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Machine learning-aided quantification of antibody-based cancer immunotherapy 

by Natural Killer cells in microfluidic droplets

Saheli Sarkara, Wenjing Kanga, Songyao Jiangb, Kunpeng Lib, Somak Rayc, Ed Luthera, Alexander R. 
Ivanovc,  Yun Fub,d, Tania Konrya† 

Natural Killer (NK) cells have emerged as an effective alternative option to T cell-based immunotherapies, particularly against 
liquid (hematologic) tumors. However, the effectiveness of NK cell therapy has been less than optimal for solid tumors, 
partly due to the heterogeneity in target interaction leading to variable anti-tumor cytotoxicity. This paper describes a 
microfluidic droplet-based cytotoxicity assay for quantitative comparison of immunotherapeutic NK-92 cell interaction with 
various types of target cells. Machine learning algorithms were developed to assess the dynamics of individual effector-
target cell pair conjugation and target death in droplets in a semi-automated manner. Our results showed that while short 
contacts were sufficient to induce potent killing of hematological cancer cells, long-lasting stable conjugation with NK-92 
cells were unable to kill HER2+ solid tumor cells (SKOV3, SKBR3) significantly. NK-92 cells that were engineered to express 
FcγRIII (CD16) mediated antibody-dependent cellular cytotoxicity (ADCC) selectively against HER2+ cells upon addition of 
Herceptin (trastuzumab). The requirement of CD16, Herceptin and specific pre-incubation temperature served as three 
inputs to generate a molecular logic function with HER2+ cell death as the output. Mass proteomic analysis of the two 
effector cell lines suggested differential changes in adhesion, exocytosis, metabolism, transport and activation of upstream 
regulators and cytotoxicity mediators, which can be utilized to regulate specific functionalities of NK-92 cells in future. These 
results suggest that this semi-automated single cell assay can reveal the variability and functional potency of NK cells and 
may be used to optimize immunotherapeutic efficacy for preclinical analyses.

Introduction 
High affinity T cell receptor and chimeric antigen receptor 
(CAR)- modified T cells have proved to be an exciting 
therapeutic means in battling cancer, recently gaining Food and 
Drug Administration (FDA) approval for the treatment of 
specific types of hematologic malignancies. There are, however, 
significant challenges associated with CAR-T immunotherapy, 
such as off-target cytokine release, systemic toxicity and 
unregulated killing of healthy cells 1. Existing anticancer 
immunotherapies have also met with limited success in 
treatment of solid tumors due to low tumor selectivity and poor 
therapeutic potency. Furthermore, the cost of personalized 
adoptive T cell therapy can be prohibitive for many patients2. 

Other cell-based immunotherapies, such as Natural Killer (NK) 
cells, have become promising alternative resources as they not 
only express strong cytotoxic potential via natural cytotoxicity 
receptors (NCRs) but also kill target cells by antibody-
dependent cell-mediated cytotoxicity (ADCC). NK cells persist in 
host systems for shorter time periods compared to T cells 3. NK 
cell lines such as NK-92 have been tested against different 
cancer types in phase I clinical trials 4. The NK-92 line is also 
amenable to genetic engineering and has been transfected with 
high affinity CD16 allele for mediating ADCC 5. Pre-clinical and 
phase I clinical trials with this line have shown encouraging 
results 3, 6. However, while NK-92 cells exhibit high levels of anti-
tumor cytotoxicity against hematologic malignancies, their 
response to solid tumor cells such as HER2 (human epidermal 
growth factor receptor 2)-positive cancers in breast and ovary 
are still being characterized 3, 6. 
Like primary NK cells, NK-92 cells form immunological synapses 
with their targets and release lytic granules loaded with 
cytotoxic components 7. Longitudinal analysis of cellular 
dynamics using microscale platforms such as microwells and 
droplets has shown that the interactions between effector 
lymphocytes and target cells are heterogeneous at single cell 
level 8, 9, 10. The variability in conjugation timings, stability of 
contact, migration patterns and cytolysis may extend to 
mechanisms of actions related to ADCC, as observed in in vivo 
studies 11. CD16 receptor polymorphism and receptor shedding 
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can also affect the cytotoxic efficiency of CD16+ cells 12. Some 
studies with CD16+ NK-92 have employed high effector (E)-
target (T) cell ratios and prolonged (18 hrs) exposure to kill 
cancer lines in vitro 5,13. Whether this is due to an inability of the 
NK cells to seek out and establish contacts rapidly at low E:T, or 
the inability to maintain persistent contact required for killing, 
is not clear. The standard assays such as 51Chromium release 
and flow cytometry-based assays that measure functional 
cytotoxicity of effector lymphocytes cannot resolve these 
questions as they do not track specific cellular conjugates over 
time. The introduction of a transgene can also have indirect 
consequences at transcriptomic and phenotypic level, causing 
off-target differences to biochemical processes 14. No study has 
investigated the possible modifications of the proteome of 
engineered NK cells, together with the dynamic single cell 
analysis of functional heterogeneity. This approach could 
provide insight into the killing strategies of NK cell-based 
immunotherapies, which can then be optimized by the addition 
of specific drugs or further genetic manipulation.
One of the main drawbacks of high throughput time-lapse 
microscopic studies is the size and complexity of the acquired 
datasets, which has been addressed by the development of 
automated image analysis programs. Typically, image analysis 
workflows involve cell segmentation based on morphological 
markers (e.g., size, shape, subcellular organelles), feature 
extraction and classification of identity 15. An efficient 
segmentation approach relies on clear detection of cell outlines 
and edges, thereby requiring frequent auto-focusing during 
long-term imaging or multidimensional imaging (e.g., z-stacks) 
per time frame 16. The problem becomes more complicated 
when multiple cell types and organoids are present, 
necessitating advanced segmentation methods such as one 
using Markov Random Fields (MRFs) 17. Recently, machine 
learning strategies have been applied to solve some of the 
limitations in conventional image analysis pipelines 16. 
Supervised machine learning methods such as deep learning 
have consistently outperformed other analytical approaches 
and enabled resolution of different phenotypes including E. coli, 
S. cerevisiae and mammalian cells 18. Most studies focus on 
identifying individual cells from morphological features (size, 
orientation, lamellipodia, vesicles), fluorescently labelled 
organelles and proteins 18-21. Here, we have developed a deep 
learning algorithm to measure the dynamic profile of live E-T 
cell interactions at 1:1 ratio.  The algorithm is designed to 
identify cells confined within picoliter-volume microfluidic 
droplets, which allows the cells to be mobile and form short-
lived synapses that are characteristic of many immune cell 
interactions 22, 23. This semi-automated analytical method 
depicted high accuracy in quantifying interactive parameters 
including conjugation duration, frequency and cell death. 
We implemented the droplet microfluidics-based cytotoxicity 
imaging approach to investigate NK-92 cell-mediated cytolysis 
of blood and HER2+ solid tumor cells. The results indicate that 
parental NK-92 cell conjugation with blood cancer cells (K562, 
DOHH2) led to efficient killing, but not in the case of HER2-
overexpressing cancer cells of different origins. CD16+ modified 
NK-92 lines caused death selectively following incubation of 

