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Advances in screening hyperthermic
nanomedicines in 3D tumor models

Joana F. Soeiro, ab Filipa L. Sousa, a Maria V. Monteiro,a Vı́tor M. Gaspar, *a

Nuno J. O. Silva *ab and João F. Mano *a

Hyperthermic nanomedicines are particularly relevant for tackling human cancer, providing a valuable

alternative to conventional therapeutics. The early-stage preclinical performance evaluation of such

anti-cancer treatments is conventionally performed in flat 2D cell cultures that do not mimic the

volumetric heat transfer occurring in human tumors. Recently, improvements in bioengineered 3D

in vitro models have unlocked the opportunity to recapitulate major tumor microenvironment hallmarks

and generate highly informative readouts that can contribute to accelerating the discovery and

validation of efficient hyperthermic treatments. Leveraging on this, herein we aim to showcase the

potential of engineered physiomimetic 3D tumor models for evaluating the preclinical efficacy of

hyperthermic nanomedicines, featuring the main advantages and design considerations under diverse

testing scenarios. The most recent applications of 3D tumor models for screening photo- and/or

magnetic nanomedicines will be discussed, either as standalone systems or in combinatorial approaches

with other anti-cancer therapeutics. We envision that breakthroughs toward developing multi-functional

3D platforms for hyperthermia onset and follow-up will contribute to a more expedited discovery of

top-performing hyperthermic therapies in a preclinical setting before their in vivo screening.

1 Introduction
Hyperthermia for cancer therapy is continuously evolving as a
valuable strategy compared to standard chemotherapeutic
treatments owing to its potential for heating tissues to induce
cancer cell death and increase the immune response in a more
controlled and localized mode.1,2 As cancer cells are more
susceptible to heat damage than normal cells, hyperthermia
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can induce cancer cell death with minimal injury to the healthy
tissue surrounding the tumor.3,4 The damage caused in cells
depends on the achieved temperature and the duration of the
procedure.5 Three ranges can be defined: 40–42 1C (mild
hyperthermia), 42–45 1C (moderate hyperthermia), and Z50 1C
(ablation).6 Thermal ablation is usually performed for short
periods and causes irreversible cell damage by inducing
apoptosis.6,7 Mild and moderate hyperthermia are performed
for longer periods, inducing changes in the blood perfusion
and oxygenation of the tissue, causing protein denaturation
and aggregation. Furthermore, mechanisms of DNA repair and
cell proliferation can be inhibited, ultimately altering the
physiology of the tumor.7,8 Recent evidence pointing toward

hyperthermic activation of immune cells and increased resis-
tance against secondary tumors further supports the validity of
such hyperthermic strategies.9

In recent years, different types of nanomaterials approved by
the Food and Drug Administration (FDA) for hyperthermia have
been explored in the clinical setting (e.g., Aurolases, Nano-
spectra Biosciences, Inc., Houston, TX; and NanoTherms,
MagForce AG, Berlin, Germany) since they can be engineered
to accumulate in the desired area and generate heat upon
an external stimulus, typically an electromagnetic wave or an
alternating magnetic field (AMF).10 Thus, nanomaterials can
improve selectivity to prevent major injury in the tissues
surrounding the tumor.11 Despite relevant developments,
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hyperthermia mediated by nanomaterials still faces several
challenges, such as guaranteeing maximum cancer cell selec-
tivity, homogeneous heating of the target tissue, and effective
methods for temperature control/real-time readout during
treatments.12 Consequently, current hyperthermic strategies
require further engineering and improvements of 3D tumor
models prior to their widespread acceptance as a standard-of-
care therapeutic modality.13

Conventionally, the preclinical validation of candidate
hyperthermic nanomedicines has been routinely performed
in gold-standard flat 2D cell cultures.14,15 However, these are
unable to recapitulate the 3D architecture of the human tumor
microenvironment (TME), as well as the complexity of its
cellular (i.e., cancer, stromal, immune cells, etc.) and non-
cellular elements (i.e., extracellular matrix (ECM)),16 ultimately
leading to a sub-optimal in vitro/in vivo correlation that impacts
human clinical trial validation stages and ultimately translation
into the market.17,18 Exploring 3D in vitro tumor models as
alternative preclinical platforms for hyperthermic nanomedi-
cines validation opens the possibility to recapitulate: (i) human
solid tumors gene expression profiles associated with heat/
drug resistance (i.e., heat-shock proteins – Hsp70/Hsp90,14,19 drug
resistance mechanisms – ABC transporters20), (ii) the modulation
of the secretion of key exosomes,21 as well as (iii) the establish-
ment of hypoxic/necrotic regions and volumetric pH gradients,22

in an approach that is significantly more similar to that
found in vivo.23 The coexistence of multiple cancer-stroma cellular
populations and the dynamic cell–cell or cell–TME interactions
in 3D can also be explored to better contribute to evaluating
hyperthermic therapeutics performance.24–28 Upgrading from the
conventional use of monolayers toward volumetric tumor models
also enables researchers to specifically evaluate the influence of
solid tumors on heat transfer mechanisms and nanomedicines
penetration in 3D in a more biomimetic set-up.18,26,29 The latter is
particularly relevant, since a sub-optimal and non-homogeneous
distribution of hyperthermic nanomedicines within the tumor
volume may impact the overall therapeutic outcome. Leveraging 3D
models and high-throughput/high-content imaging approaches to
improve the selection process of top-performing hyperthermic
nanomedicines at preclinical stages also contributes to reducing
the use of laboratory animals and surpasses major ethical and
economic issues associated with these models.24

Despite the promising advantages of advanced 3D tumor
models, these have yet to be broadly adopted during hyperther-
mic nanomedicine design and performance screening.30 Aiming
to shed light on recent advances, the key aspects of hyperthermia
nanomedicines validation in advanced 3D in vitro models are
herein addressed. An informative discussion focusing on the
importance of heat transfer simulations in 3D and real-time
temperature evaluation strategies during treatment is also pro-
vided, considering the highly required advances in technologies
to monitor hyperthermia nanomedicines in a non-invasive
mode. State-of-the-art examples leveraging on the use of
3D in vitro tumor models for screening and validating nano-
hyperthermia technologies will be showcased and discussed,
considering their contribution to further consolidate and

upgrade this therapeutic methodology. It is envisaged that
advances from upgraded preclinical validation models will con-
tribute to changing the current approaches for the validation of
innovative hyperthermic nanomedicines, opening new avenues
for accelerating their translation toward the clinical scenario.

