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Tijs Karmane, and Ad van der Avoird∗d

Resonance states are characterized by an energy that is above the lowest dissociation threshold
of the potential energy hypersurface of the system and thus resonances have finite lifetimes. All
molecules possess a large number of long- and short-lived resonance (quasibound) states. A con-
siderable number of rotational-vibrational resonance states are accessible not only via quantum-
chemical computations but also by spectroscopic and scattering experiments. In a number of
chemical applications, most prominently in spectroscopy and reaction dynamics, consideration of
rotational-vibrational resonance states is becoming more and more common. There are differ-
ent first-principles techniques to compute and rationalize rotational-vibrational resonance states:
one can perform scattering calculations or one can arrive at rovibrational resonances using vari-
ational or variational-like techniques based on methods developed for determining bound eigen-
states. The latter approaches can be based either on the Hermitian (L2, square integrable) or non-
Hermitian (non-L2) formalisms of quantum mechanics. This Perspective reviews the basic con-
cepts related to and the relevance of shape and Feshbach-type rotational-vibrational resonance
states, discusses theoretical methods and computational tools allowing their efficient determina-
tion, and shows numerical examples from the authors’ previous studies on the identification and
characterization of rotational-vibrational resonances of polyatomic molecular systems.

1 Introduction
The quantum phenomenon of resonances,1–6 i.e., the existence
of metastable (quasibound) states embedded in the contin-
uum spectra of Hamiltonians, plays an important, often cru-
cial role in a number of fields related to atomic and molecular
physics and chemistry. These include the process of α decay
(where resonance states were perhaps first considered in 1928),1

nuclear reactions,7,8 binary elementary reactions,4,5,9–11 high-
resolution molecular spectroscopy,12–14 transition-state spec-
troscopy,15–17 unimolecular decomposition,18 (reactive) scatter-
ing (the first scattering resonance in atoms was observed in
196319),19–21 electronic,22 vibrational,23,24 and rotational25

predissociation, autoionization,26 photoionization,27 photodisso-
ciation,28,29 photoassociation30 and magnetoassociation,31 con-
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trolled cold and ultracold chemistry,32–34 and the list could be
easily continued. In this perspective we focus on the rotational-
vibrational resonances of polyatomic molecules, playing a funda-
mental role in chemical reactions, as well as in molecular scatter-
ing and spectroscopy. Although resonance states of a system have
higher energy than a corresponding dissociation limit (most of-
ten the first one, but this may not always be the case, vide infra),
dissociation from these states does not happen instantaneously.

Resonance states have well-defined finite lifetimes, which can
be very short or very long, to some extent independent of the
energy of the state. One must thus emphasize that despite their
somewhat unusual properties, resonance states are always “gen-
uine”, they arise from intrinsic properties characterizing most
quantum systems. Thus, rotational-vibrational (rovibrational)
resonance states should be considered neither exotic nor es-
oteric,35 as both their experimental observation10,12,16,17,35–55

and first-principles characterization13,14,47,56–68 is becoming in-
creasingly feasible. Rovibrational resonances are especially im-
portant for scattering events and for spectroscopic observations
at energies exceeding that of the lowest dissociation limit.

In quantum mechanics (QM) the states, the associated ener-
gies, and the time evolution of quantum systems are defined by
appropriately chosen Hamiltonians, Ĥ. In standard QM69–71 it
is usual to argue that the Hamiltonians describing molecular sys-
tems are Hermitian operators. This choice is made in order to
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guarantee that the eigenspectrum of Ĥ is real and the time evo-
lution of the molecular system is unitary. However, Hermiticity of
an operator does not depend solely on the form of the operator
itself but also on the functions we let it operate on. In standard,
Hermitian QM (HQM), Ĥ acts upon functions in the L2 Hilbert
space71 and this is equivalent to stating that the boundary con-
ditions are such that the functions must vanish at infinity. This
boundary condition is suitable to describe bound states, but not
applicable for those states which lie above the dissociation en-
ergy of the system, i.e., resonance states and the scattering con-
tinuum, because their wave functions can have nonzero values at
infinity. In the time-independent HQM approach to scattering the
continuum can be associated with bounded, Dirac-normalizable
functions, and this can be directly linked20 with the motion of
square-integrable wave packets in a time-dependent picture.

There is another branch of QM, non-Hermitian quantum me-
chanics (NHQM),72,73 where the functions upon which Ĥ is al-
lowed to act have different boundary conditions.74 We are only
interested in those cases where these functions are suitable to rep-
resent rovibrational resonance states. Note that a Hamiltonian
that acts on square-integrable functions but contains a complex
potential, appearing in some resonance-computing techniques,
is also non-Hermitian, leading to NHQM. NHQM as well as the
theory of resonances has a rather complex mathematical back-
ground. A rigorous mathematical theory of resonance states has
been formulated.75,76 Nevertheless, intuitive approaches aiming
at the understanding of the quantum phenomenon of resonances
are also available, leading to useful tools for a variety of practical
applications. We are going to follow the intuitive route in this
Perspective.

In the Schrödinger representation of NHQM, resonance states
can be associated69,77 with those eigenfunctions of the Hamil-
tonian which have an outgoing boundary condition and diverge
exponentially at infinity, as detailed below. Due to the non-L2

nature of these eigenstates, the Hermiticity of the Hamiltonian is
lost and the resonances are characterized by complex eigenval-
ues. The complex resonance eigenvalues are usually written, in
atomic units (utilized from here on), as

Eres
n = εn−

i
2

Γn, (1)

where εn = Re(Eres
n ) is the resonance position (with respect to the

(real) ground-state energy of the system), i is the imaginary unit,
and Γn ∝ Im(Eres

n ) is the full width at half maximum (FWHM) of
the resonance state, related to the inverse lifetime by

Pn(q, t) ∝ e−Γnt , (2)

where Pn(q, t) is the probability density of finding the quantum
system at a given q point in coordinate space at time t.

For most physicists resonances are understood as part of scat-
tering theory. Let us call this a top-down approach to resonances
as we approach the dissociation limit, and the underlying bound
states, from above. From the scattering, top-down point of view,
resonances occur when molecules collide with a certain energy
and form a long-lived collision complex before they fly apart. The

colliding molecules have more time to interact and if one mon-
itors the outcome of a scattering event —quantified by the scat-
tering cross sections as a function of the collision energy— one
can observe that these are very different at resonance energies
than otherwise. When studying resonances by scattering com-
putations, the resonant contributions to the cross sections must
be separated from the smooth background caused by the usual
scattering states. The most common top-down (scattering) tech-
nique is the coupled-channels method,20 but the Kohn variational
method78–81 is also very useful to compute and characterize res-
onances. An alternative approach to this is a bottom-up one,
in which resonances are considered as a continuation of bound
states into the continuum. In the case of rovibrational resonances
the top-down (scattering) and the bottom-up (spectroscopic) ap-
proaches are complementary to each other. In both the spectro-
scopic and scattering approaches one relies on the total rotational
quantum number J as a good quantum number, but in scattering
theory the observable quantities refer to the asymptotically cor-
rect rotational quantum numbers j of the interacting partners,
and have to be calculated by inclusion of the results obtained for
all J values.

Because the wave functions of resonance states are not square
integrable, the techniques employed during the variational so-
lution of the time-independent nuclear Schrödinger equation
(TInSE) of bound states, resulting in square-integrable wave func-
tions,82,83 need to be modified for the computation of reso-
nance states. The most common bottom-up approaches to com-
pute rovibrational resonance states are the stabilization method
(SM),84–87 the complex absorbing potential (CAP) method,88,89

and the complex coordinate scaling (CCS) method (also referred
to as the method of dilatation analytic continuation).90–98 De-
termination of rovibrational resonance states using any of these
techniques is not nearly as advanced as that of bound states.
Nevertheless, the field of first-principles computation of rovibra-
tional resonances matured considerably during the last decade
and it is now possible to compute a large number of rovibrational
resonances for real polyatomic systems and compare them with
their experimental counterparts. This Perspective deals with the
field of first-principles, bottom-up and top-down computation of
rotational-vibrational resonance states, emphasising on how the
authors see it, without attempting to provide a thorough review
of all related developments and results from other laboratories.

The first-principles computation of rovibrational resonance
states may utilize several sophisticated Hermitian and non-
Hermitian techniques of molecular scattering and variational
nuclear-motion theories. Whatever is the choice of the Hamil-
tonian, computation and characterization of rovibrational res-
onance states offer several notable challenges: (a) The poten-
tial energy surfaces (PES) employed for rovibrational resonance
computations must have correct asymptotic behavior. Quantum-
chemical scattering computations repeatedly indicate48,99 that
the resonance characteristics strongly depend on the topology of
the PES. It is not straightforward to ensure the correct asymptotics
during the generation and the fitting of reactive PESs and most
PESs in the literature in fact do not obey this criterion. (b) Usu-
ally large basis sets need to be employed, at one stage or another,
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during variational (or variational-like) resonance-state computa-
tions to ensure convergence of the computed states. This makes
resonance-state computations relatively computer intensive. (c)
Usually molecules possess a large number of bound states below
the resonance states and the explicit consideration of bound states
may increase substantially the cost of resonance-state computa-
tions of larger polyatomic systems. (d) Due to heavy mixing of
the states, it is rarely transparent how to characterize the com-
puted resonances and provide reasonable, physically-motivated
meaning for them. (e) Since resonances have vastly different
lifetimes, it is not straightforward to ensure that all resonances
are computed within a particular setup of the nuclear-motion or
scattering computation correctly. In fact, one of the biggest chal-
lenges in this field is the computation of converged lifetimes of
rovibrational resonances.

Among the several possible bottom-up variational ap-
proaches77,100 for computing quasibound (ro)vibrational states
and understanding near-dissociation high-resolution molecular
spectra, some require the computation of all the bound states of
the molecule, as well. For polyatomic molecules this task often re-
quires a substantial amount of work both via electronic-structure
and nuclear-motion computations,83 and the amount of effort
needed strongly depends on the specific system investigated. Es-
pecially within their ground electronic state, most polyatomic
molecular systems have a very large number of bound rovibra-
tional states. For example, the isotopomers of the triatomic water
molecule possess rovibrational states on the order of a million
below the first dissociation limit,101,102 about 40 000 cm−1.42 In
the fourth age of quantum chemistry83 sophisticated variational
and variational-like techniques have been developed82,83,103 for
solving the TInSE, which allows the characterization of all bound
states of a molecule.101,102 These advanced numerical compu-
tations require a large amount of computer time. Nevertheless,
once the computations are set up properly, very little human in-
tervention is needed. These studies revealed extremely rich and
complex nuclear dynamics for the bound states of molecular sys-
tems, especially close to the dissociation limit(s).104,105 Occa-
sionally the complexity of the motions increases to the extent
that the rotational and vibrational motions cannot be separated
any more. This may happen even for the lowest-energy states,
leading to quasistructural molecular systems,106 like H+

5 ,107–109

CH+
5 ,110,111 and the CH4·H2O dimer.112,113 In the case of weakly-

bound complexes, having a dissociation energy smaller than that
of typical stretch or bend fundamentals, resonance states are
formed straightforwardly by the excitation of a vibrational mode
in one of the monomers. Experimental techniques, like predisso-
ciation spectroscopy,24,114,115 take full advantage of the existence
of resonance states.

