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Indirect Design of OCM Catalysts through Machine Learning of 
Catalyst Surface Oxygen Species
Fumiya Nishino,a Hiroshi Yoshida,b Masato Machida,c Shun Nishimura,d Keisuke Takahashi *e and 
Junya Ohyama *c

Catalysts for oxidative coupling of methane (OCM) were designed through machine learning of a property of surface oxygen 
species on the basis of the knowledge that catalytic performance for the OCM is affected by catalyst surface oxygen species. 
To select the property of the surface oxygen species used as a guide of catalyst design via machine learning, the relationships 
between the total yield of ethylene and ethane (C2 yield) and the O1s X-ray photoelectron spectral (XPS) features of the 51 
catalysts prepared in our previous study were evaluated. Since a weak correlation was seen between the C2 yield and the 
O1s XPS peak energy of CO3

2- species on the catalyst surface, the CO3
2- peak energy was chosen as the guiding parameter of 

catalyst design in this work. Machine learning was then performed on the dataset consisting of the CO3
2- peak energy 

(objective variable) and the physical quantities of elements in the catalysts (descriptor) to find the important physical 
quantities determining the CO3

2- peak energy. According to the important physical quantities, catalyst compositions were 
predicted. Based on the predicted compositions, 28 catalysts were synthesized to verify that their CO3

2- peak energies were 
in the range where high catalytic performance can be expected. Furthermore, the catalysts are tested for the OCM reaction.  
As a result, Ba-In-Rb/La2O3 was found as a new highly active OCM catalyst having compatible activity to the conventional 
Mn-Na2WO4/SiO2 catalyst. Therefore, it was demonstrated that the indirect catalyst through machine learning of the catalyst 
surface property is effective for development of catalysts.

Introduction
Oxidative coupling of methane is a direct conversion reaction of 
CH4 to ethylene and ethane (C2 compounds), which can offer a 
more energetically efficient and economical process than the 
conventional conversion of CH4 to olefin via CO and CH3OH.1 
However, the OCM has a problem that the C2 yield hardly 
exceeds 30%.1, 2 To overcome this problem, hundreds of 
catalysts have been developed.1-4 Among the catalysts, Mn-
Na2WO4/SiO2 shows relatively high performance for the OCM.5-7 
As seen in the case with Mn-Na2WO4/SiO2, combination of 
elements is effective in developing the OCM catalysts. Here, 
data science techniques have been applied to search for good 
combinations of catalyst elements from a vast combinatorial 
space.3, 4, 8-15 In fact, in our previous studies, catalysts have been 

designed through machine learning and data mining of the 
direct relationship between the C2 yield and the descriptors of 
elements (e.g., element number, atomic weight, atomic radius, 
melting point, evaporation heat, electronegativity, etc.).13 On 
the other hand, catalytic performance is strongly affected by 
the catalyst surface properties. In the case of the OCM catalysts, 
the properties of surface oxygen species are known to have an 
impact on the catalytic performance.16-19 Accordingly, the OCM 
catalysts can also be designed by machine learning of the 
relationship between the surface oxygen properties and the 
descriptors of catalyst elements. In addition, it is expected that 
some of the catalyst element combinations predicted from the 
surface oxygen properties are the same as the ones predicted 
by the direct catalyst design from the relation between the 
catalytic performance and the descriptors of elements, but the 
others will be different because the properties of surface 
oxygen species do not completely describe the catalytic 
performance. Therefore, new catalyst combinations can be 
explored with a guide of the rational descriptors.

In this study, indirect design of OCM catalysts through 
machine learning of a property of catalyst surface oxygen 
species was performed. The property of catalyst surface oxygen 
species used as the guide for catalyst design was selected from 
the features of O1s X-ray photoelectron spectra (XPS). Based on 
the guide of the selected surface oxygen property, OCM 
catalysts were predicted using machine learning and were 
verified by XPS measurement and the OCM reaction tests. 
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Methods
Catalyst preparation.