2 Hyperthermia technologies

Conventional hyperthermia for cancer management is per-
formed by exploiting: (i) electromagnetic waves: radiofrequency
(RF), microwaves (MW), near-infrared (NIR) light, and (ii)
mechanical waves, namely ultrasound (US).31,32 Even though
these methods are efficient in increasing the temperature of
tissues, they fail to target only the desired tissue.11 This targeting
can be dramatically enhanced using nanosized heating agents
that are more efficient than tissues in absorbing the incoming
wave, leading to an increase in temperature in a specific region.
Hyperthermia has been rapidly emerging owing to its higher
precision and therapeutic versatility, particularly in the case
of photothermal therapy (PTT) and magnetic hyperthermia
(MH), complementing the available toolset of hyperthermia
technologies.33–35 Fig. 1 highlights examples of traditional
hyperthermia methods and examples of nanomaterials used
as heating agents in hyperthermia procedures.11,31,36–38

2.1 Photothermal nanotherapy

In PTT approaches, nanosized photothermal agents (nano-PTAs)
are leveraged to convert electromagnetic radiation, usually NIR,
into thermal energy to heat cancer cells.39 The interest in NIR-II-
absorbing materials (NIR-II: 1000–1350 nm40) has recently
increased since they show a reduced light scattering, enable a
higher spatial resolution, and higher signal-to-background ratio
compared to NIR-I-absorbing materials (NIR-I: 650–900 nm40)
which have been the most explored for PTT.41,42

To date, a wide range of inorganic (i.e., carbon based-
nanomaterials, noble metal nanoparticles (NPs), metal-oxide
NPs), and organic nanomaterials (i.e., conjugated polymers,
semiconducting polymers, organic dyes, etc.) have been
exploited for PTT methodologies.11,43,44 Table 1 reports examples
of nano-PTAs recently used for hyperthermic nanotherapy
screening in 2D in vitro models. Both classes of nano-PTAs
present advantages and disadvantages, with most inorganic
nano-PTAs being non-biodegradable and exhibiting limited
biocompatibility, while organic nano-PTAs (i.e., biodegradable,
and biocompatible) commonly exhibit lower photothermal
conversion efficiency (PCE) and reduced photostability.45–47

The rationale selection of nano-PTA should thus account for
several factors, including the type of cancer, the tissue/organ
being treated, the location of the treatment, and the optimal
light wavelength.

Carbon-based materials, including graphene,56–58 carbon
nanotubes (CNTs),59,60 fullerenes,61,62 and carbon dots,63,64

have been increasingly used as nano-PTAs as they display high
absorption in the NIR region, suitable biocompatibility, and can
generally accumulate in the tumor site due to their nano size.
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Furthermore, these can be easily functionalized to improve their
water dispersibility, biocompatibility, and tumor-targeting
ability.36,65 Carbon-based nano-PTAs have the potential for mul-
timodal imaging, integration of PTT with other therapies, such
as photodynamic therapy (PDT), and can also be used as drug
delivery vehicles.66–68

Noble metal NPs, such as gold (Au),69,70 silver (Ag),54,71 or
palladium (Pd) NPs,72,73 have been shown to have an adequate
performance as nano-PTAs due to their biocompatibility, suitable
sizes for biological applications, and strong localized surface
plasmon resonance that gives them the ability to be good absorp-
tion agents.74,75 These materials can be easily functionalized and
conjugated with molecules to increase their targeting ability and
biocompatibility.76 Furthermore, noble metal NPs can be used
for imaging applications and combined therapies, such as PDT,
immunotherapy, or chemotherapy.77 By tuning the size or shape
of the structure, the absorption range can be easily changed.75

Organic dyes have strong light absorption in the visible or
NIR region and can be easily synthesized and functionalized for
specific applications.50,78 Furthermore, they can be simulta-
neously used as fluorescent probes for imaging and as PTAs.46

Organic dyes can be rapidly cleared from the body, preventing
high toxicity, yet this can limit the duration of the treatment. Such
dyes also have limited tumor selectivity, and generally poor
stability in aqueous mediums.57,79,80 To address these limitations,
organic dyes have been commonly associated with other nano-
sized structures, such as micelles or liposomes, in an attempt to
increase their stability and tumor selectivity.80 Examples of
organic dyes used as nano-PTAs include indocyanine green
(ICG),55,81,82 methylene blue (MB),53,83 and IR780.84–86

2.2 Magnetic hyperthermia

In MH, magnetic nanoparticles (MNPs) are used to transduce
magnetic energy produced by an AMF into heat.34,87,88

The inability of the magnetic moments of the MNPs to

follow the AMF totally in phase leads to hysteresis and heat
generation. This inability may be due to the physical rotation of
the MNPs (Brown mechanism), to the rotation of the magnetic
moment as a single moment across an energy barrier provided
by the crystal lattice (Neél mechanism), or to rearrangement
of the orientation of the magnetic moments in the case of
multi-domain larger MNPs. The heat generated by the MNPs
is dependent on the frequency of the applied magnetic field,
the size and morphology of MNPs, and the biological properties
of the tissue.87,89–91 The amount of heat dissipated per unit
mass of MNPs is commonly quantified by the specific absorp-
tion rate (SAR), which indicates MNPs heat generation effi-
ciency upon the application of a magnetic stimulus.92,93

The efficiency of the MNPs in MH depends on their coating,
size, morphology, and magnetic properties (e.g., saturation
magnetization (Ms), magnetic susceptibility, and magnetocrys-
talline anisotropy).34,88,94,95 The size and morphology of the
MNPs are key features to be considered due to their influence
on cellular uptake, which will be further discussed.96 Moreover,
the size of the MNPs will influence the mechanism responsible
for generating heat within the tumor: hysteresis losses due
to domain rotation/reconfiguration are more significant in
multi-domain NPs, and Brownian and Néel relaxation losses
are dominant in single-domain NPs.90,97,98 The size distribution
of MNPs should be uniform to contribute to a homogeneous
distribution of heat, and the MNPs should be well dispersed in
small concentrations.87,88,90 Usually, larger particles have a
higher Ms, which is proportional to the heating efficiency of
the MNPs. So, a compromise between the size of the NPs must
be found to maximize their heating capacity and cellular
uptake.87,99,100 Besides being important to guarantee a high Ms

and magnetic susceptibility, MNPs should have a suitable
volume and magnetocrystalline anisotropy, whose product is
the energy required to change the orientation of the magnetic
moment of the particles, to match the characteristic relaxation

Fig. 1 Summary of hyperthermic technologies: Scheme of currently available hyperthermic technologies and advanced approaches leveraging
nanomaterials as heating agents. Compiled from ref. 11, 31 and 36–38.
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time and the AMF frequency, aiming to maximize the heating
efficiency.88,101,102

Functionalization of MNPs with hydrophilic and low
toxic materials is usually performed to increase both the dis-
persibility of NPs in water and colloidal stability.94 Moreover, it
improves biocompatibility and tumor target selectivity, prevents
MNPs from agglomerating, and increases the NPs’ circulation
time.87,95,103,104 The material of the surface coating, its thick-
ness, and the size of the core influence the heating efficiency of
the final particle. Usually, a thinner coating and a larger core size
contribute to a higher SAR, while a thicker coating and a smaller
core size contribute to a lower SAR by inhibiting Brownian
relaxation. Moreover, MNPs with a low dispersibility behavior
require a thicker coating to improve their stability and prevent
aggregation.88,105 So, a compromise between the thickness of the
coating and the size of the core must be found to maximize the
SAR, dispersibility, and colloidal stability in aqueous medium.88