Numerical simulations have demonstrated that molecular sys-
tems can exhibit a considerable number of rovibrational reso-
nance states with energies even well above their first dissociation
limit. For example, the Ar·NO+ cationic complex was shown to
have a large number of long-lived vibrational resonances even at
8000 cm−1, nine times its dissociation energy, D0 = 887 cm−1.64

Beyond theoretical investigations, spectroscopic access to reso-
nance states is often straightforward due to their considerable

lifetime. In the case of molecular complexes, the long lifetimes
are the consequence of the adiabatic separation of the dissocia-
tive motion from the rest of the nuclear motions (the separation
is almost perfect for Ar·NO+, explaining the long lifetimes com-
puted up to 8000 cm−1).

A large amount of direct information about rotational-
vibrational resonances can be obtained from scattering experi-
ments, as well. State-to-state scattering cross sections, both dif-
ferential (DCS) and integral (ICS), are measured in considerable
detail in crossed-molecular-beam experiments. Early observa-
tions of resonances in such experiments on H-Hg are described by
Scoles et al.36,37 and on the H-Ar, H-Kr, H-Xe, H2-Ar, H2-Kr, and
H2-Xe systems by Toennies et al.38–40 Recently, new experiments
with the possibility to scan the collision energy with sufficiently
high resolution to detect even narrow resonances and access the
low-energy region where most resonances are expected, made it
possible to study resonances in more detail. Resonances in rate
coefficients determined by the ICSs for Penning ionization pro-
cesses were found by Narevicius et al.45,46,51 and by Osterwalder
et al.52,53 in a merged-beam approach, with collision tempera-
tures down to the millikelvin (mK) regime. Using cryogenically
cooled beams of CO and O2 crossed with beams of He or H2 at
a variable angle, resonances in the state-to-state ICSs for rota-
tionally inelastic collisions with energies down to 4 cm−1 were
observed by Costes et al.43,44,49 By controlling the velocity of the
molecules in one of the beams with a Stark decelerator, reducing
the angle between the beams to 5◦, and combining the crossed-
beam setup with velocity map imaging (VMI), Van de Meerakker
et al.47,66,116 made it possible not only to observe resonance
peaks in ICSs at collision energies down to 0.2 cm−1 but also
to measure the corresponding DCSs with a resolution of about
1◦, such that even the narrow diffraction oscillations are well re-
solved. Another promising technique to observe resonances in
collisions of vibrationally and rotationally excited molecules is
the use of co-axial beams, as developed by Suits et al.54,55 The
recent experiments were accompanied by theoretical studies of
resonances in molecule-molecule scattering based on high-quality
ab initio intermolecular potential surfaces and the QM coupled-
channels or close-coupling (CC) approach.

Long-lived complexes formed during resonant collisions are of
special interest in the ultracold regime,32,34,117,118 defined by
translational temperatures, usually below 1 mK, where consid-
eration of a single partial wave is sufficient. As the temperature
drops below 1 µK, the collision energy essentially vanishes; thus,
resonances do not occur by matching the collision energy to a
resonance state but rather by tuning the energy of a resonance
state across the dissociation limit. Such tuning of a resonance
state relative to the lowest threshold can be achieved, for exam-
ple, by using an external magnetic field. As a resonance state is
tuned across threshold it becomes a bound state. By performing
this sweep adiabatically it is possible to populate this bound state.
This process is called magnetoassociation31 and enables the for-
mation of weakly bound molecules from ultracold atoms.119,120

Another application of resonances in ultracold gases is to control
interactions.117,118 As one tunes a resonance state across thresh-
old the scattering phase shift jumps by π and the scattering length
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scans through all values between −∞ and +∞. This scattering
length determines the pseudo-potential that governs the inter-
actions between ultracold atoms or molecules, and its external
field control using resonances has opened up the field of quan-
tum simulation,118,121–124 and enabled the study of novel quan-
tum phases of matter.125–130

Quantum chemical studies of resonances in ultracold gases are
difficult, especially for heavier nuclei where the density of res-
onances becomes very high.131 This is illustrated by recent CC
calculations132 on K2-Rb scattering; even with specially devel-
oped methods they required enormous computational effort. This
study not only identified an extensive set of resonances, but also
showed that the positions and widths of these resonances are
in good agreement with the Wigner–Dyson133,134 and Porter–
Thomas135 distributions associated with quantum chaos.

The remainder of this Perspective is structured as follows. The
theory of quasibound states, including discussion of several el-
ementary models, is reviewed in Section 2. Then potential en-
ergy hypersurfaces employed for rotational-vibrational resonance
computations are discussed in Section 3. In later sections we re-
view various theoretical and computational methods which can
be used to determine rovibrational resonance states of molecules.
Section 4 introduces the reader to coupled-channels or close-
coupling molecule-molecule scattering computations. Section 5
discusses the stabilization method, Section 6 reviews the complex
absorbing potential techniques, while Section 7 is devoted to the
complex coordinate scaling method. In all these sections we also
briefly present examples of applications of the various methods,
taken from previous studies of the authors. We summarize and
conclude this Perspective and provide some future outlook of the
expected development of the field in Section 8.

2 Elementary theory of resonance states

We are aware of a number of reviews,77,96,97,100,136–139 pro-
ceedings,140–142 and books20,73,143–145 which deal with the def-
inition, understanding, and determination of quasibound (res-
onance) states, as the topic of resonances has been popular
since the 1970s. However, rovibrational resonance states have
been discussed much less, especially visible is the lack of studies
for systems with more than three atoms. For many larger sys-
tems reduced-dimensional treatments, offered by the use of cer-
tain Hamiltonians and computational techniques,83,146,147 are vi-
able. Nevertheless, even reduced-dimensional resonance studies
of larger systems are rather scarce in the literature.

All numerical treatments of resonances agree that there are
two principal types of rovibrational resonances: shape and Fesh-
bach resonances. Note that shape resonances are also sometimes
called “orbiting resonances”.32 Elementary models and examples
for both of these resonance types will be discussed in this section
in order to help the reader appreciate the formation and charac-
terization of the rovibrational resonances discussed in later sec-
tions.

2.1 Shape resonances
Shape resonances arise as a consequence of the unique shape of
potentials governing nuclear motion: in certain cases there exists
a barrier along the dissociation coordinate whose height exceeds
the dissociation energy. These barriers may arise either due to
rotational excitation or to the crossing of two potential energy
curves or surfaces. In what follows we mostly focus on the first
possibility, on rotational barriers (see Fig. 1). If a quasibound
state has an energy greater than the dissociation energy but less
than the height of the potential energy barrier, the state is an
example of a shape resonance; however, resonances above the
barrier might also be formed, though usually with much shorter
lifetimes. The states trapped behind the barrier will eventually
dissociate via quantum tunneling. The lifetime of shape reso-
nances depends on the height and shape of the potential energy
barrier. The existence of shape resonances is a quantum phe-
nomenon, because in the classical limit tunneling is forbidden and
such resonances become bound states. Shape-type rovibrational
resonances occur typically if the molecule is in a highly excited
rotational state and a significant centrifugal barrier is formed.

The concept of shape resonances can be elucidated on a simple
example, the case of a diatomic molecule. The Hamiltonian in the
usual notation is

Ĥ =− 1
2µR

d2

dR2 R+Veff(R), (3)

where

Veff(R) =
J(J+1)

2µR2 +V (R), (4)

µ is the reduced mass, and R is the internuclear distance. Fig. 1
shows the effective potential, Veff(R), of the OH radical, with a
centrifugal barrier on the J = 40 curve, where J is the rotational
quantum number, and V (R) is a Morse potential, with parameters
taken from Ref. 148. The dissociation threshold of the OH radical
is D0(OH·)=39 285 cm−1, while the top of the J = 40 centrifugal
barrier is at 41 558 cm−1. In this simple example one can find

Fig. 1 Example for the formation of a centrifugal potential barrier in the
case of a diatomic molecule, where J is the rotational quantum number.
The effective potential, Veff(R), with parameters taken from Ref. 148, is
that of the OH radical, where R is the OH distance, and the zero point
vibrational energy is denoted with a horizontal line.
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three shape resonances corresponding to J = 40: two of them, at
40 250 cm−1 and 41 083 cm−1 are long lived (where the imag-
inary part of the energy is almost zero), while the third one, at
41 586 cm−1, is a resonance above the barrier with an exceed-
ingly short lifetime and a width (Γ ) of 62 cm−1.

2.2 Feshbach resonances

Feshbach-type rovibrational resonances occur when the molecu-
lar system has at least one extra degree of freedom (dof) besides
the dissociation coordinate. This extra dof of the system allows to
“store” the excess energy above the dissociation limit temporarily
in a non-dissociative mode.

There is an intuitive way to view Feshbach-type resonances.
This requires to start with a zeroth-order Hamiltonian in which
the dissociative and non-dissociative dofs are uncoupled. For the
uncoupled system, bound states (formed by excitations in the
non-dissociative mode) are embedded in the sea of continuum-
energy dissociative states formed along the dissociative mode. In
an extended Hamiltonian couplings occur between the dissocia-
tive and non-dissociative degrees of freedom; thus, the eigen-
states of the improved Hamiltonian are a mixture of the bound
states and the continuum states of the zeroth-order Hamiltonian.
The bound states are said to “dissolve” in the continuum. If the
molecular system is in an excited bound state of the zeroth-order
Hamiltonian at the beginning of the time evolution, it will not
stay there forever, because the couplings allow transition to the
continuum states. In the limit of infinite time evolution, the wave
function of the system has zero bound-state component, i.e., the
system decays in time.

The simplest model of Feshbach resonances considers the cou-
pling of one well-separated resonance state with a single contin-
uum. Consideration of two or more non-separated, coupled res-
onances complicates the picture but does not result in qualitative
differences. The case of several continua, corresponding to sep-
arate dissociation channels, coupled with a single resonance was
considered both by Feshbach6 and Fano.26

2.2.1 The Bixon–Jortner model

The Bixon–Jortner model149 provides a simple analytic treatment
of a Feshbach-type resonance. The “zeroth-order” Hamiltonian,
Ĥ0, has a discrete eigenstate, |φ〉, whose eigenenergy is Eφ ,

Ĥ0 |φ〉= Eφ |φ〉 , (5)

and continuum eigenstates |k〉 (k ∈ Z) with energies Ek = kδ ,

Ĥ0 |k〉= Ek |k〉= kδ |k〉 . (6)

The continuum eigenstates are discretized for the sake of this
derivation, δ is the energy spacing between two neighboring dis-
cretized continuum states.