anti-HER2 drug Herceptin. In essence, the combinatorial 
treatment acted as “AND” logic gate and promoted tumor 
targeting. We also determined that overexpression of CD16+ 

had altered the abundance levels of a subset of proteins 
associated with key biological processes in the modified line 
compared to the parental cell line. Overall, this study provides 
an effective technique for measuring NK-92 cell dynamics, 
functional efficacy and heterogeneity at single cell resolution.

Experimental
Cell lines and culture

The parental NK-92 cells and the NK-92 cells expressing high affinity 
variant (V158) of the CD16 FcγRIII were developed and generously 
provided by Nantkwest Inc (Woburn, MA) 5, 13, 24. All NK-92 cell lines 
were cultured in phenol free XVivo-10 medium (Lonza, Walkersville, 
MD) supplemented with 5% heat-inactivated human AB serum 
(Fisher Scientific, Waltham, MA). The parental NK-92 media was also 
supplemented with 500 IU/mL recombinant human IL-2 (ProSpec Bio, 
Israel).  
Human tumor cell lines (K562: chronic myelogenous leukemia, 
DOHH2: B cell lymphoma; SKOV3: ovarian carcinoma, SKBR3: breast 
carcinoma) were obtained from American Type Culture Collection 
(ATCC, Manassas, VA). The target cells were maintained in RPMI-
1640 medium supplemented with 1X L-Glutamine, 10% Fetal Bovine 
Serum (FBS) and 1% Antibiotic-Antimycotic solution (Corning Cellgro, 
Manassas, VA). All cells were grown at 37°C and 5% CO2 in a 
humidified atmosphere. Cancer cell lines were routinely passaged 
every three days and harvested at a density of 1×106 viable cells/mL. 
NK-92 cell lines were seeded at densities of 0.5×106 cells/mL.

Microfluidic device fabrication and droplet generation

Sub-nanoliter volume droplets were formed, containing 
unabeled effector and fluorescently labeled target cells at the 
flow focusing junction of an integrated droplet generation and 
docking device. The design and fabrication of this device has 
been described previously 8, 9, 25, 26. More details are available in 
Supplementary Methods. 

Antibody treatment and ADCC assay in droplets

Herceptin stocks (20mg/mL) were provided by Nantkwest Inc and 
stored at 4oC. Target cancer cells, labeled with Calcein AM, were pre-
treated with Herceptin (1µg/ml)-supplemented RPMI-1640 growth 
media at room temperature (RT) or 37oC 5. The duration of pre-
treatment varied from 30 to 60 min. Herceptin was freshly diluted in 
RPMI-1640 media from stock solutions prior to incubation. The 
antibody-cell conjugates were loaded in syringes immediately 
afterwards for encapsulation in droplets. Viability of target cells was 
assessed by the presence of Calcein AM fluorescence (See 
Supplementary Methods).