Coating MNPs with appropriate materials such as poly(lactic-co-
glycolic acid) (PLGA), polyvinyl alcohol (PVA), poly(vinylpyrro-
lidone) (PVP), polyethylene glycol (PEG), or dextran has
been shown to improve NPs-cell interactions and also prevent
toxic side-effects.106,107 Lipid-based nanomaterials, such as
liposomes108,109 or niosomes,110,111 have also been used as coatings
for MNPs due to their biocompatibility, flexible design, and
surface modification capacity. Both polymeric and lipid coat-
ings allow for a controlled release of the inner NPs/drugs upon
the use of different stimuli (e.g., temperature, pH, light,
magnetic or electric fields, etc.), which is advantageous, for
example, for target drug delivery and for MRI contrast.112,113

Recently, hybrid systems consisting of polymer and lipid coatings
have emerged as promising approaches capable of improving
NPs’ stability, biocompatibility, and drug release kinetics.114,115

Superparamagnetic iron oxide NPs (SPIONs) have been the
most used for MH as they show valuable size-dependent
magnetic properties, suitable biocompatibility, reduced
toxicity, high surface-to-volume ratio, proper stability in aqu-
eous suspension, can be easily functionalized, and are FDA
approved.116–118 Moreover, these particles have been shown to
have the potential to induce heat by optical stimulation, which,
in combination with MH, can contribute for increasing
the efficiency of candidate anti-cancer treatments.119 Table 2
summarizes the most recent studies exploring MNPs for
hyperthermic nanomedicines screening in flat 2D in vitro
models. The use of MNPs has several advantages since, in addition
to being used as heat sources, they can also be used as contrast
agents, non-invasive temperature thermometers, or for comple-
mentary targeted drug delivery.120–122 However, it is still a chal-
lenge to guarantee that the MNPs are homogeneously distributed
in the target region, achieve uniform heating, and to ensure that
the magnetic properties of the NPs/administered concentration are
adequate to promote an effective outcome.119,123

MH and PTT are complementary, in the sense that while PTT is
more suitable for surface and near-surface applications, MH is
applicable in deep tissues, since the penetration of the AMF
exceeds the penetration depth of light.94,124,125 Consequently, MH
can be used to trigger hyperthermia in deeper tumors than PTT.87 T
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When designing nanomedicines for hyperthermic applica-
tions, it is important to consider the factors that affect their
penetration in tumors that is influenced by NPs’ properties
(e.g., size, morphology, or surface chemistry/functionalization),
and by physical and biological barriers (e.g., uptake by the
immune system, shear stress under circulation, renal filtration,
interstitial fluid pressure, or tumor desmoplasia).133,134

In general, NPs bigger than 200 nm are easily accumulated in
the liver and spleen, and NPs smaller than 6 nm are usually
filtered by the kidney, not being able to accumulate in the
target site.95,135 Moreover, coating the NPs with neutral poly-
mers generally reduces clearance mediated by the immune
system.133 Since some tumor types have a leaky vasculature
with increased permeability and poor lymphatic drainage,
nano-sized agents are more likely to be passively internalized
and retained by the tumor after systemic administration, which
is referred to as the enhanced permeability and retention (EPR)
effect.95,136 In fact, the internalization of nano-agents as drug
carriers in tumors can exhibit over a 10-fold increase in effec-
tiveness compared to free-drugs, even though only 10 to 15% of
injected NPs successfully accumulate within the tumor.137

Approaches aiming to improve the accumulation and retention
of NPs in tumors include, for example, the use of ligands
or antibodies to bind with specific malignant cell receptors
to promote a targeted delivery.138–140 Regardless of their
physicochemical features, the preclinical validation of such
systems is a requirement before they are considered for clinical
applications.

To date, the preclinical performance and validation of such
engineered nano-heating agents for localized heat generation
has been mainly performed in 2D cell monolayers and/or mice
models.141,142 Recently, the use of 3D in vitro models in the
design and validation stages of hyperthermic nanomedicines
has been rapidly emerging as an alternative strategy, owing to
its potential to overcome the issues of 2D cultures, for signifi-
cantly reduce animal model usage, and for accelerate the
identification of top performing nano-heating agents.

To fully explore the potential of 3D in vitro tumor models for
evaluating the performance of hyperthermic nanomedicines, it
is important to discuss the relevance of the third dimension
in what relates to NPs’ penetration and distribution in the
complex TME, as well as heat transfer mechanisms, that are
otherwise more difficult to be modeled in 2D cell cultures.

3 In vitro tumor models for
nanomedicines screening
3.1. Mimicking the tumor microenvironment (TME):
2D versus 3D models

The complexity of tumors and their interactions with the
surrounding microenvironment has prompted researchers to
develop more advanced and sophisticated 3D tumor models
that better recapitulate different tumor hallmarks in a preclinical
setting when compared to the limited 2D flat cell monolayers
methodologies.143 Owing to the inherent spatial differences, 2D

and 3D tumor models recapitulate the TME components and its
biological hallmarks differently in an in vitro setting.

In the native TME, the tri-dimensional existence of the
surrounding stroma plays an important role in tumor progres-
sion, invasion, and metastasis, for example by producing
enzymes to degrade the ECM, by supplying biomolecular cues
to promote cancer cell growth and angiogenesis, by suppres-
sing the immune response, or by recruiting healthy cells.144–146

The stroma is comprised by the ECM and other cell types, such
as endothelial cells, cancer-associated fibroblasts (CAFs),
mesenchymal supporting cells, cells of the vascular/lymphatic
system, and immune system cells.147–149 In malignant tissues,
the ECM undergoes significant alterations resulting in de novo
deposition of ECM, where proteins (e.g., collagen, fibronectin,
laminin, etc.) are upregulated and an enzyme-mediated
(e.g., lysyl oxidase) stiffness increase occurs, which represents
a physical barrier to therapies.27,150,151 Each cancer-associated
cell type has its own function on tumor progression, making it
important to consider the rationale addition of these living
units in the design stage of a 3D in vitro tumor model.144

For example, fibroblasts contribute to ECM de novo deposition
and remodeling of ECM proteins, facilitating the invasion of
cancer cells into neighboring tissues, while immune cells can
also have tumor promoting capacity after being recruited by
other cancer cells.149,152

In conventional 2D platforms, cells grow as monolayers in
adherent conditions. This results in a flat and homogeneous
environment that deprives cell–cell and cell–ECM interactions
and leads to changes in cellular morphology and function.
Moreover, 2D models were shown to modify cellular polarity,
morphology, secretion, gene expression, and signaling. These
models generally only focus on one cell type (monotypic),
making it difficult to co-culture different cellular components,
which often neglects the essential contribution of stromal
components to tumor development. 3D tumor models provide
a far more realistic volumetric architectural rearrangement and
cellular representation of the TME by allowing the inclusion of
stromal components and enabling to easily recapitulate cellular
diversity and heterogeneity.14,26,141,153

