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Molecular Systems Design & Engineering



Protein selections have been used for identifying and optimizing binding proteins, determining 
protease and enzyme specificity, and, more recently, identifying folded proteins or binders that 
were computationally designed. Proteins rarely act in isolation; they are part of pathways and only 
interact with specific molecules. Engineered proteins, such as antibodies or computationally 
designed proteins intended for therapeutic treatments, will be surrounded by many molecules in 
the human body. Most of the time these proteins have been developed in “isolation” and negative 
design or selection procedures to avoid off-target binding have not been applied. Therefore, highly 
sensitive methods to analyze interactions in a high-throughput manner to control for unexpected 
specific or “sticky” interactions will speed up lead discovery and facilitate drug development. 
Additionally, our highly sensitive detection assay can serve as an analytical tool for any protein-
protein or protein-small molecule interactions. 
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Parallelized Identification of On- and Off-Target Protein 
Interactions
Jiayi Doua,b, Inna Goreshnika,b, Cassie Bryana,b, David Bakera,b,c, Eva-Maria Straucha,b,d,e*

Genetic selection combined with next-generation sequencing enables the simultaneous interrogation of the functionality 
and stability of large numbers of naturally occurring, engineered, or computationally designed protein variants in parallel. 
We display hundreds of re-designed proteins on the surface of yeast cells, select for binding to a set of target molecules 
by flow cytometry, and sequence the starting pool as well as selected pools to obtain enrichment values for each displayed 
protein with each target. We show that this high-through put workflow of multiplex genetic selections followed by large-
scale sequencing and comparative analysis allows not only the determination of relative affinities, but also the monitoring 
of specificity profiles for hundredes to thousands of protein-protein and protein-small molecule interactions  in parallel.  
We demonstrate that our approach not only identifies new interactions of designed proteins, but also detects unintended 
and undesirable off-target interactions.  This provides a general framework for screening of engineered protein binders, 
which often have no negative selection or design step as part of their development pipelines. Hence, this method will be 
generally useful in the development of protein-based therapeutics.

  

Introduction
Protein display selections have been used to repeatedly select 
for a desired functionality from a diverse gene library until 
convergence on a small number of protein variants is achieved. 
With the advent of next-generation sequencing (NGS), the 
frequency of many variants from multiple genetic selections can 
be evaluated in parallel. The strength of selective pressure for 
the desired functionality determines the diversity of the gene 
pool after selection; depending on the selective pressure, weak 
or dysfunctional variants will be depleted or even disappear 
from the pools. The diversity that can be assessed in detail 
depends on the numbers of genes or gene fragments that can 
be sequenced. Currently, even a simple benchtop sequencer, 
such as the Miseq (Illumina), can obtain up to 35 million 
sequences in a single run, and the numbers are increasing due 
to constant improvements to the technology. Previous 
combination of selection experiments in conjunction with NGS 
have enabled the dissection of the specificities of laboratory-
evolved PDZ domains with a set of peptide ligands1. Relative 
affinities of a series of peptide-protein interactions can be 

extracted through variation in the positioning of the selection 
gates2 and the concentration of a target molecule3. Further, 
selections and deep sequencing has been used to obtain 
detailed protein fitness landscapes with respect to their 
residue-level contributions to protein interactions, detection of 
binding epitopes4, 5, detailed binding and enzyme activity 6-13, 
and even protein stability using temperature variation as their 
selection criterion or protease resistance14. These detailed 
landscapes have provided a deeper understanding of protein 
chemistry15  and have also revealed information about the 
usage of the genetic code 16; however thus far parallel screening 
of hundreds of unrelated proteins against a series of target 
molecules to address both affinity and specificity profiles at the 
same time has not been reported.