OCM catalysts predicted by machine learning, M1-M2-M3/A (M1, 
M2, M3 = In, K, Rb, Cs, Ba, Yb, Bi, Sm, Ce, Li, W, Hf, Eu, Cu, Zn, 
Nd, A = SiO2, La2O3, Yb2O3, CeO2), were prepared by a wet 
impregnation method. In(NO3)3 ･ 3H2O, KNO3, RbNO3, CsNO3, 
Ba(NO3)2, Yb(NO3)3 ･ 5H2O, Bi(NO3)3 ･ 5H2O, Sm(NO3)3 ･ 6H2O, 
Ce(NO₃)₃･6H₂O, LiNO3, (NH4)6H2W12O40･5H2O, HfOCl2･8H2O, 
Eu(NO₃)₃･6H₂O, Cu(NO₃)2･6H₂O, Zn(NO3)2･6H2O, Nd(NO₃)₃･
6H₂O were used as the metal precursors. The loading amount 
of each of M1, M2, and M3 was 1 wt%. After impregnation, the 
materials were dried at 110 °C overnight and calcined in air at 
1000 °C for 3 h. The metals and supports used in the M1-M2-
M3/A preparation are shown in Table 1. Mn-Na2WO4/SiO2 was 
prepared as a reference catalyst by impregnating SiO2 in an 
aqueous solution containing Mn(NO3)2 and Na2WO4. After the 
impregnation, the material was dried overnight at 110 °C and 
calcined at 1000 °C for 3 h (10 °C/min) to obtain Mn-
Na2WO4/SiO2 with 1.9 wt% Mn and 5.0 wt% Na2WO4.13

Table 1. List of the 28 catalysts prepared in this study.

M1 M2 M3 A
Ba Ce Cs SiO2

Ba Hf Cs CeO2 or Yb2O3

Ba Hf Sm CeO2 or Yb2O3

Bi Hf Sm Yb2O3

Eu Hf Sm Yb2O3

Eu Hf Nd Yb2O3

Hf In Sm Yb2O3

Bi In Sm Yb2O3

Hf In Nd Yb2O3

Ba Hf − Yb2O3

Cs Hf − Yb2O3

Sm Hf − Yb2O3

Ce Hf − Yb2O3

Cu Hf − Yb2O3

Zn Hf − Yb2O3

Zn W − Yb2O3

Ba In Rb La2O3

In Rb Yb La2O3

Bi In Rb La2O3

Ba In Yb La2O3

Ba Rb Yb La2O3

Bi In Yb La2O3

In Rb Sm La2O3

Ce In Rb La2O3

Cs In Rb La2O3

Bi Rb Yb La2O3

Catalyst preparation.

The OCM reaction was performed in a fixed-bed flow 
reactor. 50 mg of catalyst (10−20 mesh) was placed in a quartz 
glass tube reactor (inner diameter (ID) 4 mm) and fixed with 
quartz wool. Prior to the reaction, a catalyst bed was pretreated 
at 400°C for 10 min under a O2 flow of 8.3 mL/min. After purging 
with a N2 flow of 12 mL min-1, the reaction was started by 
flowing a reaction gas mixture of CH4/O2/N2 = 24/7.5/3.0 mL 

min-1. Reaction temperature was increased to 500 °C, 600 °C, 
700 °C, 800 °C, and 900 °C. The reaction gas was analyzed 15–
30 min after the temperature reached to the set value. The 
outlet gas after cold traps at ca. 10 °C was analyzed using a gas 
chromatograph with a thermal conductivity detector (490 
Micro GC Agilent Technologies). The carbon missing was 
determined by CH4 conversion – (sum of C2H4, C2H6, CO, and CO2 
yield) (%).

XPS measurement.

XPS measurements were performed using K-Alpha (Thermo 
Fisher Scientific) with monochromatic X-ray irradiation AlKα (hν 
= 1486.6 eV). The samples were analyzed as prepared without 
pretreatment. Binding energy was corrected with C1s peak at 
285 eV. Peak deconvolution of O1s XPS spectra was performed 
after background removal.

Machine learning and descriptors design.

Random forest regression is implemented within scikit-earn in 
order to evaluate the importance of descriptors.20 The number 
of tree is set to 100.

Catalysts descriptor is designed using physical quantities 
from periodic table. In particular, XenonPy is used to assign the 
physical quantity in order to define catalysts.21 Here, catalyst 
descriptor is designed by weighted average physical quantities 
based on the following equation: Σ (Pi * Ci), where Pi is a 
physical quantity of element i and Ci is its composition (mol%).