Since cancer cells are highly proliferative, the angiogenic
process (i.e., formation of vasculature) cannot generally keep
pace, leading to the disorganized formation of leaky and
branch vessels with irregular sizes and increased permeability,
in some cancers.154 This, in turn, results in an increase in the
interstitial pressure. Consequently, the inner cells of the tumor
mass become deprived of nutrients and oxygen, leading to the
formation of a hypoxic and acidic environment with gradients
of oxygen, nutrients, and metabolites.152,155,156 2D in vitro testing
platforms, where cells are cultured in an air–liquid interface, are
unable to mimic these gradients or allow to recapitulate the
formation of vessel-like structures, elements that are essential to
better understand tumor behavior.23

The hypoxic microenvironment leads cancer cells to adapt
their metabolism to promote survival, invasion, and metastasis.
These adaptative changes are further supported by proteomic
and genomic alterations.157 Interactions between the stroma
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and cancer cells can also drive cancer progression by secreting
growth factors and signaling molecules (e.g., transforming growth
factor-b (TGF-b), stromal-derived factor (SDF-1), etc.).158 Hypoxia also
promotes the epithelial–mesenchymal transition (EMT) that plays
an important role in metastasis. These mechanisms are predomi-
nantly driven by the TME-tumor interactions, which are highly
challenging to mimic in 2D models.159–162 Moreover, the oxygen-
deprived environment contributes to an heightened resistance
against radiation and constrains drug penetration.150,163,164 Addi-
tionally, cancer stem cells (CSCs) play a prominent role in tumor
resistance and metastasis, as they can self-renew and regenerate
tumor populations after treatment.150,165,166 3D models facilitate the
modulation of CSCs population, which is more challenging to be
modeled in standard 2D models, allowing for a better recapitulation
of tumorigenesis and resistance mechanisms.167,168

In essence, 3D tumor models represent a testing platform
that more closely resembles the architectural complexity,

cellular interactions, environmental conditions, and underly-
ing mechanisms that occur in tumors. By employing these
models, it is possible to provide a more accurate assessment
of nanomedicine penetration and efficiency, allowing to evalu-
ate different coatings and targeting approaches. Consequently,
3D models can provide data that is not attainable in 2D and
contribute to accelerate the validation of hyperthermic nano-
medicines for clinical practice.

3.2 3D tumor models for preclinical screening of therapeutics

In the pursuit of better alternatives to conventional 2D mono-
layered models, researchers have been focusing on developing
different types of 3D tumor models, with a particular emphasis
on spheroids, organoids, organ-on-chip platforms, and 3D
bioprinted models (Fig. 2), all of which are addressed in detail
in the following section.

Fig. 2 Overview of in vitro tumor models: Schematic of diverse 3D tumor models for hyperthermic nanomedicines screening.
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3.2.1 Spheroids. Spheroids are the most commonly used
3D in vitro models and consist of spheroidal, randomly self-
assembled cell-rich structures.169–172 These models can be
comprised of only one cell type (monotypic) or several cell
types (heterotypic).173,174 Heterotypic spheroids can be bio-
engineered with tunable cell density/size, and have been used to
screen different types of candidate therapeutics.174,175 Since het-
erotypic spheroids better mimic the cellular complexity of
native tumors, these are considered more clinically relevant
models. Heterotypic spheroids have been used to study the
influence of different cell types (including stromal cells) on tumor
progression, gene and protein expression patterns, to assess drug
and nanoparticles penetration, as well as chemotherapeutics
response.176–179 However, the generation of compact spheroids
may not be achievable with all cell types, and spheroid morphology
is generally dependent on the cell type and the culture conditions
that are employed.24,169 Persistent challenges include standardiza-
tion of spheroids production techniques and modeling vascular
and immune system elements of tumors in these models.180

Spheroids generation methods can be generally categorized
as scaffold-based or scaffold-free techniques. Scaffold-free tech-
niques leverage the inherent capacity of cells to self-aggregate
to form spheroidal structures and, subsequently, to potentially
secrete their own ECM over time in culture. The simplicity
and cost-effectiveness of these models render them highly
sought-after by researchers. On the other hand, scaffold-
based methods involve the incorporation of malignant and/or
stromal cells within tailored hydrogels designed to mimic the
ECM and to provide structural support, adhesion sites, as well
as biomolecular stimulation.23,169,181

3.2.2 Organoids. Organoids can be produced from embryo-
nic or induced pluripotent stem cells embedded in a hydrogel
matrix. Organoids resemble the heterotypic cellular composi-
tion, organization, genetic traits, and biofunctionality of the
human organ of origin, being capable of self-organizing and
evolving in culture over time. These models allow a co-culture
of multiple cell types and can be used to model the TME and
the cancer-stromal interplay.171,172,182 Organoids can be cryo-
preserved and used for personalized medicine, enabling
researchers to explore patient-specific approaches.182–184 In
the context of oncology, organoids can be derived from healthy
or tumor tissues, enabling the evaluation of drugs performance
in these different scenarios, under controlled conditions.182

Despite their higher correlation with the native tissue, orga-
noids generation is generally a cumbersome and expensive
process, and these models generally still lack a comprehensive
representation of the vasculature, biomolecular gradients, and
immune system cells present in human tumors. The widespread
use of organoids encompasses several challenges particularly
regarding reproducibility, standardization, cost-effectiveness,
and scalability, yet they are one of the most biomimetic models
of human disease available to date.182,184,185

3.2.3 Organ-on-a-chip platforms. Organ-on-chip platforms,
also termed microphysiological systems, have been widely
used to recapitulate human diseases, including cancer on
microfluidic chips under dynamic flow conditions.186,187 These

models are generally designed to reconstitute the structural,
microenvironmental, and functional complexity of human
organs, as well as modulate the mechanical properties at
different fluid-related shear stress, the nutrient supply, waste
removal events, and the dynamic interactions occurring
between cells and the flowing culture medium to recapitulate
human pathophysiology.187–189 This is a relatively low-cost and
reproducible methodology that enables the manipulation of
parameters of the TME in the space and time domains.
Additionally, some microfluidic platforms enable a real-time
and quantitative assessment of tumor development and
progression.27,186–188,190 Gathering on their modularity and
versatility, researchers have been exploring tumor-on-a-chip
models to integrate microvascular systems and their fluid
dynamics. Since virtually any spheroid or organoid model can
be included in microfluidics platforms, these microphysiological
platforms are considered highly advanced and more
biomimetic.191 Their development holds great promise for eval-
uating drug or nanoparticles penetration and their biological
performance under dynamic conditions.191–194