Let a small perturbation, V̂ , couple the discrete state to the
continuum,

〈φ |V̂ |k〉= v and 〈φ |V̂ |φ〉= 〈k|V̂ |k′〉= 0. (7)

Fermi’s golden rule150 can be used to provide the transition rate

wT from |φ〉 to the continuum,

wT = 2π| 〈k|V̂ |φ〉 |2Π(Eφ ) = 2πv2 1
δ
, (8)

where wT is the transition probability per unit time and Π(Eφ ) is
the density of states at Eφ . To allow for the desired δ → 0 limit,
wT is kept constant within the Bixon–Jortner model; thus,

v2

δ
=

wT

2π
= constant. (9)

We have to solve the TInSE for the full system,

Ĥ |ψµ 〉= (Ĥ0 +V̂ ) |ψµ 〉= Eµ |ψµ 〉 . (10)

The eigenstate, |ψµ 〉, is expanded on the basis of the eigenvectors
of the “zeroth-order” Hamiltonian,

|ψµ 〉= 〈φ |ψµ 〉 |φ〉+
∞

∑
l=−∞

〈l|ψµ 〉 |l〉 . (11)

Substituting Eq. (11) into Eq. (10), then multiplying with 〈k| or
〈φ | from the left and requiring that 〈ψµ |ψµ 〉 = 1, we obtain the
following equations for the energy and the coefficients:

Eµ = Eφ +
∞

∑
k=−∞

v2

Eµ −δk
, (12)

〈φ |ψµ 〉=

[
1+

∞

∑
k=−∞

v2

(Eµ −δk)2

]−1/2

, (13)

and

〈k|ψµ 〉=
v〈φ |ψµ 〉
Eµ −δk

. (14)

Taking advantage of the identities ∑
∞
k=−∞

1/(z−k) = π cot(πz) and
∑

∞
k=−∞

1/(z− k)2 = π2/sin2(πz), we can rewrite the formulas as

2(Eµ −Eφ )

wT
= cot

(
Eµ π

δ

)
(15)

and
〈φ |ψµ 〉=

v√
v2 +(wT/2)2 +(Eµ −Eφ )2

. (16)

Next, let us compare the eigenvalues Eµ to the eigenvalues of Ĥ0.
The continuum of Ĥ0 is mostly perturbed close to Eφ . The states
far from Eφ resemble the continuum states because 〈φ |ψµ 〉 ≈ 0,
and thus Eµ ≈ Ek and 〈k|ψµ 〉 ≈ 1. The transition rate, wT, deter-
mines how many states are perturbed: if wT is large, the pertur-
bation will be significant in a wide energy range.

Now, let us calculate what is the probability of finding the sys-
tem in |φ〉 if Eµ is in the (E,E +dE] energy range:

dNφ = ∑
E<Eµ≤E+dE

| 〈φ |ψµ 〉 |2 ≈
dE
δ

v2

v2 +(wT/2)2 +(E−Eφ )2 .

(17)
Then, by taking the δ → 0 and v2 → 0 limits, such that v2/δ is
constant (Eq. (9)), we obtain

dNφ

dE
=

1
π

wT/2
(wT/2)2 +(E−Eφ )2 , (18)
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Fig. 2 Contour plot of the V (R1,R2) potential of a A–A–B linear molecule,
chosen as an example of Feshbach resonances, see Sec. 2.2.2. R1 and
R2 are the A–A and A–B bond lengths, respectively, and the A–B bond is
weaker than the A–A bond. The red lines denote the equilibrium values
of R1 and R2.

which is a Lorentzian distribution. Thus, the discrete state is in-
deed “dissolved” in the continuum.

Let us now turn our attention to the time evolution of the sys-
tem, starting from the state |φ〉 at t = 0. If

|Ψ(t = 0)〉= |φ〉= ∑
µ

v√
v2 +(wT/2)2 +(Eµ −Eφ )2

|ψµ 〉 , (19)

then

|Ψ(t)〉= ∑
µ

v√
v2 +(wT/2)2 +(Eµ −Eφ )2

e−iEµ t |ψµ 〉 . (20)

The overlap of |Ψ(t)〉 and |φ〉 is

〈φ |Ψ(t)〉= ∑
µ

v2

v2 +(wT/2)2 +(Eµ −Eφ )2 e−iEµ t (21)

= ∑
µ

wT

2π

1
v2 +(wT/2)2 +(Eµ −Eφ )2 δe−iEµ t. (22)

The sum can be approximated with an integral by taking the δ →
0 and v2→ 0 limits. Then,

〈φ |Ψ(t)〉≈
∫

∞

−∞

wT

2π

e−iEt

(wT/2)2 +(E−Eφ )2 dE =

{
e−iEφ t−wTt/2 if t ≥ 0

e−iEφ t−wT|t|/2 if t < 0.
(23)

The probability of finding the system in state |φ〉 decreases expo-
nentially:

| 〈φ |Ψ(t)〉 |2 = e−wTt ; (24)

thus, the system decays exponentially.

2.2.2 The model of two coupled oscillators

Vibrational Feshbach resonances occur if two bonds of a molecule
have very different strengths. Let us consider a linear A–A–B
molecule, with atomic masses mA and mB, where the A–A and
A–B distances are denoted by R1 and R2, respectively, and the A–
B bond is significantly weaker than the A–A bond. Neglecting the
bending dof, the vibrational Hamiltonian of the system, employ-
ing reduced masses µ (µi j = mim j/(mi +m j)), becomes

Ĥ =− 1
2µAA

∂ 2

∂R2
1
− 1

2µAB

∂ 2

∂R2
2
+

1
mA

∂ 2

∂R1∂R2
+V (R1,R2), (25)

where a contour plot of the potential V (R1,R2) is seen in Fig. 2.
We define the operators ĤAA and ĤAB as

ĤAA =− 1
2µAA

∂ 2

∂R2
1
+VAA(R1) (26)

and

ĤAB =− 1
2µAB

∂ 2

∂R2
2
+VAB(R2), (27)

where VAA(R1) and VAB(R2) are one-dimensional cuts of the po-
tential (see Fig. 3), while assuming that the other coordinate
takes its equilibrium value. The “zeroth-order” Hamiltonian of
the system is then

Ĥ0 = ĤAA + ĤAB. (28)

The perturbation term that couples the A–A and A–B oscillators is

V̂int = Ĥ− Ĥ0 =
1

mA

∂ 2

∂R1∂R2
+V (R1,R2)−VAA(R1)−VAB(R2),

(29)
which contains the mixed derivatives and the R1−R2 correlation
of the potential.

Let two bound eigenstates of ĤAA be |φ0〉 and |φ1〉 with EAA
0

and EAA
1 eigenenergies, respectively, where EAA

0 is below the dis-

Fig. 3 VAA(R1) (left panel) and VAB(R2) (right panel), one-dimensional
cuts of V (R1,R2) (see Fig. 2) at the equilibrium value of R2 and R1, respec-
tively. When the one-dimensional oscillators corresponding to VAA(R1)

and VAB(R2) are coupled, a resonance is formed with EAA
1 +EAB

0 .
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sociation threshold along R2 but EAA
1 is above that:

ĤAA |φn(R1)〉= EAA
n |φn(R1)〉 . (30)

A bound eigenstate of ĤAB is |χ0〉, with EAB
0 energy, and there are

|χcont
EAB 〉 continuum eigenvectors:

ĤAB |χ0(R2)〉= EAB
0 |χ0(R2)〉 (31)

and
ĤAB |χcont

EAB (R2)〉= EAB |χcont
EAB 〉(R2). (32)

The eigenvectors of Ĥ0 of Eq. (28) are the direct product of the
AA and AB eigenvectors of Eqs. (30)–(32). We can construct a
discrete and a continuum state of Ĥ0 that have the same energy:

Ĥ0 (|φ1〉⊗ |χ0〉) = (EAA
1 +EAB

0 )(|φ1〉⊗ |χ0〉) (33)

and assuming that EAA
1 −EAA

0 +EAB
0 is in the continuum spectrum

of ĤAB (see Fig. 3),

Ĥ0

(
|φ0〉⊗ |χcont

(EAA
1 −EAA

0 +EAB
0 )
〉
)
=(EAA

1 +EAB
0 )

(
|φ0〉⊗ |χcont

EAA
1 −EAA

0 +EAB
0
〉
)
.

(34)
The continuum and the discrete states are coupled by the V̂int

term,

〈φ1χ0|V̂int|φ0χ
cont
EAA

1 −EAA
0 +EAB

0
〉=(〈φ1|⊗ 〈χ0|)V̂int

(
|φ0〉⊗ |χcont

EAA
1 −EAA

0 +EAB
0
〉
)

(35)
Based on the Bixon–Jortner model, if the system is initially in
the discrete state |Ψ(t = 0)〉 = |φ1〉 ⊗ |χ0〉, it is the coupling V̂int

which allows the transition to the continuum. This means that
the weaker A–B bond breaks up and the molecule dissociates. The
probability of finding the molecule in the discrete state |Ψ(t = 0)〉
decays exponentially,

| 〈Ψ(t = 0)|Ψ(t)〉 |2 = e−wTt , (36)

where

wT = 2π| 〈φ1χ0|V̂int|φ0χ
cont
EAA

1 −EAA
0 +EAB

0
〉 |2Π(EAA

1 +EAB
0 ), (37)

and Π(EAA
1 +EAB

0 ) denotes the density of states for the contin-
uum of Ĥ0 at energy EAA

1 +EAB
0 . Based on this simple example,

vibrational Feshbach resonances are formed if (a) one bond of the
molecule is significantly weaker than the others, so the vibration
along this bond is a dissociative dof, and (b) the potential or the
cross-derivative terms of the kinetic-energy operator couple the
dissociative dof and the vibrational modes of the strong bonds.
The resonance lifetime is thus determined by the coupling term
of the potential and the appropriate mixed derivatives in the ki-
netic energy operator.

2.2.3 Weakly-bound dimers

Feshbach resonances occur very commonly, and they have been
measured spectroscopically for a large number of weakly-bound
dimers.23,151–154 Let us consider a van der Waals (vdW) dimer
formed by a strongly bound diatomic molecule, AB, and an atom,
X. The structure and dynamics of the vdW dimer is described con-
veniently by Jacobi coordinates, where r is the A–B distance, R is
the distance between atom X and the center of mass (COM) of

the AB unit, and θ is the angle between the r and R vectors. If
we keep r fixed, the Hamiltonian is simply

Ĥ =
1

2µ

(
− 1

R
∂ 2

∂R2 R+
l̂2(R̂)

R2

)
+Brot ĵ2(r̂)+V (R,θ), (38)

where Brot is the rotational constant of the AB molecule, and ĵ(r̂)
and l̂(R̂) are the angular momentum operators for the rotation
of the AB molecule and the diatom formed by the X atom and
the COM of the AB unit, respectively. The unit vectors R̂ and r̂
define the polar angles of the vectors R and r, respectively. The
“zeroth-order” Hamiltonian is Ĥ0 = ĤAB−X + ĤAB, where

ĤAB−X =
1

2µ

(
− 1

R
∂ 2

∂R2 R+
l̂2(R̂)

R2

)
+VAB−X(R), (39)

and VAB−X(R) is a one-dimensional cut of the potential at (usu-
ally) the equilibrium value of θ , and

ĤAB = Brot ĵ2(r̂). (40)

The perturbation that couples the two subsystems is

V̂int =V (R,θ)−VAB−X(R), (41)

which contains the θ -dependent part of the potential. The eigen-
states of the rotating AB unit are the spherical harmonic func-
tions,

ĤAB |Y m
j 〉= EAB

j |Y m
j 〉= Brot j( j+1) |Y m

j 〉 . (42)

ĤAB−X has both bound and continuum eigenstates,

ĤAB−X |χn(R)〉= EAB−X
n |χn(R)〉 (43)

and
ĤAB−X |χcont

EAB−X(R)〉= EAB−X |χcont
EAB−X(R)〉 . (44)

If the AB–X interaction is weak, there can be low-lying rotation-
ally excited states of ĤAB that have an energy greater than the
dissociation threshold of the dimer, D0. Let us assume that D0 <

EAB−X
0 +EAB

j2 −EAB
j1 and EAB

j1 < D0 < EAB
j2 , where EAB−X

0 corre-
sponds to the ground state of ĤAB−X. We can then construct a dis-
crete and a continuum eigenstate of Ĥ0= ĤAB + ĤAB−X, defined
similar to Eq. (28), that have the equal energy, EAB

j2 +EAB−X
0 :

Ĥ0

(
|Y m2

j2 〉⊗ |χ0〉
)
= (EAB

j2 +EAB−X
0 )

(
|Y m2

j2 〉⊗ |χ0〉
)

(45)

and

Ĥ0

(
|Y m1

j1 〉⊗ |χ
cont
(EAB−X

0 +EAB
j2
−EAB

j1
)
〉
)
=

(EAB
j2 +EAB−X

0 )

(
|Y m1

j1 〉⊗ |χ
cont
(EAB−X

0 +EAB
j2
−EAB

j1
)
〉
)
.