Results and discussion
The relationship between the C2 yield and the O1s XPS spectra 
of the 51 OCM catalysts prepared in our previous study was 
examined to find property of surface oxygen species related to 
the catalytic activity for the OCM reaction (Table S1).9 Each of 
the O1s XPS spectra was deconvoluted into three peaks, which 
are assignable to superoxide (O2

−), carbonate (CO3
2−) and lattice 

oxygen (O2−) in order from high energy to low energy according 
to the literature.16, 17 The relationship between the C2 yield and 
the peak binding energy of each oxygen species is presented in 
Figure 1(a)-(c). Although all the three plots do not show strong 
correlations, the plot in Figure 1(b) exhibits better correlation 
than the those in Figure 1(a) and (c). Thus, the CO3

2- species can 
be a descriptor of the OCM catalyst. The correlation between 
the O2

-/O2- area ratio and the C2 yield was also investigated as 
presented in Figure 1(d) because the O2

-/O2- area ratio has been 
suggested to be a descriptor of the C2 yield in the literature.17 
As a result, the CO3

2- peak energy exhibited a better correlation 
with the C2 yield than the O2

-/O2- area ratio in the catalyst 
dataset of this study. Although the correlation in Figure 1(b) is 
weak, the catalyst design based on the CO3

2- peak energy is 
considered reasonable because the CO3

2- peak energy can be 
related to the surface basicity, which contributes to the catalytic 
performance. Thus, the CO3

2- peak energy was selected as the 
guiding parameter for catalyst design. Since there is a rough 
trend to increase the C2 yield with an increase of the CO3

2− peak 
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binding energy, a high CO3
2− peak binding energy can guide the 

design of OCM catalysts. 

 

Figure 1. Plots of maximum C2 yield against the three deconvoluted O1s XPS peaks 
assignable to (a) O2

−, (b) CO3
2−, and (c) O2− species. (d) Plot of maximum C2 yield 

against O2
−/O2− ratio. Maximum C2 yield: the highest C2 yield value obtained with 

each catalyst in the experiment protocol.

Random forest regression was performed on the dataset 
consisting of “Σ(Pi * Ci)” as the descriptor variables and CO3

2− 
peak energy as the objective variable to identify the important 
physical quantities of catalyst elements representing the CO3

2− 
peak energy. The importance of descriptor variables is 
demonstrated in Figure 2. Ghosh’s scale of electronegativity 
(en_ghosh) and sound velocity  have high importance. It should 
be noted that Ghosh’s scale of electronegativity and sound 
velocity are not considered to directly relate to the CO3

2- peak 
energy but indirectly represent some factors determining the 
CO3

2- peak energy.

Figure 2. The importance of weighted average physical quantities against CO3
2− 

peak energy.

Here, en_ghosh and sound velocity against CO3
2− are 

visualized in Figure 3. It shows that high en_ghosh and low 
sound velocity tend to result high CO3

2− energy peak. One can 
hypothesize that catalysts having high en_ghosh and low sound 
velocity could result high C2 yield based on the fact high CO3

2− 
peak results high C2 yield. Therefore, catalysts having high 

en_ghosh and low sound velocity are explored from the 
calculated en_ghosh and sound velocities of a variety of 
element combinations using Σ (Pi * Ci). The element 
combinations are created by selecting three elements from the 
33 elements for M1, M2, and M3: Li, Na, Mg, Al, Si, Ni, K, Ca, Ti, 
V, Mn, Fe, Co, Cu, Zn, Rb, Sr, Y, Zr, Mo, Pd, In, Cs, Ba, La, Ce, Nd, 
Sm, Eu, Yb, Hf, W, Bi. These elements are selected from the 
elements found in the literature to find new combinations.2 
Here, 180,048 combinations of M1, M2, M3, and support (33C3 
(M1, M2, M3 combinations) * 33 (support) = 180,048) where the 
mol% is set to 2, 4, 2, and 92, respectively are created and 
weighted average of en_ghosh and sound velocity are 
calculated (Supplementary Table A). Created catalysts 
combinations are then visualized as ­­shown in Figure 4. It must 
be noted that mol% of support is set to 92 which has a large 
impact on weighted average, therefore, data are aggregated by 
support. As it can be seen in Figure 5, catalysts containing Si, Ce, 
Bi, Yb, and Sm in supports show high en_ghosh and low sound 
velocity. Based on the data, catalysts listed in Table 2, which 
have high en_ghosh and low sound velocity, are designed by 
randomly selecting a Si-based catalyst having ≥ 0.177 en_ghosh 
and  ≤ 2190 of sound velocity, two Ce-based catalysts having ≥ 
0.167 en_ghosh and  ≤ 2110 of sound velocity, and eight Yb-
based catalysts having ≥ 0.218 of en_ghosh and ≤ 1700 of sound 
velocity. In addition, La-based catalysts are designed by 
selecting combinations having ≥ 0.161 of en_ghosh and ≤ 2404 
of sound velocity since La-based catalysts are known to have 
relatively high activity for the OCM.13, 22 It should be noted that 
the prediction in this indirect design will not offer accurate or 
pinpoint prediction of metals-support combinations having high 
C2 yield because the prediction is based on the weak trend 
between the CO3