From a practical perspective, organ-on-a-chip platforms are
often fabricated by using poly(dimethylsiloxane) (PDMS), a
biocompatible silicon-based polymer. In addition, hydrogels
capable of closely mimicking ECM properties, such as Gelatin
methacryloyl (GelMA), can be included in the microfluidic
chambers to provide support to cancer cells/spheroids or
organoids.27,195,196 Tumor-on-a-chip models have been widely
used in cell biology, single-cell studies, drug discovery, genetic
assays, intracellular signaling, toxicology studies, and tissue
engineering.197,198 Breast,199,200 colorectal,201,202 and brain203,204

tumor-on-a-chip models have already been assembled.
3.2.4 3D bioprinting. In recent years, 3D bioprinting has

rapidly emerged as a valuable technique for generating custo-
mized and larger scale (mm up to cm scale) 3D tumor models.
Extrusion bioprinting is one of the most widely used 3D
bioprinting methods and involves the sequential deposition of
layers of a given bioink (i.e., polymer + cells) to construct a
tailored 3D tumor model that can comprise cancer and stromal
cells. This technique allows a precise volumetric placement of
cells, bioactive factors, and biomaterials to mimic the TME,
having the ability to create geometrically complex scaffolds with
low cost and reproducibility. Biomimicry of tumor heterogeneity can
be achieved by printing different cell types and ECM components.
Furthermore, the dimension and geometry of the scaffold can be
adapted, and the underlying ECM mimetic biomaterial properties
can be tuned, enabling the creation of personalized microarchitec-
tures with biomimetic capabilities.189,205,206 Other methodologies
explored to generate 3D tumor models by bioprinting include laser,
droplet, or dynamic light projection (DLP).207,208 3D bioprinting
techniques face significant challenges related to bioink formulation,
reproducibility, and standardization, maintenance of the integrity of
the printed components, preserving cell viability, and optimizing
the rheological or viscoelastic properties of the biomaterial inks
used for assembling the tumor models.189,207

3D bioprinting has been used to assemble spheroids, orga-
noids, and tumor-on-a-chip models. Moreover, attempts have
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been made to implement vasculature in tumor models with this
technique, particularly within microfluidic platforms.209,210

Adding to this, 3D bioprinting can be helpful to generate
customizable 3D in vitro models with a user defined size that
better mimics that of the human scale,211 which is advanta-
geous for pre-clinical imaging techniques, such as magnetic
resonance imaging (MRI), positron emission tomography
(PET), or computed tomography (CT), that have limitations in
sample size due to their spatial resolution.212

In addition to the discussed differences between 2D and 3D
in vitro tumor models, the latter may also offer the ability
to manipulate the non-cellular microenvironment through
the encapsulation of cells in ECM-mimetic hydrogels. These,
so-termed scaffold-based 3D in vitro models, are highly valuable
to study the influence of the biophysical and biomechanical
properties of the ECM, particularly through the modulation
of various parameters that exist in the tumors matrix (e.g.,
establishment of chemical gradients, shifts in stiffness/visco-
elasticity, evolving biomolecular composition, mass transfer
phenomena), thus enabling to more accurately mimic in vivo
conditions.213,214 Furthermore, these scaffold-based in vitro
models provide the possibility to model the influence of each
parameter in different stages of tumor development.213 In this
framework, recent endeavors have focused on bioengineering
ECM-mimetic hydrogel 3D tumor models with on-demand
tailored mechanical properties to study tumor growth,215

migration/invasion,175,216,217 or metastasis.218 Adding to this,
cutting-edge bioengineering methods, such as 3D bioprinting,
offer the ability not only to generate in vitro models with
controlled mechanical properties but also with a physiomimetic
architecture of the microenvironment.214,219 In a complementary
approach, the integration of 3D bioprinting with microfluidic
technology has been proven to be crucial in integrating mechan-
ical cues within 3D in vitro models, encompassing shear flow,
gradients, and mechanical stimulus. These cues, in turn, can
influence cellular signals, cell adhesion molecules, cytoskeleton
dynamics, and activation of membrane transporters and ion
channels.220,221 By manipulating these properties in 3D in vitro
models, researchers can create a more realistic and tailored
model to better predict cells’ response to treatments.

3.3 Heat response and transfer mechanisms: probing
dimensional impacts on heat response in 2D and 3D models

During stress, such as oxidative, pH, hypoxic, heat, or radiation,
an overexpression of heat shock proteins (Hsp) is initiated to
promote cell survival, especially involving Hsp70 and Hsp90.
This includes binding to denatured proteins, preventing incor-
rect aggregations, assisting protein assembly, secretion, and
degradation, as well as transporting those proteins through
membranes.14,222 Hsp are mainly regulated by the heat shock
factor 1 (Hsf1), which normally resides in the cytoplasm in an
inactive state. In response to a stress situation, Hsf1 enters the
nucleus and initiates the transcription process, resulting in the
production of Hsp. Once the stress is removed, Hsf1 returns to
its inactive state in the cytoplasm.19,223 This response enables
cells to maintain their functionality, evade the signals that

trigger cell death, and mitigate the effects of drugs, leading to
the development of resistance to treatments.224 Consequently,
researchers have directed their efforts towards discovering
strategies to target Hsp with inhibitors, aiming to increase
cancer cells death upon treatment.19,225 Moreover, hyperther-
mia has shown to promote the infiltration of immune cells in
tumors, enhancing immune response and modulating the
TME. This dynamic interplay can improve tumor cell recogni-
tion and destruction by the immune system.6,226

The response of cells to stress is influenced by the condi-
tions of the culture. In 2D models, cells are simultaneously and
uniformly placed under similar conditions, leading to a higher
rate of cell death when compared to 3D cultures. This is
primarily due to the additional architectural, cellular, and
environmental components of 3D models.14,227 Such testing
platforms are highly valuable to better understand and predict
the performance of candidate hyperthermia treatments.

The temperature in tissues is the result of a balance of
factors, including ambient temperature, heat generation as a
result of metabolic activity, and heat transfer from hot to cold
regions of the body by conduction and convection.228,229 It is
worth noticing that convection is quite more efficient in
transporting heat.230 According to a study, the size and shape
of NPs, blood flow, and vessel geometry can all impact the
distribution of NPs inside tumors, which in turn can affect the
temperature distribution.231 Moreover, nanosized particles are
more efficient in penetrating deeper into tumors but have high
elimination rates.231,232 Another study demonstrated that the
rate of heat generation and its impact on surrounding tissues
are influenced by the infusion rate, blood flow, and distribution
of nanoparticles within the tumor. A lower infusion rate was
shown to be more successful in raising the concentration of
NPs in the TME, causing less heat to dissipate to the surrounding
tissue which can damage it.233 Heat dissipation to the sur-
rounding tissues is another important consideration, as it can
have an impact on the safety and effectiveness of hyperthermia
therapy. As the volume of the tumor grows, less heat is
dissipated, resulting in a greater temperature differential
between the tumor and the surrounding media, allowing for
the selective heating of the tumor, as more heat is carried away
by perfusion on the normal tissues.234–237 Due to all the
complex factors that have to be considered for hyperthermia,
advanced techniques and technologies for heat transfer model-
ing have been developed. The heat balance of the tissues was
first described by the bioheat equation proposed by Pennes’,
which is now a standard model for studying the temperature
distribution in tissues. This model states that the heat stored in
the tissue is equal to the balance between the heat generated by
metabolic activity and the heat dissipated by conduction and
convection.238,239 Beyond the Pennes’ bioheat model, others
have been developed, such as the local thermal equilibrium
(LTE) and local thermal non-equilibrium (LTNE) equations,
and dual-phase-lag bioheat model.239,240 The LTE and LTNE
models consider the existence of a porous medium that con-
sists of a solid matrix (i.e., tissue) and blood vessels that are in
thermal equilibrium or non-equilibrium, respectively. The
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LTNE model represents a more realistic situation since it
considers a temperature gradient between both phases.239–242

