIX B: CP2K implementation details

In this Appendix, we gather for convenience the essential equations embodied in CP2K that are
relevant to the calculation of V4 developed here. CP2K implements a mixed Gaussian and plane
wave method to perform efficient ab initio calculations.!!"!7-131-138 CP2K is highly parallel and
scales linearly with the system size even for condensed phase systems. The essential feature of the
Gaussian and plane wave approach is the dual representation of the electron density that allows an
efficient treatment of electrostatics. We implemented our calculation of V4 within the GAPW
(Gaussian augmented plane wave) and GPW(Gaussian Plane Wave) formalisms of CP2K !3!:132
making use of many routines available in CP2K, 134 in particular the Coulomb engine and the
exchange engine. The re-use of subroutines was made possible because of the decomposition of
the generalized density matrix in the F4p calculation into a symmetric component and an anti-
symmetric component.

133

The expression for the total energy of a molecular or crystalline system in the GPW!'*3) formalism

is as follows:

Erotar = ET[n] + EV[n] + Ef[n] + EX[n] + Elon-lon
A
= B 0,3

Uv
+ D PlouIVE )0, 00 + ) Pulp,OIVE e, ) (B.1)
uv Hv

4mQ) Z —— +FE - ) —
+ 4m G2 + HFX + > |RI — RJI
|Gl<Gc 1#]

@y (1))

where n denotes the electron density, T is the electronic kinetic energy, V is the electronic potential
energy, H is the Hartree energy, X is the exchange energy (exchange correlation in case of DFT),
and PP stands for pseudo-potential.

The use of pseudo-potentials is a well-established technique to represent the nuclei and core
electrons. They have local and non-local parts. The long-range contribution to the local part of
pseudo-potentials to the energy, the Hartree energy, and the ion-ion nuclear interaction energy are
grouped together as electrostatic interactions. They are treated via Ewald sum on a FFT grid. The
short range part of the local pseudopotentials is treated on a real grid.
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2 —

Eclectrostatic = f 1oc(r)n(r)dr+47fﬂ
|G|<GC

For computational convenience a Gaussian core charge is introduced for each nucleus so that the
above expression becomes:

5 4l (G)
Eelectrostatic = fVlf) (r)n(r)dr+ ZZ tot(G) tOt

2 IR "R Ierfc - \/__ﬁ (33)
= /R,"z +REA T 2m i

The last three terms are the total Hartree energy (E™), the ‘nuclear overlap’ energy (E°*"), and the
self-energy (E*'"). The electron density in GAPW is treated differently as compared to GPW. It is
divided into three parts, a smooth global density distributed over the whole space, and two non-
overlapping atom centered soft and hard densities. These densities are constructed such that, within
the region around the atoms, the soft density cancels the all-inclusive smooth density, and in the
interstitial regions, soft and hard densities cancel out.

n
nl= y,n} (B.4)
Al = Z 7l

A

where, n = electron density, i = smooth global density, fi'=atom-centered soft density, and
nl=atom-centered hard density. More details on the construction of densities can be found in
Lippert et al.'3!1*2 The Hartree energy term is computed in two parts, one with the smooth global
density using a poisson solver on FFT grids, and the second part on an atomic Lebedev grid
(spherical grid) with the atom-centered densities. Therefore

Ey[n +n?] = Ey[f + 7°] +ZEHnA+nA +ZEHnA+nA]+EH[ 0] — E4[7°] (B.5)

fdrVH — %A

where, the operators En and Vu are:

j dr dp ") (B.6)

|[r — 7’|

v [n] () = f dr' |rn£—rr)|
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The HF Exchange energy calculation is calculated for the I'-point only for periodic systems in
CP2K, and makes use of a truncated coulomb operator using Gaussian basis sets. Implementation
details can be found in papers by Guidon, et al.[!!1-134139]

1 ! !
B =~ 3 || w0l G0gln — rDpkwf () dn (8.7)

ij kk'