Here, we describe an approach which queries hundreds of 
computationally re-designed proteins to not only quickly 
identify new protein-protein interactions (PPI) and small 
molecule-protein interactions (SMPI), but also comprehensively 
monitor promiscuous binding behavior and off-target 
interactions, which is crucial information for determination of 
lead candidates. We combine proteins to be queried into single 
pools and carry out selections against a series of target 
molecules. We then sequenced both the selected and the 
starting pools to obtain frequency changes in each pool which 
allows us to obtain a comprehensive binding profile addressing 
both relative affinities and specificities. Resulting profiles can 
provide crucial information for the determination of lead 
candidates in the development of protein-based therapeutics or 
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will help to decipher protein interaction networks of naturally 
occurring proteins.

Experimental
Library construction

Gene fragments were synthesized (Gen9 Inc.) with 5’ and 3’ 
additions homologous to the pETCON plasmid17 (Fig. S1) which 
has a size of about 6 kb, allowing recombination into the 
expression vector within the yeast cell. Genes encoding proteins 
designed to bind to protein targets (pool 1.A and pool 1.B, with 
partially overlapping genes), were additionally barcoded with 
an 18-base pair sequence after the stop codons. To clone these 
fragments into pETCON, we triple digested the vector DNA with 
NheI, XhoI and BglII to ensure linearization. After combining 2 
µg of the pooled genes (average size of 450 bp) and 0.75 µg of 
the vector DNA, DNA was co-transformed into EBY100 yeast 
cell18 using electroporation19. Transformed Resulting library size 
was 5 x 106 transformed cells for the library of pool 1.A and 1.B. 
For the library generation of the potential small-molecule 
binding proteins(pool 2), we digested pETCON with NdeI and 
XhoI as the genes did not contain a gene-specific barcode. A 
total of 5 µg of the gene fragments and 1 µg digested pETCON 
vector were co-transformed in the same fashion as above. The 
transformation yielded 1 x 107 transformed cells.   

Gene Pool Selections 

Yeast cells containing the synthetic gene libraries were grown 
overnight at 30°C in 50 mL minimal medium containing 2% 
glucose, but lacking tryptophan and uracil.  For induction, cell 
suspension was adjusted to an optical density (O.D.) of 1 at 600 
nm, sub-cultured into SGCAA20 and grown at 22°C for another 
18 h. Before incubating with respective target molecules, yeast 
cells were washed once with phosphate buffered saline 
containing 0.1% BSA (PBSF) and normalized to an O.D. of 1 at 
600 nm. The benchmark proteins, comprised of 5 variants of the 
translocated intimin receptor (TIR) protein, were tagged with 
individual 18 base-long barcodes and grown as 1 mL cultures 
independently. Cells were washed, normalized to an O.D. of 1, 
and combined equally. 50 µL of the mixed cells expressing the 
TIR variants were added to 1 mL of the normalized library pool. 

For PPI selections, we incubated 50 µL of the yeast pool in PBSF 
with 1 µM of biotinylated target protein for 3 h at 4°C while 
rotating. To introduce avid conditions, 250 nM streptavidin-
phycoerythrin (SAPE, Invitrogen) were added to the cell pool 
with the target protein and incubated for an additional hour at 
4°C. At this point, we also added 2 µg/ml anti-myc FITC-labeled 
antibody. For 2.5 µM intimin, 625 nM SAPE was added. Before 
sorting, cells were washed once again with 1 mL ice-cold PBSF. 
For selections under non-avid conditions, cells were incubated 
with indicated concentrations for 3 h at 4C while rotating, 
washed once with ice-cold PBSF, and re-suspended in 100 µL 
PBSF before adding 35 nM SAPE and 2 µg/mL anti-myc FITC-
labeled antibody. Cells were incubated for an additional ~40 

min on ice, washed once more, and stored as a pellet on ice 
before sorting. 