(46)

We can now derive the time evolution of the system starting from
the discrete state. If |Ψ(t = 0)〉= |Y m2

j2 〉⊗ |χ0〉, then

| 〈Ψ(t = 0)|Ψ(t)〉 |2 = e−wTt (47)
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where

wT = 2π| 〈Y m2
j2 χ0|V̂int|Y m1

j1 χ
cont
(EAB−X

0 +EAB
j2
−EAB

j1
)
〉 |2Π(EAB

j2 +EAB−X
0 ).

(48)
This simple example can be extended straightforwardly to ex-
plain the origin of Feshbach resonances in weakly-bound dimers,
if some rovibrational eigenenergies of one monomer are greater
than the dissociation energy of the dimer. The lifetime of a reso-
nance is determined by the coupling of the monomer motions and
the intermonomer stretching. We present examples for vdW com-
plexes supporting Feshbach resonances in the Application subsec-
tions of several later sections. Interested readers can find a vast
amount of additional examples on the Feshbach resonances of
vdW complexes in the literature, for representative early works
the related chapter in Ref. 142 might be consulted.

2.3 The non-Hermitian picture

As discussed in the previous subsections, in Hermitian QM reso-
nance states can be associated with wave packets involving con-
tinuum states.73 Non-Hermitian QM offers a different perspective
on quasibound states.

In the NHQM case, quasibound states are expressed as station-
ary solutions of the time-dependent Schrödinger-equation, i.e.,
the total wave function is written as the product of a coordinate-
dependent and a time-dependent part. That is, in atomic units,

Ψ
res
n (q, t) = Ψ

res
n (q)exp(−iEres

n t) (49)

and
ĤΨ

res
n (q) = Eres

n Ψ
res
n (q) (50)

hold. The time dependence of resonance states is described by
assuming that the probability of finding the system at a certain
q coordinate point has an exponential decay in time, see Eq. (2).
Eqs. (2) and (49) are simultaneously satisfied if the energy is com-
plex, Eres

n = εn − i
2Γn, implying that the wave function diverges

exponentially along the dissociation coordinate (thus, it is not in
the L2 space).

According to the uncertainty principle relating time and energy,
the finite lifetime of resonance states results in an uncertainty in
the resonance energy, and the density of states near the resonance
energy has a Lorentzian distribution,155,156

Π
res(E) =

1
π

Γn/2
(E− εn)2−Γ 2

n /4
. (51)

Note that the quantity wT of the previous subsections plays a very
similar role to Γn, which can be seen by comparing Eq. (2) to
Eq. (24), as well as Eq. (51) to Eq. (18).

2.4 Resonances in molecule-molecule scattering

Direct access to rotational-vibrational resonances is provided in
molecule-molecule (or molecule-atom) collisions. When the col-
liding molecules approach each other and get to the region where
their interaction becomes attractive, the lowering of the poten-
tial energy and the conservation of total energy imply that their
relative kinetic energy increases. Specific collision energies fa-

cilitate the formation of quasi-bound states of the collision com-
plex, in which the excess kinetic energy is temporarily stored in
the end-over-end rotation of the complex (a shape resonance)
or in a higher rotational or vibrational state of one or both of
the colliding molecules (a Feshbach resonance). Eventually the
quasi-bound states dissociate and the molecules fly apart, either
in their original rovibrational state but possibly with exchange of
momentum (elastic collisions) or in different rovibrational states
(inelastic collisions). The state-to-state integral scattering cross
sections measure the probability that the collision has led to one
of these events. The corresponding differential cross sections
measure these probabilities as a function of the scattering an-
gle, i.e., the angle between the trajectories of the molecules flying
apart. When a quasi-bound state or scattering resonance appears,
the collision complex lives (much) longer than the normal colli-
sion time and the probability that “something happens” during
the collision increases. Since this occurs only at specific collision
energies, this causes peaks in the ICSs as function of the colli-
sion energy, which can be directly observed. The formation of a
long-lived collision complex will also strongly affect the scatter-
ing angle, but it is not obvious how. Measuring and computing
DCSs at resonances provide interesting insight into the collision
process.

The various methods to analyze the resonances found in
coupled-channel computations are explained in detail in Sec. 4.
In anticipation, an illustrative discussion, based on the theory de-
veloped in the 1930s by Breit and Wigner4 and Siegert,5 is given
next.

The calculated and observed ICSs and DCSs are assumed to
result from an interference between resonance and background
contributions. These contributions can be disentangled by ap-
plying a theoretical analysis similar to Feshbach–Fano partition-
ing.157,158 The energy-dependent multichannel S-matrix is writ-
ten as20

S(E) = Sbg(E)Ures(E), (52)

where the background contribution Sbg(E) is a slowly varying
function of the collision energy E and the resonance contribution
is given by the Breit–Wigner formula

Ures(E) = I− 2iA
E−Eres + iΓ /2

, (53)

where Eres is the energy of the resonance, Γ is its width (the in-
verse lifetime), and the complex-valued matrix elements Aαβ =

aα a∗
β

contain the partial widths aα obeying the relation ∑α |aα |2 =
Γ /2. The idea associated with the Breit–Wigner formula is that in
the complex energy plane, where the bound states correspond to
poles of the S-matrix on the negative real energy axis, resonances
are represented by poles below the positive real axis at positions
Eres− iΓ /2 (see Eq. (1)).

By analyzing the energy dependence of the matrix elements
of S in the range of each resonance with an algorithm described
in the Supplement of Ref. 47, one can determine the parameters
Eres, Γ , and aα . Then, one can separate the resonance contri-
butions to the scattering matrix S(E) from the background and
apply the usual expressions159 to compute ICSs and DCSs from
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Fig. 4 Experimental and theoretical Penning ionization rate coefficients
of para- and ortho-H2 molecules in collisions with He∗(23S1). 51 The ex-
perimental rate coefficients are presented as black dots with error bars.
The upper and lower panels correspond to para-H2 ( j = 0) and ortho-
H2 ( j = 1), respectively. Two shape resonances are observed below 5 K
for the reaction with ortho-H2 at 2.37± 0.09 K and at 270± 20 mK, while
the reaction with para-H2 yields only the higher-energy resonance. The
results of state-of-the-art first-principles computations are depicted by the
green, blue, and red curves in both panels. The interaction potential ob-
tained with the current “gold standard” of electronic-structure methods,
coupled cluster theory at the [CCSD(T) /aug-cc-pV6Z+mid-bond, green]
level, alone erroneously predicts a low-energy resonance for para-H2 and
two low-energy resonances for ortho-H2. Including a full configuration in-
teraction (FCI /aug-cc-pVQZ) correction (blue) improves the agreement
down to collision energies corresponding to a few hundred milli-Kelvin.
Further improvement of the interaction potential is achieved by uniformly
scaling the correlation energy by 0.4 % (red), resulting in excellent agree-
ment with the measured resonance positions and the overall behavior of
the rate coefficient down to the lowest collision energies. The calculated
rate coefficients are convoluted with the experimental resolution (8 mK)
for the lowest collision energies. This figure is reproduced from Ref. 51.

the S-matrix, with or without resonance contributions. This is
very instructive, especially since it shows explicitly the effects of
a resonance on the DCS, which is not obvious intuitively.

3 On potentials supporting resonance state
computations

Both spectroscopic and quantum-scattering computations of
rotational-vibrational resonance states indicated repeatedly that
the energies, and even more so the lifetimes, are extremely sen-
sitive to fine details of the asymptotic parts of the PESs utilized
for these computations.51,66,160 There are not that many poten-
tials available for strongly-bound molecules which can be used
to compute rovibrational resonance states of polyatomic molecu-
lar systems accurately. The basic problem here and in scattering
reactions is the proper description of the long-range interaction
part of the potential for chemically interesting systems. These
problems become especially pronounced for cold and ultracold
chemistry.

Molecule-molecule scattering resonances, especially just above
the dissociation threshold, are not only sensitive to the shape of
the vdW well in the interaction potential, but also to its depth.
This implies that the possibility of measuring molecule-molecule
scattering resonances for very low collision energies and with
high energy resolution is extremely useful to critically check that
the shape and well depth of anisotropic intermolecular potentials
are indeed accurate. This was recently demonstrated especially
vividly for NO–He and NO–H2 scattering.66 It was shown that
potentials calculated with the ab initio coupled-cluster method
including single and double excitations with a perturbative esti-
mate of triples [CCSD(T)],161 which is considered to be the “gold
standard” of electronic-structure theory, were not sufficiently ac-
curate to obtain agreement between the observed resonances and
those from well-converged coupled-channels computations that
used these potentials. For resonances at even lower collision en-
ergy it was explicitly confirmed116 that the intermolecular poten-
tial had to be calculated at a higher level of electron correlation,
with the full inclusion of triple excitations and a perturbative es-
timate of quadruples [CCSDT(Q)],162 to compute ICSs and DCSs
that reproduce the experimental data at these resonances.

Another example of low-energy scattering resonances being ex-
tremely sensitive to the accuracy of the potential used in coupled-
channels computations was provided by merged-beam experi-
ments for collisions of H2 molecules with 3S1 excited He atoms,
leading to Penning ionization.51 An interesting observation was
that for collisions with para-H2 ( j = 0) and ortho-H2 ( j = 1) the
same resonance was observed at 2.37 K, but another resonance,
at 270 mK, occurred only in collisions with ortho-H2. Both res-
onances were also found in coupled-channels computations, but
the one at 270 mK could only be reproduced when using an ab
initio potential surface for H2–He∗ with corrections calculated at
the full configuration-interaction (FCI) level and a further scaling
of the correlation energy by 0.4 %, see Fig. 4.

4 Resonances in molecule-molecule scat-
tering

Let us begin by discussing the computation and characterization
of resonances with the top-down (scattering) approach; in the
subsequent sections 5 to 7 of this Perspective we discuss the sev-
eral bottom-up (spectroscopic) approaches to the computation of
resonance states. In the top-down approach the energy is usually
set to zero at the dissociation limit, while in bottom-up computa-
tions the energy zero is conveniently chosen as the energy of the
ground vibrational state (deviating from the bottom of the PES by
the zero-point vibrational energy).

4.1 The coupled-channels (CC) method

The Hermitian Hamiltonian used in CC calculations, which is a
generalization of the atom-diatom Hamiltonian of Sec. 2.2.3, is
given both in space-fixed (SF) and body-fixed (BF) coordinates
in Ref. 163 for two rigid arbitrary polyatomic molecules. Next, a
coupled channel basis ϕ

(J)
n,l (ρ), which depends on all coordinates

ρ of the system except the scattering coordinate R, needs to be
defined. The index n labels the products of the coupled rota-
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tional states of the colliding molecules A and B, l is related to the
end-over-end angular momentum of the A–B complex, and J is a
quantum number corresponding to the total angular momentum
obtained by coupling l with the rotational angular momenta of
A and B. The ϕ

(J)
n,l (ρ) basis, expressed in SF coordinates, is writ-

ten for the general case of collisions between two arbitrary poly-
atomic molecules in Ref. 163, where the corresponding basis in
BF coordinates is also given. The matrix elements of the Hamil-
tonian over both the SF and the BF bases are specified there, as
well. The scattering wave function is expanded in the channel
basis as

ψ
(J)(R,ρ) = ∑

n,l
φ
(J)
n,l (R) ϕ

(J)
n,l (ρ); (54)

the R-dependent “expansion coefficients” are the radial wave
functions of each channel. Substitution of this wave function
into the time-independent Schrödinger equation, multiplication
with the complex conjugate channel basis functions ϕ

(J)∗
n′,l′ (ρ), and

integration over all coordinates ρ yields a set of coupled second-
order differential equations for the radial wave functions, the CC
equations,20,159 which are solved numerically. The total angular
momentum is a conserved quantity, so the computations can be
performed separately for each J.