Preparation of cell lysate, digestion and LC/MS/MS
Cell pellets were resuspended in 8M urea, 2M thiourea, 5mM DTT in 
0.1M ammonium bicarbonate pH 8. The suspension was vortexed for 
2 min and sonicated for 5 min, spun down and incubated for 30 min 
at room temperature. Iodoacetamide was added to 10mM and 
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further incubated for 30 min at room temperature in the dark. 
Suspension was centrifuged at 15,000 rpm and supernatant 
transferred to a new tube. Protein concentration was measured by 
Qubit (Thermo Fisher Scientific). 10 µg of protein was digested first 
with 1 µg of LysC (in 50 µL of solution) for 4hrs at 37oC after which 50 
µl of water was added to the solution with 1µg of trypsin and 
incubated overnight at 37oC. Samples were dried down and 
resuspended in 2% formic acid. 1 µg of the resulting digest was 
analyzed for each sample. The sample was loaded with the 
autosampler directly onto a self-packed column, which was made 
from a 75 µm ID, 360 µm OD capillary filled with 25cm of 1.9µm 
Reprosil-Pur C18 AQ. Peptides were eluted at 200 nL/min from the 
column using a Dionex 3000 HPLC with a 115 min gradient from 5% 
buffer B to 20% buffer B (100 % acetonitrile, 0.1% formic acid). The 
gradient was switched from 20% to 80% buffer B over 2 min and held 
constant for 3 min. Finally, the gradient was changed from 80% 
buffer B to 99% buffer A (100% water, 0.1% formic acid) over 1 min, 
and then held constant at 99% buffer A for 15 minutes. The 
application of a 2.5 kV distal voltage electrosprayed the eluting 
peptides directly into the Thermo Orbitrap Fusion mass 
spectrometer equipped with a Flex Source (Thermo Scientific). Mass 
spectrometer-scanning functions and HPLC gradients were 
controlled by the Xcalibur software (Thermo Scientific). The mass 
spectrometer was set to scan MS1 at 120,000 resolution with an AGC 
target set at 4e5. The scan range was m/z 375-1500. For MS2, spectra 
were acquired in the ion trap with an AGC target of 3e4 and a 
maximum IT at 35 ms. The top peaks were analyzed by MS2 for a 
cycle time of 3 sec. Peptides were isolated with an isolation window 
of m/z 1.6 and fragmented at 28 CE. Only ions with a charge state of 
2 through 7 were considered for MS2. Dynamic exclusion was set at 
30 sec. 

Data and bioinformatics analysis
Mass spectrometry data were analyzed with ProteomeDiscoverer 2.3 
and searched against a human protein database (UniProt, released 
March 13, 2018) containing common contaminant proteins. Protein 

quantitation was performed through LFQ analysis using 
ProteomeDiscoverer v. 2.3. The FDR ≤ 1% was applied for all peptide-
level identifications. Only unique and razor peptides were used for 
quantifiction. Proteins that were detected by at least two peptides 
were used for quantitative analysis. A mean value of at least four LC-
MS/MS replicate quantitative measurements was used in 
downstream differential, clustering and pathway analysis. For 
differential expression of proteins, the fold change (FC) was defined 
as the ratio of replicate averaged normalized LFQ intensities for the 
test and control case respectively. Log2-ratios for proteins which 
were quantified in at least 50% of the replicates of test and control 
respectively, were considered and the log-ratios were median 
centered to zero. The criterion, abs(log2(FC)) >=1.0 was used to 
ascertain differentially expressed proteins. The proteomic data set 
containing Entrez Gene identifiers and fold changes of identified 
protein was analyzed by the Ingenuity Pathway Analysis (IPA) 
(Ingenuity Systems, Redwood City, CA). Core analysis with indirect 
and direct relationships, proteins interactions and pathways, 
upstream regulatory analysis and functional network identifications 
were carried out as per manufacturer's instructions using the human 
database (Qiagen Inc.) 27. Activation and inhibition of cell functions 
and upstream regulators were determined according to the Z-score, 
which is a statistical evaluation of the match between detected 
protein expression and expected relationship based on literature.

Image acquisition, processing and statistical analysis
Cells were maintained in a humidified stage-top incubator at 37oC 
and 5% CO2 and monitored by time-lapse microscopy (Axio 
Observer.Z1 Microscope (Zeiss, Germany) and Hamamatsu digital 
camera C10600 Orca-R2) for a total period of 5 hours. Droplets 
containing calcein AM-labeled target cells and unlabeled NK-92 cells 
were imaged every 5 minutes with 20x objectives and standard 
FITC/DAPI/TRITC filters. Specific locations (x-, y-, and z-positions) of  
droplets containing one effector and one target cell in the droplet 
docking array were noted in the Zen imaging program (Zeiss) for 
automated image acquistion. Images were processed with ImageJ 

Fig. 1. Schematic overview of experimental and analytical workflow. (A) Time-lapse images of cell pairs (i) and single cells (ii) in droplet 
docking array are processed by the machine learning algorithm. Abbreviation:  CLAHE- Contrast enhancement using histogram 
equalization. (B-C) Accuracy of trained analytical program. (B) Confusion matrix of death prediction, containing the number of true 
positive, true negative, false positive and false negative prediction results. (C) Confusion matrix of interaction prediction.
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(http://rsb.info.nih.gov/ij/) and quantified with Microsoft Office 
Excel 2010 and Origin Pro software 8, 9. Cell death was estimated by 
≥80% loss of Calcein AM fluorescence and morphological indicators 
(e.g., membrane blebbing and rupture) 8, 9, 10. Contact (stable or 
intermittent) periods between NK and target cells and frequency 
were measured per cell pair 8, 9. All experiments were replicated 2-5 
times unless otherwise stated. Statistical analysis was performed 
using Mann-Whitney U test, and p value <0.05 was considered 
statistically significant. 
NK-92 cells (5 × 104/well) were labeled with a panel of antibodies 
from Human Cell Surface Marker Screening Panel (BD Biosciences, 
San Jose, CA) as per manufacturer’s recommendation and subjected 
to laser scanning cytometry. The procedure and imaging parameters 
are described in Supplementary Methods.