2- peak energy and the C2 yield. However, the 
predicted catalyst group by this indirect method may contain 
good catalysts, which may be different from catalysts the direct 
prediction can find.

Figure 3. Ghosh’s scale of electronegativity (en_ghosh) and sound velocity against 
CO3

2− peak energy.
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Figure 4. Created 180,048 catalysts combination of Ghosh’s scale of 
electronegativity (en_ghosh) and sound velocity.

Table 2.  Designed  catalysts having high en_ghosh  and low sound velocity within each 
supported catalyst.

The catalysts were actually prepared based on the predicted 
elements listed in Table 2. The loading amount of each element 
was set to 1wt%. Although the loading amount (1 wt%) is 
smaller than those calculated from the compositions in the 
prediction (2 or 4 mol%), the surface composition of the 
catalysts prepared by the impregnation method are considered 
to be compatible to or greater than the compositions used in 
the prediction. As a result, a total of 28 catalysts were prepared 
based on the prediction (Table 1). To verify the predictions, O1s 
XPS spectra of the 28 catalysts were measured. All the O1s XPS 
spectra are shown in Figure S1. Each of the spectra was 

deconvoluted into three peaks to evaluate the CO3
2− peak 

energy (Figure S2). As a result, the CO3
2− peak energies of all the 

28 catalysts were larger than 531.2 eV (Table S2), which means 
that the 28 catalysts are in the high energy side of Figure 1. 
Therefore, the predictions in Table 2 were verified.

Figure 5 shows the results of the OCM reaction over the 28 
catalysts together with only supports and Mn-Na2WO4/SiO2 for 
comparison. The experimental error was evaluated by five blank 
(no catalyst) tests, which gave 9.7±0.9% of the C2 yield at 900 
°C. The La2O3-based catalysts presented < 5 % of the carbon 
missing at all reaction temperatures. The SiO2-based catalysts 
exhibited < 5% at ≤ 800 °C and 10-15 % at 900 °C. The Yb2O3- 
and CeO2-based catalysts showed < 5% at ≤ 800 °C and 5-10% at 
900 °C. The increase of the carbon missing at 900 °C and by using 
the SiO2-based catalyst might be due to coke formation.

The La2O3- and Yb2O3-based catalysts showed higher activity 
at lower temperatures than those supported on SiO2 and CeO2. 
More importantly, several predicted catalysts exhibited 
comparable C2 yields to that of Mn-Na2WO4/SiO2. Specifically, 
the most active catalyst was Ba-In-Rb/La2O3, which gave 19 % 
C2 yield, 28 % CH4 conversion, and 69 % C2 selectivity at 700 °C, 
while the reference catalyst Mn-Na2WO4/ SiO2 gave 19 % C2 
yield, 34 % CH4 conversion, and 57 % C2 selectivity at 900 °C. 
Therefore, Ba-In-Rb/La2O3 exhibited comparable or better 
catalytic performance to Mn-Na2WO4/SiO2 at lower 
temperature. This demonstrates that the catalyst design by 
machine learning of catalyst surface properties is effective for 
development of catalysts.

Figure 5. Catalytic performance of the 28 predicted catalysts for the OCM reaction 
together with only supports and Mn-Na2WO4/SiO2 for comparison.