For SMPI selections, three different modifications of small 
molecules were utilized:  1). monovalent biotinylated ligands, 
2). biotinylated-BSA conjugated ligands, and 3). Biotinylated-
70K-dextran conjugated ligands. Fluorescent detection was 
enabled by incubation with SAPE and anti-myc FITC conjugated 
antibody. For each ligand in category 1, 4 µM was pre-incubated 
with 1 µM SAPE to create additional avidity. For category 2, 2.5 
µM biotinylated-BSA-ligand conjugates were mixed with 627 
nM SAPE. For category 3, we combined 640 nM biotinylated-
70K-dextran ligand conjugates with 487 nM SAPE.  To every 50 
µL reaction, 1 µL anti-Myc-FITC was added. Cells (5 x 106) were 
labeled at room temperature for 2.5 hours while rotating and 
washed once with ice-cold PBSF before sorting. 
For each target, at least 1 million cells were sorted using 
fluorescence-activated cell sorting (FACS) on a BD Influx sorter. 
Gates were drawn based on the signals observed (Figure 3,4 and 
Fig. S2); cells that were only labelled with anti-cMyc-FITC 
conjugated antibody were used as a reference for background 
fluorescence at 580 nm and gates were drawn just above these 
populations. 

DNA Preparation and Next-Generation Sequencing

Plasmids from cells of the starting and selected pools were 
extracted as previously described21 (see detailed procedure in 
Suppl. Methods). Following a QIAgen PCR clean-up step 
producing a 30 µL DNA solution, 15 µL were subjected to PCR 
for the addition of selection-specific barcodes and flow cell 
adapters. For that, two PCR steps were performed. The first PCR 
used a set of “inner primers” to add the Illumina-specific primer 
annealing site that enables the use of primers included in the 
commercially available sequencing kit without the addition of 
custom sequencing primers. Additionally, we included a short 
12 bp sequence, that can be used as a second barcode to label 
the selected gene pools. The 12mer sequences were designed 
to have maximal nucleotide diversity for 4 different sets of 
primers. This is important for the determination of cluster 
assignments by the Illumina machine and can be helpful when 
sequencing low sequence diversity libraries as it increases the 
apparent complexity detected by the machine. Primers were 
designed to have a lower annealing temperature for the first 
reaction (51°C) (Table S3). To add the Illumina flow-cell adapters 
and selection-specific barcodes, a second PCR step with a higher 
annealing temperature (64°C) was performed using primers 
outer-F and a set of reverse primers containing various 
barcodes (Table S3). Due to the significant difference between 
the two melting temperatures, a purification step for amplicon 
of the first PCR was not necessary and 2 µL of the first reaction 
served directly as template for the second reaction. All primers 
were PAGE purified. The first PCR step was performed for 14 
cycles, whereas the second PCR was performed for 15 cycles. 
However, the cycles necessary for the first reaction depend on 
the efficiency of the DNA preparation from the yeast cells and 
may need more cycles, which can be monitored using qPCR. 
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Resulting DNA fragments were gel purified and amounts were 
quantified by qPCR as instructed (Illumina qPCR manual). 
As all genes in the pool 1 libraries (PPI pools) were barcoded, 
we only sequenced the 18mer gene-specific barcodes (see 
supplementary methods and Fig. S1.B, Table S3), which allowed 
us to use a 50-cycle kit on a Miseq Sequencer (Illumina)21. 

As the pool 2 libraries (SMPI pools) do not contain gene-specific 
barcodes, we amplified and sequenced the whole gene. 
Plasmid-specific primers at the 5’ (upstream of the NheI site) 
and 3’ site (including the XhoI site) were used as amplification 
primers (Fig. S1, Table S3). The final DNA prepared for 
sequencing was pooled using 5 times the amount of DNA for the 
reference pool. For sequencing whole genes (SMPI libraries, 
from pool 2 selection), a 300-cycle paired end sequencing run 
was performed.