Machine Learning Algorithm 
Details of data preprocessing (including contrast enhancement using 
histogram equalization (CLAHE), image augmentation techniques), 
convolutional neural network (CNN) and algorithm implementation 
has been provided in Supplementary Methods.

Results and discussion
Analysis of dynamic interaction parameters with machine learning

We developed a single cell analytical model for determining the 
dynamics of target cell killing by a two-step process, a droplet 
microfluidics-based cytotoxicity assay and a machine learning 
algorithm to identify interactive and viability features (Fig. 1). 
Effector (NK-92) and target (cancer) cell suspensions were flown 
through distinct inlets into the T junction of a droplet generator to 
co-encapsulate heterotypic cell pairs in droplets of 90 ± 10µm 
diameter 8, 9. The loaded droplets are docked in the integrated 
holding array consisting of 4000 locations, enabling dynamic 
monitoring and analysis of hundreds of E:T cell pairs (Fig. 1A). 
Droplets containing 0-3 cells of each type were detected in the 
array due to the stochasticity of trapping procedure. Only droplets 
containing 1:1 E:T cell ratio were tracked over 5 hours for 
determining cell-cell interaction and cytolysis (Fig. 1Ai) while 
droplets containing single NK-92 cell or single target cell were 
utilized for measurement of spontaneous death (Fig. 1Aii). 

Effector lymphocytes interact physically with target cells, forming 
immunological synapses that allow unidirectional transport of 
cytotoxic molecules into the target. However, synaptic contact 
duration varies, and some contacts dissolve without imminent 
target death. Here, we analyzed the interactions between E:T pairs 
and NK-mediated cytolysis using a supervised machine learning 
approach. Images from time-lapse video microscopy were first 
enhanced with contrast-limited adaptive histogram equalization 
(CLAHE) algorithm to improve signal to noise ratio and then 
augmented (i.e., enlargement of the dataset) as described in 
Supplementary Methods. The images were analyzed with Deep 
Convolutional Neural Network (CNN) based model; specifically, 
VGG-19 was used as the backbone network structure to extract 
meaningful features from the images. VGG network-based 
approach is commonly used for classification tasks. It contains a 

number of convolutional layers followed by activation layers and 
maximum pooling layers. The Rectified Linear Unit (ReLU) function, 
used as our activation layer, speeded up the training process and 
ensured that each layer conducted a non-linear operation, essential 
for CNN function. The extracted features served as input to the 
Softmax Image classifier to obtain binary classification of death (dead 
vs live) and interaction (contact vs non-contact). A pilot database of 
two-channel video files was divided intro training (73 videos) and test 
(21 videos) sets to train the predictive model to detect interaction 
between differentially labeled cells and target cell death. We further 
included a time-related element to the evaluation of death, by 
implementing a sliding framework of window of size 5, where 
prediction of death in 3 out of 5 frames would result in the cell being 
considered dead in all following frames. The accuracy of the 
algorithm was validated by comparing analytical output side-by-side 
with manual proofreading. As shown in Fig. 1B,C, the algorithm 
yielded overall accuracy of >95% and >93% for death and interaction 
prediction respectively. The high accuracy in interaction and death 
prediction observed here makes this approach suitable for 
quantification of pairwise interaction and cytolysis of other 
therapeutic cell types and high content screening assays. 

Parental NK-92 cell-induced death of blood cancer lines in droplets

The developed assay pipeline was then used to test parental NK-92 
cell cytotoxicity against hematological cancer lines as NK cells are 
known to target blood cancer cells efficiently. K562 leukemia cells are 
frequently used as a target cell line for NK cell cytotoxicity assay 5. 
This line was selected for validation of the single cell analytical 
platform. NK-92 cells significantly (p < 0.0001) increased death of 
K562 compared to spontaneous lysis in droplets (Fig. 2A). NK-92-
induced target death occurred at earlier time points (mean: 84 min 

Fig. 2. Interaction of parental NK-92 cells with two hematologic 
cancer cell lines. (A) Overall death (%) of K562 and DOHH2 cells 
mediated by NK-92 cells in droplets (with NK: n= 159 and 164 cell 
pairs respectively, without NK: 168 and 203 respectively). * 
indicates p<0.001. (B) Contact frequency for K562 and DOHH2 cells. 
(C) Distribution of death times shown for cell pairs that underwent 
single and multiple contacts with NK-92 cells. Spontaneous death 
(i.e., without NK-92 cells) occurs without any contact in droplets 
containing only target cells. (D) Contact durations between NK-92 
and target cells. (C-D) Single contacts are shown by black and 
multiple contacts by red symbols.
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with NK-92 vs 227 min without NK-92, Fig. 2C). 62 ± 3% of K562 died 
after a single contact with a NK-92 cell (Fig. 2B,C). The duration of 
single contacts between cell pairs was varied (5-250min, Fig. 2D). A 
subset of K562 cells dissociated from the conjugates but later 
interacted with the corresponding NK cell (2-10 contacts, Fig. 2B), 
and these cells died at later times as evident in Fig 2C. Such multiple 
contacts usually lasted for shorter periods (5-30min) (Fig. 2D). The 
correlation coefficient between time of death and conjugation 
period of cells undergoing single contact with NK-92 cells was high 
(0.85) while that of multiple contact cells was low (0.23), suggesting 
a higher likelihood of association between single contact and death 
(Fig. 2D). 