The maximum C2 yields of the predicted catalysts at 400-
900 °C were plotted against their CO3

2- peak binding energies in 
Figure 6. The figure does not show a correlation because of the 
limited kinds of catalysts in the verification experiment: the left 
lower data in the figure is derived from SiO2 supported catalyst, 
and the other data are La2O3, Yb2O3, and CeO2 supported 
catalysts. This result suggests that the CO3

2- peak binding energy 
is not the only descriptor of the OCM reaction. This is consistent 
with the rough trend in Figure 1(b). However, the predicted 
catalysts designed from the not-strong descriptor contained Ba-

M1 C1 M2 C2 M3 C3 A CA
en_gho

sh

Sound　
velocity　

(m/s)
Ba 0.02 Ce 0.04 Cs 0.02 Si 0.92 0.177 2184
Ba 0.02 Cs 0.04 Hf 0.02 Ce 0.92 0.168 2109
Ba 0.02 Cs 0.04 Sm 0.02 Ce 0.92 0.167 2094
Ba 0.02 Cs 0.04 Hf 0.02 Yb 0.92 0.218 1637
Ba 0.02 Hf 0.04 Sm 0.02 Yb 0.92 0.220 1651
Hf 0.02 In 0.04 Sm 0.02 Yb 0.92 0.219 1615
Hf 0.02 In 0.04 Nd 0.02 Yb 0.92 0.219 1618
Bi 0.02 In 0.04 Sm 0.02 Yb 0.92 0.218 1590
Bi 0.02 Hf 0.04 Sm 0.02 Yb 0.92 0.220 1654
Eu 0.02 Hf 0.04 Nd 0.02 Yb 0.92 0.220 1679
Eu 0.02 Hf 0.04 Sm 0.02 Yb 0.92 0.220 1676
Ba 0.02 Hf 0.04 Yb 0.02 Yb 0.92 0.220 1641
Cs 0.02 Hf 0.04 Yb 0.02 Yb 0.92 0.220 1652
Cu 0.02 Hf 0.04 Yb 0.02 Yb 0.92 0.220 1680
Hf 0.02 Yb 0.04 Zn 0.02 Yb 0.92 0.220 1656
Hf 0.02 Sm 0.04 Yb 0.02 Yb 0.92 0.220 1638
Ce 0.02 Hf 0.04 Yb 0.02 Yb 0.92 0.220 1651
W 0.02 Yb 0.04 Zn 0.02 Yb 0.92 0.220 1699
Ba 0.02 In 0.04 Rb 0.02 La 0.92 0.162 2392
In 0.02 Rb 0.04 Yb 0.02 La 0.92 0.162 2392
Bi 0.02 In 0.04 Rb 0.02 La 0.92 0.163 2396
Ba 0.02 In 0.04 Yb 0.02 La 0.92 0.164 2397
Ba 0.02 Rb 0.04 Yb 0.02 La 0.92 0.162 2400
Bi 0.02 In 0.04 Yb 0.02 La 0.92 0.165 2401
In 0.02 Rb 0.04 Sm 0.02 La 0.92 0.161 2402
Ce 0.02 In 0.04 Rb 0.02 La 0.92 0.162 2402
Cs 0.02 In 0.04 Rb 0.02 La 0.92 0.162 2403
Bi 0.02 Rb 0.04 Yb 0.02 La 0.92 0.162 2404
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In-Rb/La2O3 having high catalytic performance. This result 
shows that the indirect catalyst design is effective in 
development of catalysts.

Figure 6. CO3
2− XPS peak binding energy vs. maximum C2 yield of the predicted 28 

catalysts.

Conclusions
The OCM catalysts were developed through machine learning 
of property of their surface oxygen species. In this study, the 
CO3

2− peak energy was selected as the property of the surface 
oxygen species contributing to the OCM catalysts based on the 
rough trend of the C2 yield increasing with the CO3

2− peak 
energy in the data of the previously reported catalysts. Machine 
learning was then performed to find as the important physical 
quantities of catalyst elements representing the CO3

2− peak 
energy. Based on the relation between CO3

2− peak energy and 
the important physical quantities, the catalyst compositions 
resulting high CO3

2− peak energy were designed and the 28 
catalysts were experimentally prepared. The O1s XPS spectral 
analysis verified that all the 28 catalysts have relatively high 
CO3

2− peak energy. Furthermore, Ba-In-Rb/La2O3, one of the 
predicted catalysts, exhibited compatible C2 yield with a higher 
selectivity at lower reaction temperature compared to the 
conventional Mn-Na2WO4/SiO2 catalyst. The results suggest 
that the indirect design of catalyst through machine learning of 
catalyst surface property is effective in developing catalysts. 
This means that, if one has an understanding or a hypothesis 
about how catalyst surface properties affect a target catalytic 
reaction and there is appropriate database of catalyst 
properties, one can obtain catalyst designs in a similar way to 
the indirect catalyst design method performed in this study.
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