Sequence Analysis

Sequencing reads were split into the different populations 
based on their 12-bp and 6-bp selection-specific barcodes. 
Pools were treated identically for analysis and quality filtration. 
All sequences with an average quality score below 20 or if they 
contained any position with a score lower than 12 were 
rejected. Either barcodes or sequences between the restriction 
sites, depending on which library was analyzed, were extracted 
and counted. The frequency of each gene in each selected pool 
was normalized by its frequency in the reference pool and 
described as enrichment values. To provide an estimate of the 
reliability of the data, we incorporated a bootstrapping re-
sampling step; we oversampled the library size by pulling 20,000 
sequences 50 times randomly from the raw sequencing data 
split into corresponding selection pools. This reduces artificially 
high appearing enrichment values caused by low sequencing 
coverage in the reference pool; spread of data can be 
monitored for any given input gene (see Fig. 3.D,E and 4.C,D). 
For each random draw of sequences (during our bootstrap 
analysis) frequencies from the reference pool (either starting 
library or cells selected for expression on the yeast surface) 
were then used to normalize all frequencies of each gene in any 
given selection.
For pool 1, the 18-bp gene specific barcodes were counted, and 
the frequencies obtained from the expression selection were 
used as the reference. Pool 2, which involved the identification 
of new small-molecule binders, was sequenced without gene-
specific barcodes. Since several genes were too long to cover 
with the available sequencing cycles (300*2), we utilized only 
the forward sequences for counting. All obtained sequences 
appearing above 20 times in the reference pool were aligned to 
the input sequences using the basic local alignment search tool 
(BLAST) and the results were used to assign the sequenced 
fragments. The identified gene fragments were then used to 
count their occurrences in each selection pool. This analysis 
method can also be applied when input libraries contains 
unknown genes or open reading frames. For example, gene 
fragments occurring at a certain threshold in the input library 

can be quickly assigned by BLASTing against the examined 
organism’s genome or any database. 

Protein Expression and Purification 

Intimins and designed proteins were expressed in E. coli. Details 
can be found in the Suppl. Methods. 

Fluorescence Polarization Equilibrium Binding Assays

Fluorescence polarization-based affinity measurements of 
selected proteins were performed as noted previously22 using 
Alexa488-conjugated ligand. In a typical experiment, the 
concentration of the Alexa488-conjugated ligand was fixed 
below the dissociation constant (Kd) of the interaction being 
monitored and the effect of increasing concentrations of 
protein on the fluorescent anisotropy of Alexa488 was 
determined. Fluorescence anisotropy (r) was measured in 96-
well plate format using a SpectraMax M5e microplate reader 
(Molecular Devices) with ex = 485 nm and em = 538 nm and 
using a 515 nm emission cutoff filter. In all experiments, 
standard phosphate-buffer saline(PBS, pH7.4) was used as the 
buffer system at room temperature. 

Results and discussion

Figure 1. Workflow Overview. Gene fragments with flanking sequences for 
homologous recombination into the surface expression vector are co-transformed 
into yeast cells with linearized plasmid DNA. Aliquots of the yeast cell pool 
expressing recombinant genes as a fusion to the Aga2 surface protein are 
incubated independently with various fluorescently labeled query molecules. 
After sorting of fluorescently labeled cells, each selected pool receives a selection-
specific barcode. DNA fragments from each selected pool are sequenced and the 
occurrence of each gene within a given pool is counted. Counts are normalized by 
dividing their frequency in the selected pool by their frequency observed in the 
starting pool.

Overview and Workflow

The proteins of interest are displayed on the surface of yeast 
and evaluated for binding to biotinylated target 
molecules(Fig.1). DNA fragments encoding the protein of 
interest with flanking regions containing a short sequence for 
homologous recombination into the surface expression vector 
were co-transformed into yeast cells with linearized plasmid 
DNA and evaluated in pools for display and binding to a set of 
target molecules. To compensate for possible 
overrepresentation of individual genes, the fraction of each 
clone in the starting pool was determined. To correct for 
distribution changes due to growth differences during induction 
or expression variation, selections were carried out for cells that 
expressed the protein on the surface of the yeast and used as 
the reference population. Plasmid DNA for the unsorted gene 
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library and each selected pool was isolated and tagged via PCR 
with sequencing-chip tethering adapters and individual 