The incoming wave in a certain direction is a plane wave and
the radial wave functions must obey so-called S-matrix boundary
conditions at large R. When the incoming plane wave is expanded
in spherical waves with angular momentum l, the partial wave
index, and the outgoing wave is written as a linear combination
of spherical waves with angular momenta l′, it follows that the
radial wave functions must have the following asymptotic form,

−exp [−i(knR− lπ/2)]δn′,nδl′,l + exp [i(kn′R− l′π/2)]S(J)n′,l′,n,l . (55)

The first term of Eq. (55) is an incoming spherical wave with wave
number kn =

√
2µ(E− εn), where E− εn is the kinetic energy in

channel n, and µ is the reduced mass. The second term includes
the corresponding outgoing waves with amplitudes S(J)n′,l′,n,l , which

are the elements of the scattering matrix S(J). The latter are ob-
tained by matching the solutions of the CC equations at large R
with the expression in Eq. (55).

The state-to-state cross sections, which quantify the probabili-
ties that the collision (de-)excites the molecules to specific final
states when they start in a given initial state, are obtained from
the elements of the transition matrix T = I−S, with I being the
unit matrix. The state-to-state ICSs are simply

σn→n′ =
π

k2
n(2 jA +1)(2 jB +1) ∑

J
(2J+1)∑

l,l′
|T (J)

n′,l′,n,l |
2, (56)

where jA and jB are the angular momenta of molecules A and
B in their initial state n. Calculation of the DCSs is more com-
plicated;159 it involves a linear combination of scattering ampli-
tudes that contain the T-matrix elements multiplied by spherical
harmonics depending on the scattering angle, for all values of l,
l′, and J. The DCSs are proportional to the absolute square of
this linear combination, so they also contain interferences from
different l, l′, and J values.

Computer codes available for CC scattering computations in-
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Fig. 5 Plots of some S-matrix elements in the complex plane and of the
corresponding values of rk = |Sk+1−Sk| on the energy grid. Panels A, B,
and C show examples of the different behavior of the matrix elements for
various values of the total angular momentum J and parity P. The initial
and final j,e/ f states of NO and the incoming and outgoing partial wave
quantum numbers l are shown at each panel. Panels D, E, and F show
the energy dependence of the rk corresponding to panels A, B, and C, re-
spectively, with the same colors of the dots. The curves labeled “bg” is the
background matrix Sbg. The red cross marks the resonance energy Eres,
the black dots indicate the region around the resonance where the sec-
ond derivative of rk is negative. The magenta/green colors indicate the
regions around the resonance where the slope of rk is positive/negative.
This figure is reproduced from the Supplement of Ref. 47.

clude MOLSCAT,164 Hibridon,165 and TwoBC.166 They solve the
CC equations with a combination of the log-derivative propaga-
tor167 at shorter distances and the Airy propagator168,169 for
larger R. Another CC program package was developed in the
Nijmegen Theoretical Chemistry group, it uses the renormalized
Numerov propagator.170,171 It can also compute the bound rovi-
brational states of complexes including two weakly interacting
molecules from the same Hamiltonian and the same channel ba-
sis, extended with a set of basis functions in R.163

The Hamiltonian and the channel basis described above are
valid for rigid molecules. When vibrationally inelastic processes
are considered, the Hamiltonian of Ref. 163 must be extended
with the monomer vibrational Hamiltonians containing the ap-
propriate kinetic energy operators and intramolecular potential
hypersurfaces, and the intermolecular potential surface depend-
ing on the distance R and the orientations of the monomers must
be made dependent also on their internal coordinates. Further-
more, the channel basis must be extended, by including the vi-
brational wave functions of the colliding molecules depending on
their internal coordinates.

4.2 Analysis and characterization of resonances

4.2.1 Disentangling resonant and background scattering

As mentioned at the end of Sec. 2.4, the resonant contribution
to ICSs and DCSs can be separated from the background by an-
alyzing the energy dependence of the S-matrix elements. This is
illustrated in Ref. 47 for scattering resonances observed and cal-
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(1/2 f )→ (5/2 f ) NO–He scattering. The ICS is shown in the upper part,
the DCSs below. Solid lines represent the complete theoretical ICS and
DCSs, dashed lines the cross sections obtained when only the back-
ground scattering matrix Sbg in Eq. (52) is included for resonances. The
lower panels show the measured (Exp) and simulated images based on
either the complete DCSs (Sim) or the DCSs computed with the scatter-
ing matrix Sbg only (Sim*) for the experimental collision energies of (A)
14.8 cm−1, (B) 17.1 cm−1, and (C) 18.2 cm−1. This figure is reproduced
from Ref. 47.

culated for NO–He at collision energies between 13 and 20 cm−1.
Section 5 of the Supplement of Ref. 47 explains in detail how
the elements of the S-matrix are analyzed and how the resonant
contribution is separated from the background. As Fig. 5 illus-
trates, this is done for individual elements of the S-matrix that
correspond to specific initial and final rotational states of NO. It
is interesting to observe in Fig. 5 that the energy dependence of
the real and imaginary part of the S-matrix elements resembles
the behavior of the complex energy eigenvalues of Fig. 11, vide
infra, obtained with complex absorbing potentials. When the in-
dividual S-matrix elements are thus disentangled, the effect of
a resonance on the ICSs and DCSs of all state-to-state inelastic
processes can be calculated explicitly. The upper panel of Fig. 6
shows that, indeed, the resonant peaks in the ICS disappear when
the resonance contribution is removed, while the DCSs in the
lower picture show that the resonances cause additional strong
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Fig. 7 Phase-shift sums Φ (top panel) and corresponding lifetimes (lower
panel) as a function of the collision energy, calculated for NH3–He scat-
tering. 174 The different curves correspond to different total angular mo-
menta J, with the two curves for each J corresponding to even and odd
overall parity. This figure is reproduced from Ref. 174.

backward and near-forward scattering. Also the measured VMI
images are shown, next to simulated images obtained from the
calculated DCSs, with and without the resonant contributions. It
is clear that the agreement with the measurements is much less
satisfactory for the latter, which confirms that the experiment in-
deed detects resonance effects.

4.2.2 Phase shifts and resonance lifetimes

In a single-channel problem the S-matrix can simply be written
as exp(2iφ), with the angle φ being the phase shift. In the multi-
channel case S is a unitary matrix, its eigenvalues can be written
as exp(2iφ (J)

n,l ), and the phase-shift sum Φ is the sum of φ
(J)
n,l over

all open channels.

It follows from theory4,5 that when a resonance occurs the
phase shift (sum) rapidly increases by π as a function of the
collision energy E.172,173 This is illustrated in the top panel of
Fig. 7 for the example of NH3–He scattering.174 Similar results
were obtained for NH3–H2 scattering175 and OH–He scatter-
ing.63 The derivative of the phase shift with respect to the energy,
τ = h̄dΦ/dE, gives the lifetime of the collision complex.172,173

These lifetimes are shown in the lower panel of Fig. 7. This figure
illustrates that at the energies where resonances occur one gets
a long-lived collision complex. By comparing the peaks in this
figure with the corresponding resonance peaks in the ICS (not
shown for this example), one observes that the narrower the res-
onance peak in the ICS, i.e., the smaller its width Γ , the longer its
lifetime. This clearly confirms the relation τ = 1/Γ .
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4.2.3 Adiabatic-bender model

The adiabatic-bender model, proposed by Alexander et al.176,177

and based on the Born–Oppenheimer angular-radial separation
(BOARS),178 characterizes scattering resonances by adiabatically
separating the radial motion from the other dofs. The Hamilto-
nian matrix without the radial kinetic energy term is diagonal-
ized for all values of R, which yields a set of one-dimensional
(1D) potentials depending on R, the adiabatic-bender curves.
These curves asymptotically connect to the states of the separated
monomers. In the next step one obtains 1D scattering states by
solving 1D scattering equations with each of these adiabatic po-
tentials. If the adiabatic bender curves are sufficiently well sep-
arated and do not change their character by avoided crossings,
the full-dimensional scattering states can be associated with the
1D states on each of the adiabatic bender curves and their char-
acter follows for the monomer states to which the curves connect
asymptotically. Thus, in the case of resonances, it can be deter-
mined which monomer states participate in the resonance.

A recent example illustrating this method for OH–He and OH–
Ne rotationally inelastic collisions is described in Ref. 63. The OH
monomer has a large rotational constant, its rotational states are
far apart, the adiabatic bender curves are well separated, and the
method works well. If one applies the method to NO–He, NO–H2

or O2–O2, for example, the much smaller rotational constants of
NO and O2 cause the set of adiabatic bender curves to become
rather dense, several avoided crossings occur between them, and
the connection to the monomer states is lost.

4.2.4 Analysis of scattering wave functions

With the renormalized Numerov propagator used in the Nijmegen
scattering program to solve the CC equations, it is straightforward
to generate the scattering wave functions, not only asymptotically
but over the full range of R. Thus, one can inspect the character of
these wave functions in terms of the participating monomer states
and the end-over-end angular momentum l, the partial wave in-
dex. If resonance peaks are observed in the ICS, one can deter-
mine which total angular momenta J contribute most to these
peaks, plot the wave functions for these values of J, and ana-
lyze their character. This is illustrated in Fig. 8 for the example
of NO–He scattering, already discussed in Sec. 4.2.1, where sev-
eral resonances were calculated and observed experimentally47

for collision energies between 13 and 20 cm−1. The wave func-
tions in Fig. 8 contain continuum states, but also have large am-
plitudes in the region of the well of the NO–He potential, which
confirms that they indeed correspond to quasi-bound states. Both
resonances shown correspond to the NO state j = 5/2, f . Since
this channel is open at both resonance energies, they are shape
resonances. The resonance at 14.85 cm−1 corresponds to l = 5,
the resonance at 17.75 cm−1 to l = 6. The excess collision energy
is larger for the latter resonance and its continuum contribution
is more pronounced, see Fig. 8.

4.2.5 S-matrix Kohn variational method

The S-matrix version of the Kohn variational method78–81,179,180

can also be applied to characterize scattering resonances, as well
as to investigate the sensitivity of the resonances to changes in

the PES. For a given J one writes a trial wave function as

ψ̃n,l(R,ρ)=−φn,l(R)ϕn,l(ρ)+ ∑
n′,l′

φ
∗
n′,l′(R)ϕn′,l′(ρ)S̃n′,l′,n,l +∑

k
χk(R,ρ)ck.

(57)
The function φn,l(R) is an incoming wave at energy E − εn, the
kinetic energy in channel n, the functions φ∗n′,l′(R) are the cor-

responding outgoing waves, and S̃n′,l′,n,l are the elements of the
trial S-matrix. The incoming waves, φn,l(R), can be chosen freely
as long as they satisfy the Schrödinger equation at long range
and are regularized at short range. The functions χk(R,ρ) form
a bound-state basis. They are eigenfunctions of the Hamiltonian
computed with the technique of discrete variable representation
(DVR)181,182 on a finite R-grid and they provide flexibility in the
trial wavefunction in the region where φn,l(R)ϕn,l(ρ) does not al-
ready solve the Schrödinger equation.