We then tested a lymphoma line DOHH2, which also proved to be 
susceptible to NK-92-mediated lysis. These cells depicted higher 
spontaneous lysis in droplets as compared to K562 (34 ± 4% vs 5 ± 
1% respectively). But NK-92 cells induced significantly greater and 
faster DOHH2 death (average death time with and without NK-92 
respectively: 103 min and 185 min, p < .00001, Fig. 2A,2C). Unlike 
K562 cells, 75 ± 1 % of DOHH2 cells engaged in multiple contacts 
with NK-92 cells (Fig. 2B-D). The correlation between contact time 
and time of death for cells killed following single and multiple 
contacts ranged from 0.735 to 0.555 respectively. Similar to the 
K562 line, DOHH2 cell death was significantly delayed in cases of 
multiple contacts (average death at 56 min for 1 contact vs. 85 min 
for >1 contact, p < 0.001), implying that dissociation of conjugation 
delayed the onset of cytolysis. These results suggest that cytolysis of 
the target cells following a single period of conjugation with NK-92 
cell occurs more efficiently compared to multiple short associations, 
as also observed with primary human NK cells 8, 9. Similar trends 
have been observed in our previous studies with RPMI-8226 
myeloma cells at 1:1 E-T ratio 8. While NK-92 mediated target death 
parameters may quantitatively vary depending on the type of 
platform and analytical process employed, the data trends obtained 
from the machine learning-based analytical approach are in good 
agreement with previous studies where interaction and death were 
measured manually 8, 9.  

CD16+/CD16– NK-92 cells show limited basal cytotoxicity against 
HER2+ cells

HER2/neu characterizes one of the three major subtypes of breast 
cancer and has been detected in other gynecological cancers (e.g., 
ovary, endometrial, cervical) as well as other solid tumors 28. 
Although anti-HER2 drugs like trastuzumab (Herceptin) have 
improved patient prognosis significantly, clinical evidence suggests 
relapse, de novo and/or acquired drug resistance and eventual 
metastasis in many patients 29. NK-92 cell-based immunotherapies 
can potentiate the effect of drugs against these cancer cells.  We 
determined the cytolysis of two HER2-expressing solid tumor cell 
lines, SKBR3 breast cancer and SKOV3 ovarian cancer, in droplets 
(Fig. 3A) 30, 31. 

Co-encapsulation of SKBR3 cells with NK-92 cells at 1:1 E:T resulted 
in 14 ± 1% death of SKBR3 cells compared to 2 ± 1% spontaneous 
death (Fig. 3B). These target cells made 1-9 contacts in total but 77 ± 
4% of the cells made single contact (Fig. 3C); the average duration of 

single and multiple contacts are shown in Fig. 3D. Despite the lengthy 
conjugation NK-92 cells demonstrated significantly less lysis of SKBR3 
cells compared to K562 and DOHH2.  

We also detected very limited death of SKOV3 cells at 1:1 E:T (4 ± 

0.1%, Fig. 3B). This was not due to the lack of conjugation between 
the two cell types, as 86 ± 4% cells made contact in the experimental 
duration (as also observed in SKBR3 cells) (Fig. 3B). The frequency of 
contacts was distributed (1-13) (Fig. 3C). As with other cell lines, we 
observed a marked difference (p < 0.0001) between periods of single 
contacts and multiple contacts (Fig. 3E). The single contacts were 
either short scanning motions (5 min) or long stable contacts lasting 
throughout the experimental duration (270 min); multiple contact 
durations were more varied, but neither type of contacts led to 
successful target cell cytolysis (Fig. 3E). 

Fig. 3. Interaction of parental and CD16+ NK-92 cells with HER2+ 
target cells. (A) HER2 expression in SKOV3 and SKBR3 cells. Scale 
bar: 50 µm. (B) Death (%) of SKBR3 and SKOV3 cells mediated by 
NK cells (SKBR3: n=141 and 173 cell pairs;  SKOV3: n=164 and 128 
cell pairs for parental NK-92 and CD16+ NK-92 respectively). Ctrl 
indicates spontaneous death of SKBR3 and SKOV3 cells in droplets 
(n=345 and 249 respectively). The extent of contact initiated by NK-
target cell pairs are shown on secondary y-axis.  (C) Single and 
multiple contacts made between NK-92-target cell pairs. (D-E) 
Contact duration occurring between (D) SKBR3 – NK-92 and (E) 
SKOV3 – NK-92 cell pairs, divided between single contact and 
multiple (2-10) contacts. Mean of the distribution is indicated in 
red. Statistical significance values are listed.
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Since parental NK-92 cells do not express CD16, they cannot facilitate 
ADCC. A CD16+ NK-92 cell line has previously been developed to 
address this limitation. It mediated the death of target cells due to 
higher Fc affinity and increased levels of Granzyme B secretion 5. 
Here we co-encapsulated single CD16+ NK-92 cells with SKBR3 and 
SKOV3 cells in droplets. In the absence of antibodies CD16+ NK-92 
cells minimally altered the death rate of either line (SKBR3: 5 ± 4%; 
SKOV3: 11 ± 0.5%) (Fig. 3B). However, SKOV3 cells formed 
significantly longer-lasting conjugates with CD16+ NK-92 cells 
compared to parental NK-92 cells, both in case of single contact cells 
and multiple contact cells (p values indicated in Fig. 3E). But this 
profile was reversed for SKBR3 cells (Fig. 3D), thus depicting cell line-
based specificity in interactive features. These results show that NK-
92 cells are not cytotoxic at 1:1 E:T towards these HER2+ lines, 
regardless of CD16 expression, without further stimulation. 