For the purpose of our V4 calculation, we needed to separate H4p into: 1/ two-electron
contributions - coulomb (or Hartree) and exchange; 2/ one-electron contributions - nuclear
attraction and kinetic energy; and 3/ nuclear energy (ion-ion). The three contributions to the
energies (Coloumb, ion-ion, and nuclear attraction) were obtained by three successive calls to the
Poisson solver, the first time providing the electron density only, the second time providing the
nuclear density only, and the third time providing the total density. Subtraction of the electron-
only and nuclear-only energies, from the energy obtained with the combined density, yielded the
one-electron contribution. We note that a part of the nuclear-only energy term cancels out a term
in the pseudopotential contribution and hence the nuclear-only energy is equal to the pure nuclear
energy only in cases of all-electron calculations. A similar procedure was applied to the one-center
Hartree energy terms. The HFX routine provides the two-electron exchange energy. In the end the
various energy contributions were gathered as shown in Table B1.

1 2 3

Energy contributions elec-elec nuc-nuc nuc-elec, kinetic

energy
Associated CP2K function calls 2e- energies Oe- energies le- energies
symmetric and
Exchange: hfx_ks matrix() anti-symmetric - -
parts
call with Regular call with

call with electron-

) . : i . N
E Hartree: pw_poisson_solve() only density nuclear. only comblned'(l 2)
density density
E Hartree 1centered: call with electron- call with Regul.ar call with
Vh_Ic gg integrals() only density nuclear-only combined (1 +2)
- == density density
Self-energy: .
calculate ecore self() i Analytical term i
Potential energy: i i from core
build core hamiltonian matrix() Hamiltonian
Kinetic energy: i i from core
build core hamiltonian matrix() Hamiltonian
Coulomb + Ion-ion Ion-electron
Summation by column gives: Exchange interaction attraction

energy energy energy
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Table Bl. Outline of one-electron, two-electron, and nuclear energy contributions obtained by
splitting the subroutine calls within the ‘quick-step’ code and its construction of the Kohn-Sham
matrix in CP2K.

When using the GPW formalism, there are no 1-centered Hartree energy terms. GAPW requires
much care and tuning of parameters on a case-by-case basis, so that for periodic calculations it
may be preferable to use the GPW method. GAPW and GPW results come out to be the same for
V 4p calculations. For all-electron calculations the GAPW method is necessary. Convergence with
respect to the radial atomic grids and the FFT grid must be checked to get accurate values of Vas.

For the calculation of V4, the COT method requires the orbitals of both initial and final states.
For the sake of convenience, this is done in CP2K in a mixed energy calculation setup so that both
states are available in the quick-step force environment at the same time. Generating the two
localized states in itself require making use of broken symmetry section in CP2K, or Hubbard U,
or constrained DFT, which are not discussed here. Using the generalized density matrix obtained
from the initial and final state orbitals, a single step of HF energy calculation is carried out to
obtain the segregated one-electron and two-electron contributions as shown in table 1.

We make use of the partitioning of the generalized density matrix into a symmetric matrix and an
anti-symmetric matrix. For the Coulomb and one-electron terms the symmetric part of the
generalized density matrix suffices as the operators are symmetric. However, for the calculation
of exchange energy, both parts are needed and two ‘exchange’ calculations are carried out by
passing symmetric and anti-symmetric matrices. The two contributions are summed up in the end.
When using DFT-based states as initial and final states (non-HF orbitals) as input, then the theory
developed above requires that we calculate the exact HF energy H44 and Hpg (these quantities are
already available if initial and final states are HF states). Finally, we assemble V45 by multiplying
the energy contributions with the appropriate pre-factors.

The code is implemented within a fork of publicly available CP2K-6.1 version. An input section
“&VAB” provides the HF calculation parameters required during the V4p calculation in cases
when the orbitals are not HF orbitals. CP2K’s object oriented design helps in replicating the HF
options under the V4p section. The input section is placed as part of the ‘mixed’ section as
illustrated below:

&FORCE_EVAL
&MIXED

&VAB
DO_VAB .TRUE.
&HF
FRACTION 1.0 IMust be 1.0
10ther optional sections for setting up HF calculation as in
!Guidon, et al.’s papers on HF implementation in CP2K 111,134,139
IHF_INFO
IINTERACTION_POTENTIAL
ILOAD_BALANCE
IMEMORY
IPERIODIC
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ISCREENING
&END
&END
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