Figure 2. Tuning of Enrichment Ratio – Affinity Relationship. Various point 
mutants of the intimin receptor TIR from the enteropathogenic E. coli (variants 
span two orders of magnitude difference in their binding constants) expressed on 
the surface of yeast, were added to a pool of yeast cells expressing synthetic genes 
of re-designed proteins, incubated with indicated concentrations of biotinylated 
intimin (sorted via flow cytometry under indicated conditions. (A) FACS scatter 
plots showing binding (Y-axis) to intimin and expression (X-axis) of yeast pools 
containing 615 different genes and TIR variants. (B) Enrichment of different TIR 
variants after selection with biotinylated intimin under indicated conditions. Gene 
frequencies in selected pools were divided by the frequencies obtained after 
selecting for clones that displayed the C-terminal cMyc-tag (histogram on the very 
left side labelled “no target”). The first bar chart group shows the ratio of the 
frequencies from the unsorted library to the frequencies after selection for 
display. Error bars reflect the standard deviation of measurements obtained using 
two genetic constructs, each containing a different “gene-specific” barcode. Data 
without error bars reflects a single construct. Subsequent groups bars in the chart 
represent enrichments obtained after selections reflected in the histograms above 
each group. Under non-avid conditions and 500 nM of intimin, wild type is highly 
enriched, whereas under avid conditions and 2.5 µM intimin all variants are 
detected. 

barcodes for each sorting experiment. After next-generation 
sequencing, sequences were counted, and gene frequencies 
were normalized to their corresponding reference pool. The 
enrichment values provide information on the affinity and 
specificity of each queried protein for each target and thereby 
portray specificity profiles. 

We illustrate the usefulness of this approach in a variety of 
applications. First, we examined a control set of variants of the 
translocated intimin receptor (TIR) with point mutations 
spanning two orders of magnitude differences in affinity. We 
then used the method to assess binding affinity and specificity 
of designed binding proteins for a set of protein targets and 
small molecule targets respectively. 

Tuning of Sorting Conditions 

We reasoned that selections could be made sensitive to 
different affinity ranges by manipulating target concentrations, 

incubation conditions and sorting gate settings. As a model 
system, we chose the interaction between the cell surface 

adhesion protein intimin of the enteropathogenic Escherichia 
coli with its receptor protein TIR because a series of single point 
variants are known which tune the binding affinity over two 
orders of magnitude in the micromolar range (this is the range 
most relevant to initial binding screens). The interaction 
between wild type TIR and intimin has a dissociation constant 
of 577 nM, whereas the point mutations N300D, N300Q and 
N300A have dissociation constants of 5.5 µM, 20.2 µM and 69.9 
µM respectively. Each TIR variant was tagged with a barcode 
and flanking regions for homologous recombination as 
described above. Duplicate constructs with different barcodes 
were generated for wild type TIR and the TIR variants N300D 
and N300Q to assess the variance in the enrichment values. In 
the sorting experiment we included 615 completely unrelated 
proteins (pool 1, see Methods and Table S1) to mimic the 
practical of screening large numbers of unrelated clones in 
parallel.  Pool 1 gene frequencies before and after selections, 
including all TIR variants, were obtained through sequencing 
and counting of the barcodes (see Methods). 
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We performed selections at 500 nM intimin, which is close to 
the KD of the wild type TIR interaction, 1 µM and 2.5 µM with 
and without avidity effects (Fig.2). Expression levels were 
detected by incubating with anti-cMyc-tag antibody conjugated 
to FITC, and binding of the biotinylated intimin was monitored 
through the addition of streptavidin conjugated to 
phycoerythrin (SAPE, see Methods). Gates were set to capture 
cells with red fluorescence (emission at 580 nm, Y-axis) greater 
than that of cells only labelled with anti-cMyc FITC-conjugated 
antibody (emission 530 nm, X-axis), unless noted otherwise (Fig. 
S2). A distinct single population was observed at 500 nM 
intimin, and sequencing confirmed the enrichment of primarily 
wild type TIR. At 2.5 µM intimin, a second population appeared 
(Fig.2A) corresponding to the enrichment of the N300D variant 
with a Kd of 5 µM (Fig.2B).  To boost apparent affinity through 
avidity effects, we incubated the biotinylated target protein 
with a 4:1 ratio to tetrameric Streptavidin-PE (SAPE) to promote 
non-covalent oligomerization20 (see Methods). With 1 µM 
intimin under avid conditions, 4 distinct populations were 