Pennes’, LTE, and LTNE models consider that the blood velocity
is infinite (based on Fourier’s law), meaning that when applying
heat, the temperature of a tissue changes immediately, which
does not happen in non-homogeneous tissues. The dual-phase-
lag (DPL) bioheat model considers that the temperature and heat
flux have a lag time. Consequently, this model focuses on the
micro-structural interactions and considers that the tissues and
blood can have different temperatures.239,240,243–245 Table 3 sum-
marizes the main advantages and disadvantages of each model,
as well as examples of the application of these models to predict
heat distribution in tumors.

When predicting hyperthermia effects in 3D in vitro tumor
models, the choice of the bioheat equation depends on the
specific characteristics of the tissue. For instance, a study
concluded that the DPL model can better predict heat transfer
in tissues with larger blood diameters, but when considering
tissues with micro-capillaries, the Pennes’ model and the DPL
model had similar performances.246 In another study, the
performance of the LTNE model with variable porosity and
the Pennes’ bioheat model with variable perfusion was com-
pared when simulating thermal ablation in tumor tissue, and it
was shown that the LTNE model was more accurate in predicting
heat distribution after comparing the results with in vivo
experiments.247 Although, due to its simplicity, the Pennes’
bioheat model has been the most used to study heat transfer
in biological tissues.248 In a balance between simplicity and
accuracy, the Pennes’ bioheat equation has undergone some
modifications over the years, aiming to predict heat distribution
in tumors as close as possible to an in vivo situation. Different
parameters, such as the direction of the blood flux, spatial and
temporal variations of the velocity of the blood, size, geometry,
and density of the vasculature, and the distribution of nanome-
dicines, have been considered.231,249–253 Fig. 3 shows the use of
advanced tumor models to better understand heat distribution,
particularly by varying the density of tumor vasculature (Fig. 3A1
and A2),254 and by using Fe3O4 MNPs for MH (Fig. 3B1–B4).255

Even though recent studies have been providing important
information, it is difficult to resemble a perfect in vivo situation
due to the complex and unpredicted variables, such as tumor
size or the geometry and density of the vasculature, that have a
huge influence on how the NPs and heat are distributed. More-
over, it is difficult to confirm the veracity of the obtained results
due to the lack of experiments performed in clinical settings.254

Currently, researchers are dedicated to improving mechanisms to
predict heat delivery in tissues by introducing variables such as the
size and morphology of the NPs.231 Significant advances in this
direction are expected in the upcoming years, especially consider-
ing that 3D hyperthermic simulations are an important tool to
accelerate the clinical translation of nano-hyperthermia.

Numerical simulation methods are a valuable resource for
hyperthermia treatment planning. These methods can help to
predict how the chosen treatment for the specific size and
location of the tumor can affect both tumor and healthy tissue,
and to adapt the heat and heating agents’ doses needed for T
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personalized treatment. Moreover, by comparing the outcomes of
these methods with the ones obtained from 3D in vitro models, it
is possible to validate these theoretical techniques for modulating
the tumor response to hyperthermia. These improvements, com-
bined with the increasing computational power and the advent of
artificial intelligence (AI) algorithms for simulation, are envi-
sioned to become a major part of the preclinical optimization/
validation process of hyperthermia therapies and of the research
to predict their effect on healthy tissues.239,256,257

4 Advances in preclinical screening of
hyperthermic nanomedicines in 3D
tumor models

The development of 3D tumor models has revolutionized the
field of cancer research and encouraged their application for
the screening of hyperthermic nanomedicines.14 By using these
models, it is expected to have a deeper understanding of the

interactions between hyperthermic nanomedicines and cancer cells,
as well as the influence of the TME on drug delivery, nanomedicines
distribution in the tumor, and therapeutic response. With a clear
understanding of these mechanisms, researchers can optimize
treatment strategies and develop more clinically relevant hyperther-
mic approaches for cancer therapy.14,267,268

This chapter aims to provide an overview of the recent
advances in the preclinical screening of hyperthermic nanome-
dicines using 3D tumor models, with a prominent role in PTT,
MH, and hyperthermia combined with conventional therapies.
By examining the cutting-edge research in this field, it is
expected to provide valuable insight into the potential of 3D
tumor models as powerful tools for preclinical screening,
allowing the identification of hyperthermic nanomedicines
with optimal therapeutic efficacy and safety profiles.

4.1 3D tumor models for photothermal nanomedicines screening

The emergence of 3D in vitro tumor models represents a
relatively recent development, and as such, numerous studies

Fig. 3 Simulations of heat distribution in 3D tumor models: (A1) three capillary models with low, medium, and high vascularization used to perform the
numerical studies, (A2) computational estimation of temperature distribution for three different tumor vasculature densities at five time points. The MNPs were
injected at constant rate for 30 minutes. Reprinted from ref. 254, Copyright (2022), with permission from Elsevier and (B1) designed model representing the
breast cup with the injecting needle, (B2) designed model enhancing the tumor and the normal tissue, (B3) 3D simulation of the temperature distribution in the
breast cup and (B4) 3D simulation of the necrotic tissue. Reprinted from ref. 255, Copyright (2020), with permission from Elsevier.
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are still dedicated to understanding the differences in the
hyperthermic response between 2D and 3D models. Compara-
tive studies evaluating the efficacy of hyperthermic nanomedi-
cines within monolayers and tumor spheroids revealed that 3D
models are more resistant to the treatment.269,270 Moreover, an
additional study showed that 2D monolayers needed less NPs
incubation time and had more efficiency in binding the NPs to
cells than 3D models, enhancing the importance of replacing
2D with 3D models for treatment parameters optimization,
aiming to obtain more relevant outcomes.271 More complex
models using microfluidic platforms to grow spheroids have
been focused on understanding the penetration, distribution,
and effectiveness of hyperthermic nanomedicines through
more complex 3D models. As an example, a microfluid system
consisting of PDMS was used to grow multicellular tumor
spheroids to evaluate the PTT performance of hollow Au nano-
shells modified with an anti-MUC1 aptamer (HGNs@anti-
MUC1) (Fig. 4A1–A3).272 Human lung epithelial carcinoma cells
(A549) and human breast adenocarcinoma cells (MCF-7) were
used to assemble the tumor spheroids. The tested nano-PTA