The trial wave function of Eq. (57) is optimized variationally
by considering first-order variations with respect to S̃ and {ck},

δ 〈ψ̃n,l |Ĥ−E|ψ̃n,l〉= 2〈δψ̃n,l |Ĥ−E|ψ̃n,l〉+ iδ S̃n,l,n,l . (58)

The bracket 〈 f |g〉 =
∫

∞

0 dR
∫

dρ f g is defined here without com-
plex conjugation (see a similar trick in Sec. 6.3). An advantage
of this approach is that the variational wave function is expressed
as a linear combination of a scattering wave function and a set of
bound states at short range. Thus, one can analyze which bound
state gives rise to a scattering resonance by inspecting the opti-
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Fig. 8 Scattering wave functions of the NO–He system squared as a
function of the distance R. Panel a: At the resonance energy of 14.85
cm−1 for J = 7.5 and P =+1. Panel b: At the resonance energy of 17.75
cm−1 for J = 6.5 and P = −1. The rotational and Λ-doublet state of the
NO radical, and the orbital angular momentum of the NO-He complex,
are given for each curve. The states that dominate the resonances are
marked with a red box. This figure is reproduced from the Supplement of
Ref. 47.
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mized coefficients {ck}.
This method was applied in a combined experimen-

tal/theoretical study of NO–He rotationally inelastic scattering
at very low collision energies, where resonances are found.116

The scattering cross sections calculated by the Kohn variational
method agree well with those from CC calculations and the as-
signment of the resonances also agrees with the wave-function
analysis described in Sec. 4.2.4. After establishing which quasi-
bound states lead to particular resonances, one can estimate the
response of the resonance energies to variations in the PES from
the Hellman–Feynman theorem.183,184 In this way, it was ex-
plored how sensitive the resonance energies are to overall scaling
of the potential, to scaling of the correlation energy alone, to the
anisotropy of the potential, and to a radial shift of the potential.

5 The stabilization method (SM)
We begin the discussion of the various bottom-up approaches
with the stabilization method,84–87,185,186 which has a history of
at least 50 years85 and provides the simplest technique to iden-
tify and characterize rovibrational resonances. The stabilization
method remains within the realm of variational techniques built
upon HQM and L2 functions. It is important to note right at the
start that SM allows the computation of not only resonance posi-
tions, εn, but also resonance lifetimes, Γ−1

n .86,187

5.1 General background

The principal idea behind the SM technique is based on the ob-
servation of stabilization of some of the eigenenergies in the (dis-
cretized) continuum part of the eigenspectrum of the Hermitian
Hamiltonian with respect to (slight) changes in selected compu-
tational parameter(s), collectively named τ. During SM compu-
tations the size of the basis or the coordinate range on the dis-
sociation coordinate(s) is changed within a narrow interval. The
SM techniques differ by how the parameters are selected and how
stabilization of certain eigenvalues of the Hermitian Hamiltonian
is observed. It is important to emphasize that stabilization of res-
onances is not an empirical observation but it is based on funda-
mental properties of basic scattering theory. Stabilization can be
understood via simple models of isolated resonances. A detailed
exposure is given, for example, in Ref. 87.

In the stabilization method we approximate the eigenstates
above the dissociation threshold by performing a number of
bound-state-type computations with slightly different values for
the computational parameter(s), τ. The wave function of a stable
resonance state has large amplitudes localized within the interac-
tion region of the fragments; thus, the energy is not sensitive to
minor changes in the basis. Contrary to this, the continuum states
(a) become “discretized” due to the finite range of the dissociation
coordinate, (b) are characterized by wave functions which have
significant amplitude outside the deeper region of the potential
well, and (c) have energies varying with the coordinate range
and the type of the basis used. Thus, due to the large density of
continuum states around a resonance, minuscule changes in the
basis will yield minuscule change in the resonance energy, while
the eigenenergies of continuum states will shift considerably.

Fig. 9 Overview of the stabilization-method (SM) histogram of Ar·NO+

in the 0–8000 cm−1 energy interval based on 25 separate vibrational
bound-state (L2) computations.

The traditional technique to observe resonances through the
SM method employs En(τ) stabilization graphs, usually the prin-
cipal outputs of SM computations. A resonance is observed when
a plateau is seen in En(τ), a result of a slowly varying eigenvalue,
identified as a resonance position. However, in the large basis
limit, the density of states becomes infinite, and no plateau can
be observed in En(τ). In this case resonance energies are indi-
cated by inflection points of the En(τ) curves. Another possibility
is to compute the expectation value of R2 (〈R2〉), where R is a
dissociation coordinate. Since 〈R2〉 is much smaller for resonance
wave functions than for the discretized continuum states, 〈R2〉
values provide good criteria for the identification of resonances.

In perhaps the simplest form of SM, identification of resonance
eigenvalues is achieved using the technique of histogram bin-
ning.64 The TInSE computations are performed for a small num-
ber of cases, say 25, with slightly different ranges along the dis-
sociation coordinate. The eigenvalues are collected from all com-
putations, and histograms are generated with a certain bin size.
The horizontal axis corresponds to the binned energy scale, while
the number of repeated simulations determines the count num-
ber on the vertical axis of the histogram (see Fig. 9 for the case of
the Ar·NO+ complex with an energy scale of 0–8000 cm−1). As
expected, the smaller the bin size the better the performance of
the method, a good choice in the case of tightly converged eigen-
states is 0.001 cm−1. The stable resonance energies are indicated
by peaks on the histogram.

So far the SM technique has not been used in the Budapest
group for the determination of resonance lifetimes. This is due
to the fact that this requires considerably more computational ef-
fort than the determination of the positions. In the experience
of the Budapest group, the SM technique is quite successful in
identifying long-lived quasibound states. Finding resonances with
short lifetime may be difficult though as the energy of these states
is considerably more sensitive to computational parameters than
those of the long-lived resonances. Furthermore, the CAP-based
and CCS techniques are much more appropriate to obtain a large
number (if not all) resonances (both positions and lifetimes).
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5.2 Application: SM analysis of the vibrational resonances
of Ar·NO+

During the study reported in Ref. 64 the SM method was used
to identify high-lying vibrational resonance states of the Ar·NO+

complex. In fact, the SM histogram of Fig. 9 represents the com-
puted eigenvalues of the Ar·NO+ complex between 0 and 8000
cm−1.64 Because the dissociation energy, D0, of the Ar·NO+ com-
plex is 887 cm−1,64 the states with green color at the left of the
figure correspond to bound states. The bound states show a clear
and well-defined termination upper limit at D0. The three further
stacks between 2300–3200, 4600–5500, and 6900–7800 cm−1

show significant similarity with the stack corresponding to the
bound states. They correspond to the first, second, and third ex-
cited NO+ stretch states of Ar·NO+ and the width of each stack is
approximately D0 (with a very slight variation). Thus, Fig. 9 can
be explained via a very simple physical picture: the nearly ideal
adiabatic separation of the small-amplitude NO+ stretch motion
from the other two, large-amplitude, intermonomer motions.

Pushing the computations to even higher NO+ stretch quantum
numbers is hindered by the extremely large number of eigenval-
ues that would need to be computed variationally. In fact, Fig. 9 is
based on the first 12 000 vibrational eigenenergies of the Ar·NO+

system, computed iteratively.64

6 The complex absorbing potential (CAP)
technique

Complex absorbing, or as sometimes called optical, poten-
tials have been used both in the time-independent and time-
dependent formulations of quantum mechanics. The CAP tech-
nique56,88,89,188–193 is probably the most commonly used ap-
proach to compute rovibrational resonance states. In the CAP
technique the rovibrational Hermitian Hamiltonian is “perturbed”
with a complex potential, introduced to absorb the outgoing part
of the resonance eigenfunctions, making them square integrable.
This approximation to resonance wave functions employs an ex-
pansion using an L2 basis, e.g., the bound states and the eigen-
states with energies above dissociation originating from a bound-
state computation. Even though CAP-perturbed Hamiltonians act
on square-integrable functions, it is not a Hermitian formalism be-
cause of the complex potential. Ref. 88 explores the CAP method
and its properties with mathematical rigor, while a more general
review of the CAP technique can be found in Ref. 89.

6.1 General background
The modified CAP Hamiltonian can be written as

Ĥ′(η) = Ĥ− iηW (R), (59)

where Ĥ is the unperturbed and Ĥ ′ is a complex Hamiltonian, η

is the CAP-strength parameter, and W (R) is usually a real-valued
function of the R dissociation coordinate assuming nonzero values
at the asymptotic region of the PES (more than one dissociation
coordinate, of course, is also feasible). Complex valued W (R) CAP
functions have also been studied.194

A useful approach emerges when the CAP-perturbed non-
Hermitian Hamiltonian is represented in the basis of the eigenvec-

tors computed with a bound-state code up to and above the first
dissociation threshold. Some of the eigenvalues of the complex
matrix representation of Ĥ′(η) are approximations to the true res-
onance energies. The resonance eigenenergies are characterized
by two sources of error. The first error is caused by the presence
of the CAP function added to the Hamiltonian. This error is small
for small η values and large for large η values. The second error
is the basis set error, arising because we try to represent a non-
square-integrable function with L2 basis functions. This type of
error becomes small for sufficiently large η values, and remains
large if the η value is small and the wave function is not damped
sufficiently.

To find an optimal η value, where the two types of error ei-
ther cancel each other out or at least their sum becomes minimal,
eigenvalue trajectories in the complex plane need to be generated
by varying the CAP-strength parameter. Resonance cusps within
the trajectories are then detected and they are associated with
an optimal η , yielding resonance positions and lifetimes. Here
“cusp” means that there is a sharp bend (local maximum of the
curvature) on the trajectory and the density of points has a maxi-
mum.

The efficiency of different types of CAP functions has been in-
vestigated in a number of studies and various recommendations
have been made; see, for example, Refs. 192–198. In our own
experience, if the applied L2 basis set is large enough, then the
resonance eigenvalues are not particularly sensitive to the spe-
cific form of the CAP function used (as long as the CAP function
has significant magnitude in the coordinate ranges, appropriate
for absorbing the outgoing part of the wave function).

6.2 GENIUSH-CAP

One implementation of the CAP method for the computation of
rotational-vibrational resonance states of arbitrary systems is part
of the GENIUSH-CAP code.65 One needs to perform one expen-
sive bound-state-type computation with the bound-state code GE-
NIUSH,146,147 which solves TInSE quasi-variationally, in order to
compute energies and wave functions above the first dissociation
threshold. The GENIUSH eigenvectors are then used as a basis to
build the matrix of Ĥ′(η), whose complex eigenvalues are finally
computed. Repeating this for a few hundred η values leads to
complex eigenvalue trajectories. In the traditional CAP method
visual analysis is used to identify resonance cusps in the trajecto-
ries.

The CAP approach has several advantages over the stabiliza-
tion method. First, in the case of the SM technique one needs
to perform a few tens of variational bound-state computations,
which can take a considerable amount of computer time, while
the CAP technique may require only one expensive bound-state
computation. Second, the follow-up computation of CAP trajec-
tories is inexpensive, because the matrix of the modified Hamilto-
nian Ĥ′(η) is much smaller than that of the original Hamiltonian,
Ĥ. Third, the CAP method is significantly better suited to identify
both short- and long-lived resonances.