Herceptin increases CD16+ NK-92-mediated cytolysis of SKOV3 in a 
time- and temperature-dependent manner 

The CD16+ NK-92 cells have been previously shown to increase 
cytolysis of various tumor lines via ADCC initiated by the binding of 
antibodies such as cetuximab with the target cells 5. Here we tested 
the ability of CD16+ NK-92 cells to lyse SKOV3 cells pre-treated with 
1µg/mL of Herceptin for 30 or 60 min. Since the binding of 
therapeutic antibodies can depict differential kinetics at varying 
temperatures 32,33, we decided to assess Herceptin-dependent 
cytolysis at room temperature (RT) and 37oC (Fig. 4). At 1:1 E:T, 
addition of Herceptin at RT did not alter the death of SKOV3 cells 
regardless of the pre-treatment duration (30 min: 12 ± 8%; 60 min: 
3 ± 1%,  Fig. 4A). Likewise, it did not change the frequency or 
duration of conjugation (average single contact: 250 min and 227 
min for 30 min and 60 min Herceptin pre-treatment respectively) 
compared to control cells (i.e., no Herceptin) (Fig. 4B). As observed 
with the parental NK-92 line, E-T pairs that dissociated and made 
multiple contacts displayed shorter conjugations compared to the 
long-lasting single contacts (Fig. 4B). 

In contrast, conjugating Herceptin with SKOV3 cells at 37oC prior to 
co-encapsulation with CD16+ NK-92 cells increased death of SKOV3 
cells markedly (30 min: 50 ± 16% at 30min, 60 min: 56 ± 11%, Fig. 
4A). In case of SKOV3 cells that died following single contacts with 
NK-92 cells, the interactive durations were significantly shorter 
(average value: 119 min and 47 min for 30 min and 60 min Herceptin 
pre-treatment respectively, p < 0.001) compared to that at RT or 
control condition (Fig. 4C).  Largely similar trends were obtained for 
SKOV3-CD16+ NK-92 cell pairs that demonstrated multiple contacts. 
This decrease in conjugate duration was not due to delayed 
recognition or disassociation of cell pairs but the fact that SKOV3 
cells were killed following interaction with CD16+ NK-92 cells at 37oC, 
whereas at RT they remained viable despite conjugation. 
Furthermore, pre-treating SKOV3 cells with Herceptin for 60 min at 
37oC resulted in faster cell death and thus shorter conjugation times 
in comparison with the 30 min pre-treatment, as shown in Fig. 4D. 

There is currently little literature on the application of adoptive 
transfer of NK cell therapies in HER2+ ovarian cancer. EGFR/HER 
family-targeted therapeutics have been successful in treatment of 

Fig. 4. Interaction between Herceptin-conjugated SKOV3 and 
CD16+ NK-92 cells. (A) Death (%) of SKOV3 cells mediated by 
Herceptin (1µg/mL) at different temperature and incubation 
periods (n=165, 166, 171, 191 cell pairs respectively). The overall % 
of SKOV3 cells initiating contact with NK cells in droplets is shown 
in the secondary y-axis in red.  (B) Single (black circles) and multiple 
(red circles) contacts made between SKOV3-NK cell pairs. SKOV3 
cells were incubated with Herceptin at room temperature (RT) for 
30 or 60 min before encapsulation in droplets. (C) Contact 
durations made by SKOV3 cells that either died (gray diamonds) or 
survived (black circles) following interaction with NK cells. SKOV3 
cell data was further separated between cells undergoing one or 
multiple contact with NK cells. The cells were incubated with 
Herceptin at 37oC for 30 or 60 min before encapsulation in 
droplets. (D) Time of cell death.  * indicates p<0.05; ** indicates 
p<0.001. (C-D) Mean of the distribution represented by red lines. 
(E) Schematic of three-input AND gate function with SKOV3 viability 
as output.
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various solid tumors, so there is a clear basis for testing the 
combination of Herceptin and the highly cytotoxic NK-92 in HER2+ 
ovarian cancer. Previous studies have noted that the success of 
ADCC, that is, death of target cells, relies on pre-incubation of NK 
cells with the antibody 34,35. The duration of incubation depended on 
various factors including the affinity and concentration of the 
antibody and the density of receptors on the cell surface. Here, the 
duration of antibody pre-incubation at 37oC also proved to be a 

significant consideration in mediating faster ADCC in SKOV3 cells. 
Whether this effect persists in other HER2+ ovarian lines or primary 
cells remains to be seen. Clinical trials with allogeneic NK cells and 
cytokine-activated NK cells are still in early phases in ovarian cancer 
36. The results presented here suggest that a combination of CD16+ 

NK-92 and Herceptin warrant further investigation in in vitro and 
preclinical studies. 