observed (Fig 2A), and the four TIR variants are enriched to 
different extents consistent with their dissociation constants. At 
2.5 µM intimin conjugate, the populations start to merge as the 
signal saturates: a gate selecting cells above background 
captures all variants equally well, even the weak binder TIR 
Figure 3. Parallel Evaluation of Protein Binding Activities and Specificity. (A) 
Enrichment values of TIR variants selected for binding to various biotinylated 
intimin concentrations as well as several other biotinylated target proteins.  As 
expected, the TIR variants are highly specific for their cognate binding partner 
intimin. Warm colors reflect enrichment, cold depletion. (B) Flow cytometer 
scatter plots demonstrating binding signal for influenza hemagglutinin of the H3 
of the Hong Kong 1968 strain and Fz, as well as gates used for their selections. (C) 
Mean enrichment values of designed proteins sorted for proteins binding to target 
H3 hemagglutinin; missing data is set to -20, values with enrichment above 20 are 
capped at 20.  Mean enrichment values are obtained through bootstrapping: A 
sample size of N=20,000 sequences were pulled from the raw sequencing data for 
R = 50 times. (D,E) Mean enrichments and specificity profiles for design_III.27 after 
sorting of two different library pools. Data spread for each sample can be seen in 
the boxplots. Larger spreads are a result of lower sequence counts for a given 
sequence.

N300A (Fig.2). At 1 µM, the correlation of enrichment values 
with affinities depends on the positioning of the gates:  more 
stringent gating separated variants according to their relative 
affinities, whereas more lenient gating resulted in little 
separation.  Overall, as is evident in Fig.2B, by varying the 
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conditions the selection can be made responsive to different 
affinity ranges. The ratio of the unsorted frequencies of all TIR 
variants to the frequencies after selecting for expression was 
consistently around 1 (1.093 +/- 0.3 when taking all 7 constructs 
into account) indicating that selection, preparation of the DNA 
of input and selected pools, and sequencing do not introduce 
significant biases (Fig.2). 

Discovery of Protein Interactions via Multiplex Selections and 
Evaluation of Affinity and Specificity Profiles

We evaluated the binding properties of the first two partially 
overlapping libraries of designed proteins (Pool 1 A and B) that 
were designed to binding to protein targets by incubating them 
with two panels of proteins. The first panel of seven target 
proteins have unrelated folds, no sequence similarity and are of 
viral or human origin, namely: H3 hemagglutinin (H3) of 
Influenza (A/Hong Kong/1/1968), Frizzled 7 (Fz), the surface 
protein L1 and a variant of L1 from smallpox, CTLA and the Ebola 
glycoprotein (GP). The second panel contained H3, Fz and PD1 
as well as two hemagglutinin versions from H1 from A/South 
Carolina/1/18 (SC) and A/Solomon Islands/3/2006 (SI). The 
query proteins in the pooled library were computational re-
designed proteins from a diverse set of existing natural proteins 
coming from 117, for the PPI libraries or 68 different organisms 
(Table S2). However, they all had in common that they could be 
expressed in E. coli as reported in their crystal structure deposit 
file in the protein database. To explore the use of the method 
for assessing protein-small molecule interactions, we 
interrogated the binding properties of a pool of 228 designed 
proteins of Pool 2 to 7 conjugated small molecule ligands: 
cortisol (HCY), 17-hydroxyprogesterone (OHP), vitamin D (VitD), 
Mycophenolic acid (MPA), Apixaban (APN), artemisinin (ART), 
and biotin (BTN). With the exception of HCY and OHP, these 
small molecule targets are quite different in their molecular 
properties. Ligands were either conjugated directly to biotin, 
biotinylated BSA or dextran (BSA and dextran are used as a 
“carrier” molecule to increase avidity effects for detecting weak 
interactions). Successfully designed protein binders often have 
weak initial activity for their intended targets, as the design 
process still needs improvement. However, once active designs 
have been identified, only one or two mutations can improve 
affinity up to 100-fold17. Hence, even designs with weak affinity 
can provide a valuable starting point for further optimization. 
On the other hand, designs that bind non-specifically to other 
proteins may be partially misfolded, which can cause a general 
“stickiness” as a result of possibly exposed hydrophobic core 
residues. These designs are less likely to be rescued by 
subsequent optimization as they likely have multiple, 
unpredictedable conformation for which several mutations are 
likely needed to establish a stable binding conformation. 
Although additional protease-based stability selection can 
eliminate some misfolded designs from the pool14, protease 
resistance assay cannot detect misfolding caused by domain 
swaps or aggregate formation which can still have cause 
nonspecific binding. Hence, for the initial test of designed 
proteins, the evaluation of binding specificity is as important as 