When compared to the complex coordinate scaling (CCS) tech-
nique, see Sec. 7, the CAP technique has another major advan-
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tage: the CAP changes only the potential-energy part of the
Hamiltonian. Thus, CAP-based techniques do not require the
knowledge of the Hamiltonian in an analytic form and the CAP
technique can be incorporated straightforwardly into numerical
techniques based upon the discrete variable representation181,182

of the Hamiltonian. This is exactly why we decided to extend
our fourth-age quantum-chemical83 code GENIUSH,146,147 built
upon the DVR representation of the Hamiltonian, with the CAP
capability.

The only considerable drawback of the CAP method is the need
for visual searches for cusps. This takes a lot of human effort, and
introduces some subjectivity to the collection of resonance states.
There have been some reports about automatic cusp recognition,
e.g., the method of Silva et al.62 There the cusps are identified
based on the curvature of the CAP trajectories and the density of
the points. In our experience it is easy to either miss rovibrational
resonances or to assign false positives this way. Thus, we consid-
ered another approach for automating CAP computations, named
the extended Tremblay–Carrington (ETC) method,61,68 discussed
in the next subsection.

6.3 The ETC method

The principal advantage of the ETC method68 is that it makes the
computation of rovibrational resonance states automatic. Using
the ETC method the resonance energies are obtained as eigenval-
ues of an unmodified Hamiltonian matrix built in a suitable basis,
which is composed of selected eigenvectors of a CAP computa-
tion. This way one completely circumvents the computation of
CAP trajectories.

The algorithm of the ETC method is as follows. First, solve
a CAP-type eigenvalue equation with a suitable CAP-strength pa-

Fig. 10 Stabilization-method (SM) histogram of Ar·NO+, with a bin size
of 0.01 cm−1, within the energy range 20 cm−1 above the first disso-
ciation limit, D0(ArNO+)=887 cm−1. Eigenvalues are obtained from 25
GENIUSH computations.

rameter, ηguide,

Ĥ ′(ηguide) |φk〉= (Ĥ− iηguideW (R)) |φk〉= Ek |φk〉 . (60)

This step can be performed, among others, with the GENIUSH-
CAP code.65 Second, select carefully a basis set {|φk〉} from the
eigenvectors obtained in step (1). This is a very important step as
one must choose only those eigenvectors which became square-
integrable due to the CAP, i.e., they are small where the CAP
function is large. As shown in Ref. 68, selection of the basis
{|φk〉} can be done more or less automatically, based on the com-
plex eigenvalues Ek. The basis functions are normalized such
that 〈φ∗k |φl〉 = δkl , contrary to the conventional normalization
〈φk|φl〉 = δkl . Third, one builds the matrix of the original Hamil-
tonian in this basis,

Hkl = 〈φ∗k |Ĥ|φl〉 , (61)

and solves the eigenvalue equation. The Hamiltonian matrix built
this way is clearly not Hermitian and thus it has complex eigen-
values. Furthermore, there are more basis functions than reso-
nances. In order to identify which complex eigenvalues belong
to resonance states, we repeat the three steps described, with a
few (let’s say 11) slightly different ηguide values. The resonance
eigenvalues are less sensitive to the choice of ηguide than the ones
that do not correspond to resonance states. If we plot the com-
puted eigenenergies resulting from all ηguide values on the com-
plex plane, they form well-defined clusters. The points within
a cluster belong to the same state but they are obtained with
different ηguide values. Eigenvalues corresponding to resonance
states form compact clusters, while the non-resonance eigenval-
ues form clusters that are considerably more extended. In order
to make this approach automatic, clusters must be characterized
by suitable algorithms facilitating their observation. For a suit-
able choice of a scoring algorithm Ref. 68 should be consulted, in
which appraisal scores are assigned to each cluster to guide the
selection of resonance states.

Because the computations following the usually expensive
bound-state computation are inexpensive, due to the small size
of the Hamiltonian matrix built with the carefully selected {|φk〉}
basis, the additional computations with different ηguide values do
not increase the overall cost of the determination of rovibrational
resonances via the ETC method at all.

6.4 Applications

6.4.1 Vibrational resonances of Ar·NO+

In Ref. 64, not only the SM but also a CAP-based method (and a
scattering method, see above) was used to identify and character-
ize the resonance states of the Ar·NO+ complex. The long-lived
resonance states found by the SM method (see Fig. 10) have
been confirmed by the GENIUSH-CAP method as states with long
lifetimes when compared to the other resonance states in their
vicinity.

Fig. 11 shows a few selected GENIUSH-CAP eigenvalue trajec-
tories with various forms of cusps. The three different colors indi-
cate the different basis set sizes along the Ar–NO+ distance used
in the bound-state-type GENIUSH computation, thereby reflect-
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Fig. 11 GENIUSH-CAP eigenvalue trajectories in the vicinity of six selected resonances of Ar·NO+ in the energy region above the first dissociation
threshold. Zero energy is taken as the energy of the separated Ar and NO+(v = 0, j = 0) systems. The CAP eigenvalue trajectories are obtained using
three different computations performed with 150, 200, and 250 DVR points along the R dissociation coordinate (Ar· · ·NO+), reflecting the convergence of
the resonance energies and lifetimes. In each panel, the points of intersection of the vertical and horizontal lines point out the cusps in the trajectories.

ing graphically the convergence of the resonance energies and
lifetimes.

6.4.2 Vibrational resonances of H2·CO

In Ref. 65, the vibrational resonances of the weakly-bound com-
plex H2·CO were computed using the GENIUSH-CAP approach
and a four-dimensional model PES. Thus, this is one of the
few cases where reduced-dimensional resonance treatments have
been reported for a vdW complex.

Resonances of both para- and ortho-H2·CO were identified and
characterized with the help of the computations. Quantum-
number assignments for the resonances were achieved by inspect-
ing the vibrational probability density plots and by computing
wave function overlaps with eigenstates of reduced-dimensional
models.

6.4.3 Rotational-vibrational resonances of (H2)2

Computation of the rovibrational resonances of (H2)2 served as
a test of the ETC method,68 described in Sec. 6.3. (H2)2 is
a very weakly-bound vdW complex, its dissociation threshold is
only about D0((H2)2) = 3 cm−1. The rotational constant of the
H2 molecule is approximately 60 cm−1, larger than the dissoci-
ation energy. Therefore, if either of the two H2 monomers is in
a rotationally excited state, the energy of the dimer exceeds the
lowest dissociation threshold. Thus, there is a large number of
shape and Feshbach-type rovibrational resonances for (H2)2. In
fact, only the ground state of the intermonomer stretch is bound,
and there are multiple dissociation channels corresponding to the
different rotational states of the H2 monomers. Both bound and

resonance states are located near each dissociation channel, in
which the H2 molecules are rotationally excited.

The computations of Ref. 68 revealed some extremely long-
lived resonance states, whose energy is lower than the disso-
ciation threshold corresponding to the rotational state of the
monomers. These states dissociate into a symmetry-accessible
lower-lying dissociation channel. These resonances are very sim-
ilar to bound states, and their very long lifetime cannot be deter-
mined precisely.

There are short-lived resonances whose energy is larger than
the dissociation limit corresponding to the rotational state of the
monomers. These states were determined using both the ETC and
the GENIUSH-CAP methods. The two techniques resulted in very
similar resonances. The ETC method proved to be an outstanding
and automatic alternative to the original CAP method.

6.5 Comparison of GENIUSH-CAP and scattering results for
Ar·NO+

Since in Ref. 64 both the CC Hermitian scattering and a non-
Hermitian CAP methods were utilized to compute vibrational res-
onance states for Ar·NO+, it is worth discussing the relation of
the results obtained with the two different approaches.

Although there are several reasons why the comparison be-
tween the resonance states obtained via the CAP and CC com-
putations of Ref. 64 is not straightforward, it was found that the
two basically different approaches provide results in good agree-
ment not only for the bound but also for the resonance states: all
significant CC resonance peaks could be paired with a CAP res-

16 | 1–24Journal Name, [year], [vol.],

Page 16 of 24Physical Chemistry Chemical Physics



Fig. 12 Illustration of the eigenvalues of a complex-scaled Hamiltonian
in the vicinity of one dissociation channel. The blue and purple arrows
point out the bound and resonance eigenvalues, respectively, while the
red arrow points out the rotated scattering continuum.

onance within a few 0.1 cm−1 (the expected agreement of the
results obtained with the two techniques). The lifetimes obtained
as the eigenvalues of the close-coupling Smith lifetime matrix and
GENIUSH-CAP lifetimes also showed reasonable agreement for
the longer-lived resonances.

7 The complex coordinate scaling (CCS)
method

7.1 General background
In the non-Hermitian CCS scheme rovibrational resonance states
are computed as the exponentially diverging solutions of the
TInSE, see Eq. (50). Within the CCS scheme one introduces an
invertible operator Ŝ, so that the functions Φn = ŜΨres

n become
square integrable. The similarity-transformed Schrödinger equa-
tion reads as

ŜĤŜ−1
Φn = Eres

n Φn, Φ ∈ L2. (62)

Eq. (62) is an eigenvalue equation for the transformed Hamil-
tonian ŜĤŜ−1, whereby the eigenfunctions are square integrable
and the eigenvalues are the desired resonance eigenenergies. Eq.
(62) can be solved with the well-developed L2 techniques of
quantum chemistry.

In the conventional CCS method, a choice for the operator Ŝ is

Ŝθ f (R) = f (Reiθ ), (63)

where θ is a free parameter and R is the dissociation coordi-
nate. Therefore, the operator Ŝθ rotates the argument of a func-
tion of the dissociation coordinate by θ in the complex plane.
If there is more than one dissociation coordinate, each should
undergo a complex coordinate scaling transformation. Due to
the transformation by Ŝθ ,77,90–92,96,97 (a) resonance states for
which 2θ > arctan(Γ /(2(ε −D0))) = Arg(Eres−D0) will become
square integrable, (b) bound states remain square integrable for
θ < π/4 (which is true in all practical applications), and (c) the
scaled Hamiltonian has scattering eigenfunctions which are as-
sociated with a continuum that is rotated into the lower half of
the complex energy plane by the angle 2θ .91,92,96,97 Thus, in the
spectrum of the scaled Hamiltonian of Eq. (62), (a) real discrete

eigenvalues (unaffected by the CCS) correspond to bound states,
(b) the scattering continuum is rotated into the lower half of the
complex plane by 2θ for each dissociation channel, and (c) dis-
crete complex eigenvalues in the area between the real axis and
the rotated scattering continua correspond to resonance states,
see Fig. 12.

Obtaining the form of the scaled Hamiltonian is rather straight-
forward in the case of conventional complex scaling. For differen-
tial operators corresponding to the dissociation coordinate R, one
needs to make the change ∂

∂R →
∂

∂R e−iθ . For operators depend-
ing only on the coordinate the change R→ Reiθ is required.96,97

In its simplest form, CCS requires a PES that can be evaluated at
complex coordinate values, which can be achieved for PESs hav-
ing a fitted analytical form, once one rewrites the PES subroutine
into complex arithmetic. In addition, various techniques, also ap-
plicable for non-analytical PESs, are available; for examples, see
Refs. 98, 199, and 200.

Somewhat more involved but often more convenient and nu-
merically more efficient extensions of the CCS method have been
developed. These include the method of exterior complex scal-
ing,201,202 whereby the transformation is defined, for R≥ Rs, as

Ŝθ f (R) = f (Rs + eiθ (R−Rs)). (64)

The exterior complex scaling transformation has been imple-
mented for grid-based techniques,203,204 and a smooth exterior
complex scaling method73 has also been advocated. Note that
the CAP method can be derived from smooth exterior complex
scaling by applying certain approximations.73,205

Naturally, resonance eigenenergies with a physical meaning
should be independent of the scaling parameter θ in Eq. (63).
However, in practice, when finite basis sets are used, the form
of the Φn eigenfunctions and thus the “goodness” of the basis
depends on the scaling parameter. Similar to the CAP method,
resonance eigenenergies can be identified in the CCS formalism
by locating stationary points in eigenvalue trajectories obtained
by varying the scaling parameter θ .