Summarizing the results of the various incubation conditions, one 
can postulate that the specific pre-incubation conditions of 
Herceptin serve as two inputs to control cell-mediated logic 
operation in droplets (Fig. 4E). Using CD16+ NK-92 cells as the third 
essential input and SKOV3 death as the output, a truth table for AND 
logic operation can be constructed (Table 1). A detectable output 
(=1) is obtained only when all three inputs are positive; in this case, 
the off-chip Herceptin incubation temperature must be held at 37oC, 
for 60 min, before co-encapsulating the target cell-antibody 
complexes with CD16+ NK-92 cells in droplets. In any other condition 
the SKOV3 cytotoxicity is markedly lower (output = 0). On the other 
hand, the addition of parental NK-92 cells to K562 targets acts as an 
inverter, that is, target cells survive in droplets in the absence of NK-
92 (input 0) but show an average value of 75 % death in the presence 
of NK-92 (input 1) (Table 2). The same can be said of DOHH2 cells in 
droplets. Boolean operations have previously been performed with 
diverse inputs such as photodynamic therapy agents, DNA, proteins 
and whole cells 37-40. Whole cell-based biocomputing has applications 
in infectious diseases, cancer, metabolic disorders and 
environmental sensing 38. The examples of in vitro cellular logic gates 
shown here can potentially be employed in its present condition or 

in combination with other molecules and drugs as part of a 
biomolecular computer for immunotherapeutic applications.

Effect of Herceptin on SKBR3 cells 

CD16+ NK-92 enhanced the death of SKBR3 cells in Herceptin -
dependent manner (with/ without Herceptin: 24 ± 2% / 5 ± 4%), 
although not to the extent observed in SKOV3 cells (Fig. 5A). The 
contact durations exhibited by CD16+ NK-92-SKBR3 cell pair were 
similar in the presence and absence of Herceptin in the case of cells 
that did not undergo cytolysis (Fig. 5B). The target cells that were 
killed by CD16+ NK-92 cells displayed shorter single contacts 
compared to cells that survived (132 min vs 197 min respectively, p 
< 0.05), as also detected in SKOV3 cells. The distribution of death 
times was comparable for death initiated by single and multiple 
contacts (Fig. 5C). 

Although SKBR3 cells express HER2, the moderate increase in killing, 
along with the finding that the expression of CD16+ in NK-92 cells 
failed to enhance contact with SKBR3 (Fig. 3D), appears to suggest 
that further chemical or genetic sensitization strategies will be 
required to induce SKBR3 death by NK-based immunotherapies. It 
has been shown previously that Herceptin (trastuzumab) or 
pertuzumab does not cause a strong inhibition of SKBR3 cell cycle 
progression, but SKBR3 cells have been shown to express decreased 
sensitivity to Herceptin compared to other breast cancer lines 32. 
SKBR3 cells were not lysed by NK-92 cells despite the lack of HLA class 
I, which may be essential for NK cell recognition and lysis in cells that 
express KIRs 41. Given the long-lasting conjugates formed between 
NK-92 and a subset of SKBR3, it is also possible that these cells could 
be lysed after several hours, that is, past the experimental duration 
of this study. Drugs such as lapatinib or menadione may also facilitate 
NK-mediated death of these cancer cells  30, 42, but an extensive 
characterization of stimulants was beyond the scope of this study. 

Deep proteomic profiling of NK-92 variants

Table 1. Truth table for AND gate function using CD16+ NK-92 cells, 
Herceptin (1µg/mL, 60 min) and 37oC incubation temperature as 
inputs and SKOV3 cell death as output.

Table 2. Truth Table for Invert 
function with K562 cell 
survival as output.

Fig. 5. Interaction between Herceptin-
conjugated SKBR3 and CD16+ NK-92 cells. (A) 
Death (%) of SKBR3 with Herceptin (1µg/mL, at 
37oC for 30 min, n=191 cell pairs) and without 
Herceptin (n=173 cell pairs). The overall % of 
SKBR3 cells initiating contact with CD16+ NK 
cells in droplets is shown in the secondary y-
axis.  (B) Contact profile and (C) death times of 
SKBR3 cells following incubation with 
Herceptin. Mean of the distribution is indicated 
in red.
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Since the CD16+ and CD16– NK-92 cells demonstrated differences in 
cytotoxicity against the target cells in our study, we conducted a 
comparative proteomic profiling of the two cell types. At least 3571 
proteins were identified in each of the cell lines after applying the 
filtering criteria (FDR ≤ 1%) as described in Materials and Methods 
(Fig. S1A). Based on the results of hierarchical clustering, the cluster 
of most abundantly expressed proteins in the NK-92 cell line included 
cytoskeletal components (actin, myosin, tubulin), histone H1, heat 
shock protein family members (HSP90, HSPA5) but also granzymes A 
and B (Fig. S1B) 43. As expected, expression of other known NK-92 
markers such as CD7, CD28, CD56 (NCAM1) and CD107a (LAMP1) 
were detected in the examined NK-92 lines, as well as MHC class II 
molecules. Markers associated with cytotoxicity such as natural 
cytotoxicity receptor (NCR3), perforin and granzymes H, K and M 
were also detected in both lines (Fig. 6A). The expression levels of a 
number of proteins detected by mass spectrometry-based proteomic 
profiling in parental NK-92 were subsequently confirmed by 
quantitative imaging cytometry (Fig. 6B). NK-92 cells do not express 
CD20, CD23, CD34 and HLA-DR; these proteins were not detected by 
imaging cytometry (as shown) or proteomic analysis. Based on 
pathway enrichment analysis by IPA, intracellular pathway-
associated proteins belonging to mTOR, EGFR, VEGF, PI3K/AKT, 
GMCSF and IL12 signaling pathways were detected in the NK cells; 
notably, mTOR signaling was found to be one of the top five 
canonical pathways (Fig. S2). Proteins related to cell functions such 
as oxidative phosphorylation were detected strongly, as was the 
oxidative stress response and reactive oxygen species (ROS) 
production pathways. The phagocytic capability of NK cells was also 
noted due to the expression of proteins such as LAMP1/2, VAMP2/3, 
a number of cathepsins (A, C, D, S), V-type proton ATPase subunits, 
ezrin, Rac and Vav among others. 