affinity, arguably even more important for hydrophobic 
interactions. Selection conditions that allow highly sensitive 
detection were chosen to ensure that a wide range of activity 
levels are monitored at once for evaluating binding specificity.  
To achieve the highest sensitivity, sorting gates for the 
identification of binding proteins were set so that any cell with 
signal above background was collected (Fig. S2, for 
concentrations and incubation condition see methods).  To 
ensure complete coverage of the library, selections were 
oversampled by screening at least 200 times more yeast cells 
than the library size. To adjust for differences in the starting 
distributions, frequencies in selected populations were 
normalized by their corresponding frequencies in the reference 
population.  For this purpose, a pool selected for expression and 
the unsorted pool populations were sequenced for PPI and 
SMPI libraries respectively.  

A. Identification of Protein-Protein Interactions 

As expected, TIR variants bind specifically only to their cognate 
binding partner intimin (Fig.3A) and not to any other target 
protein. Population distributions and gating conditions for 
selection against H3 HA and Fz are shown in Fig. 3B. The top 7 
enriched designs from the selection for H3 HA showed specific 
binding to this target with one exception (Fig.3C); the 
information that the protein design_II.60 also binds off-target 
proteins would have been missed if the design had been only 
screened against the target molecule. It is likely that several of 
the promiscuously binding designs do not fold into the expected 
conformation and would therefore be poor candidates for any 
further improvements or applications. Selection for Fz resulted 
in the identification of one highly enriched binding protein (Fig. 
3D). We repeated the experiment by assembling a second pool 
(pool 1.B) of 230 designs with an overlap of 130 designs of pool 
1.A (including identified binders from experiment 1). For the 
repeat, we re-started with transforming the linear gene 
fragments with linearized plasmid into yeast. For the repetition, 
3-fold less H3 HA was used for the selections. The same binders 
were again identified (designs_II.23, 24, 52, 53, 55 in Fig. S6; 
design_II.41 was not detected in any of the pools; likely the 
cloning of this gene fragment or its transformation failed). For 
Fz, we confirmed the significant enrichment for 
design_III.27(Fig.3E and S6). To ensure the analysis was not 
biased by the sequencing counts, we ensured that there was no 
correlation between counts and enrichments (Fig.S4).

To investigate how many sequencing reads are necessary for a 
given library to obtain meaningful enrichments values, we 
simulated the effect of smaller numbers of reads. We calculated 
enrichment values for 3 newly identified new binders 
(design_II.52,24 and design_III.27), and monitored them while 
decreasing the number of sequencing reads used for analysis 
(Fig. S3). While the median enrichment values stabilize between 
1.5 - 2 fold coverage of the library size, outliers occur less after 
15 - 30 fold coverage of the library. Hence, the number of reads 
should be at least 20 - 30 fold greater than the library size to 
obtain reliable data. Both the number of yeast cells to be 
screened and sequencing reads depend on the distribution of 
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the gene frequencies of the starting library. To get a rough 
estimate of the confidence for a given data-point, we applied a 
simple bootstrapping procedure (see Methods). Fluctuations in 
enrichment values occur when either the reference library or 
selected pool have low counts.