7.2 Applications

7.2.1 Rotational-vibrational resonances of H2
16O

H2
16O is a strongly-bound molecule for which rovibrational res-

onance states have been identified experimentally.12 Therefore,
performing rovibrational resonance computations for this species
is extremely important to test the utility of the different tech-
niques. In Ref. 13 the spectrum of H2

16O was simulated above
the first dissociation threshold using advanced electronic struc-
ture and nuclear motion computations, and the simulated spec-
trum was compared to the experimental one from Ref. 12. Sev-
eral Feshbach and shape resonances were determined with the
CAP method, and a broad spectral feature resulting from the di-
rect photodissociation to the continuum was also revealed in this
study.

In Ref. 14 the low-lying rovibrational resonances of H2
16O were

computed using the CCS method. During these calculations the
matrix representation of the scaled Hamiltonian was obtained in
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Fig. 13 Eigenvalue trajectories of H2He+ on the complex energy plane, obtained by varying the scaling parameter of the complex coordinate scaling
(CCS) method between 0.02 and 0.80 in 40 steps. See Ref. 67 for computational details.

two steps. First, all the bound states of the unscaled Hamilto-
nian were computed, using the code D2FOPI,104 along with many
eigenpairs having energies above the dissociation threshold. In
the second step, using a subset of the computed eigenvectors as
an orthonormal basis set, the matrix of the scaled Hamiltonian
was constructed,

Hθ
kl = 〈Ψk|Ŝθ ĤŜ−1

θ
|Ψl〉 , (65)

resulting in a matrix with modest size, on the order of around a
thousand-by-thousand, which could be directly diagonalized for
the few dozen θ values required to form the complex eigenvalue
trajectories. Inspection of the vibrational probability density plots
from the stationary resonance calculations revealed several types
of (dynamical) dissociation behavior, varying among the states.
The calculations aided the proper assignment of some observed
rovibrational transitions beyond the first dissociation threshold of
H2

16O.13

7.2.2 Rotational-vibrational resonances of H2He+

In Ref. 67, a large number of rovibrational resonances has been
computed and characterized for the H2He+ molecular ion, using
the CCS, the CAP, and the SM techniques. These accurate com-
putations of the bound and resonance states facilitate the first
experimental observation of rovibrational transitions of this fun-
damental molecule, made up of the two most abundant elements
of the universe. The CCS algorithm employed was basically the
same as that detailed for H2

16O in the previous subsection. Fig.
13 shows some CCS eigenvalue trajectories computed in Ref. 67,
reflecting a number of dissociation channels, corresponding to
the different rotational states of the H+

2 moiety in the dissociated
system.

Beyond the spectroscopic data, valuable for future high-
resolution experiments, the quantum-chemical computations on
H2He+ also revealed dissociation pathways, dissociation branch-
ing ratios, and the stabilization mechanism of the long-lived res-
onances. Because the H–H stretching fundamental lies above the
first dissociation threshold of H2He+, D0(H2He+) = 1775.4 cm−1,

resonances are expected to play a crucial role in the collision and
association reactions involving H2He+, including radiative asso-
ciation and radiative charge-transfer reactions. Fig. 14 shows
the probability density plot of a selected vibrational resonance of
H2He+, computed in Ref. 67. The resonance shown in Fig. 14
is a Feshbach resonance, in which the H+

2 moiety is rotationally
highly excited in the interaction region.

Fig. 14 The nodal structure of a J = 0 vibrational resonance state of
H2He+ located at around 2109.4 cm−1 above its zero-point vibrational
energy, where R2 and θ denote the H+

2 −He distance and the Jacobi angle
defined by the H+

2 −He and H−H bonds, respectively. See Ref. 67 for
computational details.
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Fig. 15 Calculated potential energy curves along a C−H stretching coor-
dinate of the planar ethylene dication, C2H+

4 . The gray dotted line shows
the electronic ground state, while the blue solid line and the green dashed
line correspond to the first and second electronically excited states, re-
spectively. Horizontal lines represent vibrational states. See Ref. 206 for
computational details.

7.2.3 Understanding the ultraslow decay in Coulomb explo-
sion of hydrocarbons

In the experiments described in Ref. 206, the C2H2+
2 and C2H2+

4
dications were generated by double ionization with few-cycle in-
tense laser pulses. In the deprotonation pathway of the Coulomb
explosion for both C2H2+

2 and C2H2+
4 , an ultraslow, microsecond

timescale exponential decay channel was observed.
Reduced-dimensional resonance-state computations,206 utiliz-

ing the CCS method, revealed that in both cases the slow decay
channel is due to quasibound states along the C–H vibrational
mode, where tunneling through a barrier is responsible for the
exponential decay, see Fig. 15.

8 Summary and outlook
The extremely rich internal dynamics of molecular systems just
below and above the first dissociation threshold can be studied
with a variety of quantum-chemical bound, resonance, and scat-
tering techniques employing accurate potential energy surfaces,
corresponding usually to the ground electronic state and exhibit-
ing correct asymptotic behavior. This Perspective focuses on the
first-principles computation and characterization of rovibrational
resonances, proving that, depending on the chemistry, getting to-
gether or breaking up are complex processes even for molecular
systems.

Most rovibrational resonance states can be categorized based
on their physical origin, they can be shape or Feshbach-type res-
onances. One can approach resonance states either from the
direction of bound states (a bottom-up approach) or from scat-
tering states (a top-down approach). Next, we concentrate first
on the bottom-up and then on the top-down first-principles ap-
proaches. Then we give some information about experiments re-
lated to rovibrational resonance states.

The complex algorithms and codes developed for bound-state

computations during the fourth age of quantum chemistry are
suitable to determine and describe the numerous L2 bound rovi-
brational states. As to resonances, the stabilization method (SM)
allows the utilization of bound-state computations to determine
long-lived resonances (both their position and lifetime). The SM
method is based on the fact that the eigenenergies of a Hermitian
Hamiltonian corresponding to resonances are rather insensitive
to slight changes in certain parameters of the bound-state-type
computation. Thus, if one can perform a considerable number
of bound-state computations yielding a large number of unbound
states, a histogram binning approach can be utilized to identify
long-lived resonances among the unbound states in a straightfor-
ward manner.

Apart from the simple “trick” of repeating them many times,
bound-state variational approaches are unsuitable for the com-
putation of resonances without appropriate modifications. There
are two basic routes one can take, both are based on the regular-
ization of the diverging resonance wave functions. In the case of
the complex absorbing potential (CAP) method, the outgoing part
of the wave function is damped by a complex potential added to
the molecular PES along the dissociative mode(s). The CAP en-
sures that resonance wave functions can be expanded in an L2

basis. A variant of the CAP methods, the extended Tremblay–
Carrington (ETC) scheme allows an almost automatic (black-box-
type) determination of rovibrational resonances. Since the ETC
method can be coupled to the best general-purpose solvers of
the time-independent nuclear Schrödinger equation, the result-
ing algorithm and code is available to compute rovibrational res-
onances of larger systems, perhaps in reduced dimension, in a
semi-automatic way.

The alternative complex coordinate scaling (CCS) technique in-
volves a complex coordinate transformation along the dissocia-
tion degree of freedom. Most variants of this technique require
the availability of the Hamiltonian, including the PES, in an ana-
lytic form, which is usually not a significant restriction.

Variants of the SM, the CAP, and the CCS techniques have been
successfully applied by members of the Budapest group for sev-
eral small systems, such as triatomic molecules (the strongly-
bound H2

16O and H2He+), atom-diatom complexes (Ar·NO+),
diatom-diatom complexes (H2·CO and (H2)2), and small cationic
systems (C2H2+

2 and C2H2+
4 ).

The scattering problem can also be solved using different
first-principles techniques. The coupled-channels (or sometimes
called close-coupling) technique employs a Hermitian Hamilto-
nian and a coupled-channel basis corresponding to the different
quantum states of the colliding molecules and products. The
coupled-channels equations are solved by numerical integration.
In the case of the Kohn variational method the trial wave func-
tion, which contains both scattering basis functions and bound
state basis functions, is optimized variationally. Sometimes the
adiabatic-bender model is applicable to simplify the scattering
problem. This is achieved by separating the radial motion from
the rotation and vibration of the colliding molecules. Solving the
scattering problem results in the scattering matrix and state-to-
state integral and differential cross sections. By analyzing the
energy-dependent elements of the scattering matrix, one can sep-
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arate the contribution of the resonances from the contribution of
the background. Resonances can be characterized either by the
complex poles of the scattering matrix, peaks of the integral scat-
tering cross section, or the sharp increase of the phase shift by π

as a function of energy. These scattering computations have been
employed to investigate the resonances in systems such as NH3–
He, NH3–H2, NO–He, NO–H2, OH–He, OH–Ne, and H2–He∗.

Several techniques which can yield experimental information
about rotational-vibrational resonances are available. There is
a plethora of crossed molecular beam experiments, starting in
the 1960s,207 which are able to yield detailed results about res-
onances. Depending upon its resolution, photoelectron velocity-
map imaging spectroscopy may provide spectra with a wealth of
information about Feshbach resonances. Scattering experiments
are becoming increasingly sophisticated, as state-selective prepa-
ration of reactants, state-resolved detection of products, as well as
velocity and angle resolution of both reactants and products are
more and more feasible. As the computational tools for describing
rovibrational resonances of polyatomic molecules become ever
more efficient and sophisticated, they are expected to play an in-
creasing role in supporting the high-resolution spectroscopy of
molecules near and above their dissociation threshold, the exper-
imental efforts in molecular dynamics, including those induced
by strong fields, as well as ever more complex scattering experi-
ments.

Finally, we mention that Feshbach resonances may play a
role in at present exotic applications, such as the production of
(molecular) Bose–Einstein condensates.208 As explained in the
Introduction, it is important for this application that resonances
in ultracold collisions can be manipulated with external electric
and/or magnetic fields. The manipulation of resonances by ex-
ternal electric and magnetic fields is also of more general inter-
est, since it may open up new possibilities to steer the outcome
of reactive and non-reactive collisions, photochemical reactions,
unimolecular decay, etc., as shown for model systems and real-
istic systems alike; see, for example, Refs. 209–213. Crossed
molecular beam studies of low-energy molecule-molecule colli-
sions in external fields to explore these possibilities are being
prepared.214 Some related preliminary calculations have already
been performed.215–218
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P. S. Żuchowski, J. Narevicius and E. Narevicius, Nat. Chem.,
2014, 6, 332–335.

47 S. N. Vogels, J. Onvlee, S. Chefdeville, A. van der Avoird,
G. C. Groenenboom and S. Y. T. van de Meerakker, Science,
2015, 350, 787–790.

48 T. Yang, J. Chen, L. Huang, T. Wang, C. Xiao, Z. Sun, D. Dai,
X. Yang and D. H. Zhang, Science, 2015, 347, 60–63.

49 A. Bergeat, J. Onvlee, C. Naulin, A. van der Avoird and
M. Costes, Nat. Chem., 2015, 7, 349–353.

50 M. Beyer and F. Merkt, Phys. Rev. Lett., 2016, 116, 093001.
51 A. Klein, Y. Shagam, W. Skomorowski, P. S. Żuchowski,
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