showed to be efficient in reducing the viability and size of
tumor spheroids after irradiation, which was more pronounced
with a double dose of irradiation with a 1 hour interval from the
first one (Fig. 4A4). The study also tested the nano-PTA in
spheroids of non-tumorous cell lines, and besides proving that
the internalization of the nanomedicine was less effective
compared to tumor spheroids, it was also observed that under
the same treatment conditions, non-tumorous spheroids exhib-
ited less pronounced effects, assuming the efficiency of
HGNs@anti-MUC1 to specifically treat tumors. Furthermore,
spheroids from different cell lines had different treatment
outcomes, reinforcing the fact that the response to hyperther-
mia is tissue-dependent.272

Treating brain tumors presents significant challenges as it
involves the risk of damaging surrounding healthy tissue,
which can lead to serious complications and low survival rates.
The non-invasive nature of hyperthermia, its potential for
selective tumor treatment, and the challenges posed by the
complexity of the brain TME and the blood–brain barrier have
encouraged the exploration of this therapy in 3D brain tumor

Fig. 4 Screening PTT nanomedicines in 3D in vitro tumor models for PTT: (A1) scheme showing the modification of HGNs with the anti-MUC1 aptamer,
(A2) microfluidic system used to implement the spheroids (I, III – inlets/outlets and II – vent hole), (A3) image of a chamber of the microsystem containing
spheroids, and (A4) spheroids viability and diameter submitted to one (PTTx1) and two (PTTx2) NIR doses, after 24 and 48 hours. Reprinted with
permission from ref. 272, Copyright (2019), with permission from Elsevier; (B1) scheme of the generation of 3D tumor spheroids using the drop-based
microfluidic device, (B2) Z-stack confocal laser scanning microscopy image of 3D tumor spheroids treated with rGO-BPEI-PEG (scale bar = 100 mm), (B3)
live/dead images of brain tumor spheroids before and after PTT (scale bar = 100 mm), and (B4) fluorescence microscopy images of brain tumor spheroids
with and without rGO-BPEI-PEG internalized, reprinted with permission from ref. 274, Creative Commons (CC) License 4.0 (https://creativecommons.
org/licenses/by/4.0/).
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spheroids.34,273 As an example, U87MG glioblastoma cells
spheroids generated in a PDMS microfluidic device (Fig. 4B1)
were used as a screening platform to evaluate a reduced
graphene oxide-branched polyethyleneimine-polyethylene
glycol (rGO-BPEI-PEG) nanocomposite for PTT.274 After
confirming the efficient uptake of the nano-PTAs in the brain
tumor spheroids (Fig. 4B2 and B4), a significant decrease in cell
viability was observed after PTT (Fig. 4B3).274 In another study,
macrophages were used as vehicles to transport gold–silica
nanoshells (AuNS) and gold nanorods (AuNR) to human glioma
(ACBT) spheroids.275 A better uptake was observed with the
AuNR due to their shape and smaller size, however, the AuNS
presented more efficiency than the AuNR in reducing the
spheroids volume after PTT, a difference that increased with
the increase in intensity of irradiation. The authors explained
these findings by the larger cross-sectional area of the AuNS that
resulted in greater efficiency in transforming light into heat.275

A recent study using 4T1 tumorspheres showed that cypate
(Cy)-loaded hyaluronic acid (HA)-black phosphorus nanosheets
(Cy@HBPN) were able to significantly suppress the growth of
the 3D models and inhibit their regenerative potential.276 After
proving the in vitro potential, a mouse xenograft tumor model
administered with Cy@HBPN showed to completely inhibit
tumor growth after laser irradiation, validating the in vitro
results.276 In another study, organoids were explored as testing
platforms to access black phosphorus quantum dots into exome
vector nanospheres (BEs) hyperthermic efficiency.277 BEs were
able to internalize cells, inhibit tumor progression, and suppress
angiogenesis. Further in vivo assessment in a nude mouse model
bearing a subcutaneous bladder tumor confirmed the ability of
BEs to inhibit tumor growth and recurrence, revealing BEs good
photothermal and targeting capability.277

Beyond demonstrating the feasibility of using PTT to replace
traditional methods by being suited to perform treatment in
tumors localized in deeper and sensitive parts of the body, such

as the brain, the reported studies showed that 3D in vitro
platforms are important tools to predict the ability of nano-
PTAs on penetrating and accumulating in the tumor, to under-
stand what NPs physicochemical properties can be modulated
(e.g., surface, size, shape modifications, or targeting ability) to
reach maximum retention of the agents at the tumor site
and improve the outcome of the treatment. Furthermore, 3D
platforms can enable the optimization of treatment parameters,
such as the intensity or duration of laser exposure, depending on
the type of tissue, location of the tumor, and TME, aiming to
guarantee the safety of the healthy tissue around the tumor.

4.2 3D tumor models for magnetic hyperthermia
nanomedicines screening

MH allows a high penetration depth and selectivity, which has
many benefits when the tumor is localized in sensitive tissues,
such as the brain, or more deeply in the body.87 Ongoing
research and development efforts are focused on optimizing
MNPs’ design and targeting strategies. As mentioned before,
iron oxide MNPs have been the most explored for MH, which is
why they are the most used MNPs for hyperthermia screening
in 3D tumor models. To explore the influence that the location,
amount, and heterogeneity of iron oxide MNPs have on MH, a
study was carried out to evaluate their performance for MH in
3D cell culture gels based on collagen of a murine macrophage
RAW-264.7 cell line.278 MNPs distribution within the model was
manipulated, namely: (i) the In Model had MNPs homoge-
neously localized only inside the cells, while (ii) the In&Out
model had MNPs heterogeneously localized inside and outside
the cells (Fig. 5A1 and A2). Results showed that AMF exposure
promoted the uptake of MNPs, that could be related to an
increase in collagen permeability. Furthermore, it was shown that
the cell death mechanisms triggered after treatment were depen-
dent on the iron concentration inside the cells. Additionally, the
heterogeneous distribution of particles in the In&Out setup was

Fig. 5 Screening MH nanomedicines in 3D in vitro tumor models: (A1) scheme of the two models used in this work: in and In&Out models; (A2) confocal
images evaluating the distribution of MNPs in both models, and (A3) cell death mechanisms for both models studied at 0 and 24 hours after the
treatment. Reprinted with permission from ref. 278, Copyright 2018 American Chemical Society.
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shown to decelerate the rate of cell death (Fig. 5A3).278 These
findings are extremely important since it was shown that the
distribution and concentration of MNPs in cells influence the
treatment, something accessible only using 3D models.