Comparing the abundance levels of proteins in CD16+ NK-92 cells 
with the parental NK-92 cells, 249 candidates were found 
differentially altered in CD16+ NK-92 cells (absolute value of log 2 

ratio > 1). Pathway enrichment analysis revealed that the detected 
candidates were involved in key cellular processes such as IL12 
signaling, clathrin mediated endocytosis, metabolism, transport and 
protein localization. As expected, FCGR3 (CD16) was upregulated in 
this line, which led to the prediction of increased binding, increased 
cell viability and decreased apoptotic potential (Fig. 6C). However, in 
the absence of target cells or engagement by activating ligands the 
degranulation pathway was not activated. NK cells appear to kill 
targets rapidly by using granzyme B and slowly by other death 
receptor pathways 44.  Given that CD16+ NK-92 cells showed high 
granzyme expression in our study as well as previous studies 5, we 
checked the expression of candidate proteins known to be 
associated with granzyme B in NK cell cytotoxicity. Molecules such as 
SERPINA1 and STXBP1, known to cause degranulation and exocytosis 
in neutrophils and platelets, were detected in the CD16+ NK-92 cells 
(Fig. 6C). SERPINA1 inhibits granzyme in human cells 45; 
downregulation of this molecule in CD16+ NK-92 could suggest 
increased availability of granzyme in this line and bears further 
investigation. Likewise, upregulation of the Rel subunit of NF-κB (Fig. 
6C) could also suggest a potential link with enhanced cytotoxicity as 
the NF-κB pathway regulates granzyme B in NK cells 46. Pathway 
analysis identified TGFβ1 as a key regulator of CD16+ NK-92 cells 
specifically due to the altered expression of a number of molecules 
of this pathway (Fig. 6D). This is in line with literature reports that 
have shown that TGFβ inhibits NK-mediated ADCC and CD16-
dependent IFN-γ activity 47. Overall, these proteomic signatures 
suggest that engineering NK-92 cell lines in different ways has an 
effect on abundance levels of associated or off-target proteins, which 
has an impact on critical biomolecular processes.

Mass spectrometry-based profiling of NK-92 cells have been carried 
out in the past. Although these reports identified relatively small 
(e.g., 60) groups of proteins, molecules belonging to biosynthesis, 
transport, metabolism and chaperones were identified 48, just as in 
our study. Another study characterized proteins regulated by 

Fig. 6. Selected results of deep 
proteome profiling of NK cell lines. (A) 
Examples of proteins quantified by 
nano LC-MS in parental and CD16+ NK-
92 cells. Data obtained from at least 
n=4 replicates per line. (B) 
Confirmation of protein expression in 
parental NK-92 by quantitative laser 
scanning cytometry. Expression levels 
have been normalized to IgG control. 
Data is represented as average ± std. 
dev. B2M: beta 2 microglobulin. (C) 
Prediction of activated biological 
functions in CD16+ NK cells. (D) 
Identification of TGFβ1 as a key 
upstream regulator in CD16+ NK -92 
cells. 
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interferon-alpha (IFN-alpha) and interleukin-15 (IL-15) as these 
cytokines are known to activate NK cells 49. Our study was able to 
detect larger panel of proteins, including candidates belonging to IL-
15 and IL-8 pathway, in line with the previous reports. ERK1/2 and 
Akt kinase (Akt) pathways have been known to be activated by IL2 
stimulation, which is required for NK-92 survival and proliferation 44. 
The mTOR pathway, one of the top canonical pathways detected 
here, is also postulated to be critical for the development and 
activation of NK cells 50,51. No other study has done a deep proteomic 
profiling of CD16+ NK-92, which revealed some off-target differences 
with respect to the parental line. Of note, the prediction of TGFβ as 
a master regulator has important consequences in cancer 
immunotherapy as this is a highly immunosuppressive cytokine 
found in the tumor microenvironment. Potentially, our finding 
suggests that CD16+ NK-92 may require desensitization to TGFβ 
during activation to overcome the possibility of 
immunosuppression52.

Conclusions
The combination of microfluidic droplet generation/docking 
platform and machine learning algorithm provided detailed 
quantification of the dynamic functional parameters of the NK-92 
line against NK-sensitive hematologic cancer cells and NK-tolerant 
HER2+ cancer cells. Although two HER2+ lines were tested at 1:1 E-T 
in droplets, the combination of Herceptin and CD16+ NK-92 was more 
effective in enhancing contact and cytotoxicity against SKOV3 cells.  
The quantitative features detected in the functional assay, such as 
enhanced cell adhesion, were matched by the findings of the 
proteomic analysis. In future, incorporating more phenotypic 
features in the deep learning-based analytical software and 
automating live cell imaging will allow us to develop a faster, more 
robust diagnostic and predictive toolbox. We anticipate validating 
this analytical approach in other cell types and in the presence of 
immunogenic therapies, which could lead to valuable insights into 
the role of effector cell-based vaccines and facilitate prediction of 
therapeutic efficacy in clinical treatments.  
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