Figure 4. Evaluation of Small Molecule Binding Affinity and Specificity. (A) Flow 
cytometer scatter plots demonstrating binding signal for OHP during sort 1 and 2, 
as well as gates used for selections. (B) Mean enrichment values sorted for binding 
to OHP-biotin. Values above 15 or below -15 were clipped and missing data set to 
-15. (C,D). Boxplots of the bootstrapped enrichments of the identified new binding 
proteins design C9 and C10. (E) Flow cytometry measurement of binding to 
indicated ligand-biotin conjugates. Scatter plots show binding of design C9 (left) 
and C10 (right) to 1 M OHP-biotin. (F) Titrations of purified C9 and C10 measured 
via anisotropy for binding to OHP conjugated to Alex488. 

B. Selections of Small Molecule Binders

Fluorescence activated cell sorting (FACS) was carried out for 
yeast cells containing Pool 2 with each ligand conjugate. To 
increase the signal to noise ratio, we performed two rounds of 
sorting. Using the procedure described above (and in the 
Methods section), we identified several new binding proteins 

(Fig.4A-D). We found that several failed designs for binding 
artemisinin (Fig. 4B: 186_Art, 286_ART, 259_ART and 365_ART) 
showed strong off-target binding to other hydrophobic ligands 
OHP, HCY and VitD. This observation indicates that featureless 
hydrophobic pockets (like the ones seen in those designs) 
cannot achieve desired affinity and specificity. Our analysis 
focused on two proteins designed for binding OHP, designs C9 

and C10. While C9 does not show binding to the other ligands 
(Fig. 4B,C), C10 binds to a variety of other compounds (Fig. 
4B,D). To verify that the enriched proteins indeed bind to these 
multiple compounds, we tested the designs as individual clones 
by flow cytometry(Fig. 4.E). Design C10 showed a clear binding 
signal to 1 μM biotinylated OHP and 1 μM biotinylated VitD 
when displayed on yeast surface. Design C9 binds biotinylated 
OHP, but not biotinylated VitD or PE-FITC(Fig. 4E). We also 
tested binding of C10 to BSA-biotin, for which C10 showed a 
very low enrichment just above background; but binding was 
not observed indicating that these low values are within 
background noise levels. To determine whether these designs 
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bind small molecules in solution and to obtain approximate 
binding affinities, genes were cloned into bacterial expression 
vectors and purified. Fluorescence anisotropy titrations 
determined that design C9 binds OHP with micromolar affinity 
and design C10 binds with a much weaker affinity (Fig. 4F).  This 
biochemistry binding measurement using purified proteins 
confirmed the results from our cell-based selection assay. The 
fact that low-affinity binder C10 shows higher level of off-target 
binding towards VitD suggests that the less optimized 
hydrophobic pockets often leads to nonspecific interactions. 

Conclusions
We demonstrate that pooling a variety of unrelated genes and 
selecting for binding of their surface expressed proteins to 
multiple fluorescently labeled targets by flow cytometry 
enables a rapid assessment of relative affinities and specificity 
profiles. Such selections distinguish proteins that bind 
specifically to a desired molecule from those that bind non-
specifically to multiple targets. In case of designed proteins, off-
target binding can indicate problems with the structural 
integrity of the protein such as the exposure of hydrophobic 
core residues. For protein engineering in general, monitoring of 
off-target interactions is crucial for the development of novel 
protein-based therapeutics, diagnostics and synthetic sensors 
from engineered recombinant proteins or antibodies. Our 
method can be used in early discovery steps to facilitate 
decisions on lead candidates. The pooling strategy could likely 
be applied to other screening platforms such as phage display, 
ribosome display, and GFP reassembly assays as long as the 
proteins can be expressed by E. coli or in vitro as in case of 
ribosome display. As gene synthesis is becoming cheaper and 
genomic libraries are becoming readily available, high 
throughput analysis of protein interactions is becoming 
increasingly powerful.  Highly parallel analyses as described 
here provide an effective way to extract maximum information 
content on binding affinity and specificity.  
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Yeast surface display using multi target selections enables monitoring of specificity profiles for 
thousands of proteins in parallel. 
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