Several studies have also focused on assessing the effective-
ness of MNPs for MH, comparing the outcomes of 2D and 3D
screening in vitro platforms. As an example, SPIONs coated with
triarylphosphonium cation (TPP), a mitochondrial-targeting
molecule, were tested in liver tumor spheroids with HepG2
cells and 3T3 fibroblasts, and HepG2 monolayer cultures.279

Coating SPIONs with TPP allowed them to successfully target
the mitochondria, subsequently inhibiting its function and
inducing cell death. The uptake of the NPs in the spheroids
was lower than in the monolayers. In fact, the authors esti-
mated that a mature spheroid only contained B40% of cells in
contact with MNPs, which resulted in significant cell death at
the proliferative layer of the spheroid. Additionally, 3D spher-
oids were shown to be more resistant to treatment compared to
2D models, and cancer cells were found to be more sensitive to
heat than healthy cells when exposed to the same heating
conditions.279 Recently, other approach explored MNPs screen-
ing in patient-derived organoids.280 In this approach, pancrea-
tic ductal adenocarcinoma (PDAC) human-derived organoids
were incubated with SPIONs stabilized with a phospholipid-
bilayer and used to understand how these nanomedicines
penetrated into the 3D model. It was observed that the MNPs
were unable to be internalized, being only located in the
ECM surrounding the organoid. Furthermore, following MH
treatment, organoids viability was significantly lower at 2 hours,
when compared to that obtained at 24 hours post-treatment. The
authors hypothesized that this behavior could be related to a
short-term cytotoxicity caused by the treatment in this type of
tumor model. This study also showed how 2D models can be
inaccurate in predicting tumor responses and that different cell
lines from PDAC had different responses to MH treatment.280

Apart from demonstrating the efficiency of MH in eradicating
cancer cells within 3D cultures, the presented studies for MH
screening in 3D tumor models highlight the potential for
improved and targeted outcomes when coupling targeting agents
with MNPs. The mechanisms of cell death triggered can vary
based on the concentration of iron present in cells,278 and can
also depend on the properties of the MNPs, frequency, intensity of
the AMF, and type of tissue.118 Furthermore, the location of the
MNPs within the 3D tumor models was shown to influence the
efficiency of the treatment. Overall, 3D tumor models showed to
be suitable platforms to understand the diffusion mechanisms,
penetration, and efficiency of different nanomedicines for MH in
different treatment conditions and tissues.

4.3 3D tumor models for screening synergistic effects of
hyperthermic nanomedicines

Hyperthermia exhibits a prominent advantage in its potential
to synergistically enhance treatment efficacy when combined
with traditional cancer treatments, such as chemotherapy
and radiotherapy.281 Following thermal exposure,blood flow
and vascular permeability increase, leading to improved

drug uptake and distribution, and increased cellular stress.
Moreover, the interstitial fluid pressure decreases and the
mechanisms to repair DNA are inhibited, which prevents
irradiated cells from being repaired. Because of this, cancer
cells become more susceptible to radiation and chemotherapy
after heat treatment.282–284 Ongoing research with 3D in vitro
models is being held to investigate the synergistic effects
of hyperthermia when combined with traditional treatments,
aiming to find optimal protocols and strategies for integrating
heat therapies into multidisciplinary cancer treatment appro-
aches. In combinational PTT and chemotherapy (PTT-CHT),
nano-agents can serve as multifunctional platforms. Besides
being selective heating sources, they can also function as carriers
for chemotherapeutic drugs, enabling controlled and localized
drug delivery to the tumor site. The heat generated by the nano-
heating agents can enhance drug release from the carriers,
improving drug penetration into the tumor and increasing
therapeutic efficacy.285,286 A study reported the use of gold
nanoroses (AuNs) loaded with doxorubicin (DOX), ICG, and a
naive chimeric peptide B-anti G (AuNDIPs) for glioma targeting
in C6 glioma cells and 3D spheroids.287 AuNDIPs were efficiently
uptaken both in 2D and 3D models, which was facilitated by the
peptide B-anti G. After laser exposure, the authors observed
maximum cell death in spheroids treated with AuNDIPs when
compared to spheroids treated only with AuNs or a DOX-ICG and
peptide Mix solution (Fig. 6A1), which was due to the combina-
tional effect of the DOX, ICG, and the peptide.287 In another
study, researchers developed gold nanospheres within silica
nanocapsules (aAuYSs) to perform PTT-CHT in A2780 ovarian
cancer spheroids.288 It was shown that only the combination of
NIR radiation and aAuYSs significantly reduced the viability of
the spheroids (Fig. 6B1). Furthermore, a DOX-resistant cell line
(A2780-R) was used to evaluate the synergistic effect of aAuYSs
combined with DOX and proved that the number of dead cells
was more significant when performing both treatments. This
was also confirmed in an in vivo xenograft tumor model since
only the combination of treatments was capable of inhibiting
tumor growth (Fig. 6B2).288

Mesenchymal stem cells (MSCs) have been explored as drug
vehicles due to their tropism (i.e., the ability to travel to
damaged tissues, such as tumors), which has already been
demonstrated in several studies.289,290 Moreover, it was also
demonstrated that hyperthermia can improve the ability of
stem cells to penetrate tumors, making them a suitable plat-
form to transport drugs and NPs to tumors to promote localized
hyperthermia therapy.291 In this scope, a study used monotypic
(only one cell type) and heterotypic (multiple co-cultured cell
types) 3D breast cancer spheroids to evaluate the potential of
human bone-marrow-derived MSCs (hBM-MSCs) as nano-
carriers of polydopamine NPs dual-loaded with ICG and DOX
(PDA-ICG-DOX) and to evaluate their efficiency for PTT-CHT
(Fig. 6C1).174 The authors observed that the MSCs were able to
adhere to the tumor models efficiently. The combination of PTT
and chemotherapy led to a decrease in spheroids viability,
which was more pronounced with an increased number of
PDA-ICG-DOX NPs loaded MSCs (Fig. 6C2). It was concluded
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that the heterotypic spheroids were more resistant to
treatment than the monotypic spheroids and that the use of
MSCs as nanocarriers was more efficient in reducing the
viability of tumors than the introduction of free nanomedicines
in the 3D tumor models.174 These findings are important
for understanding how a heterotypic environment can confer

more resistance to treatment, mimicking a more in vivo-like
scenario.

Recently, a study intending to understand the feasibility of
macrophages in transporting SPIONs coupled with a toxin
(T-SPIONs) to KSHV-infected human endothelial cells (K-EC) spher-
oids for a combination of MH and chemotherapy (MH-CHT) was

Fig. 6 Screening combinational hyperthermia and chemotherapy in 3D in vitro tumor models: (A1) live/dead confocal images of control untreated C6
spheroids, and spheroids treated with AuN, AuNDIP, and Mix (DOX-ICG and B-anti G)), with and without laser exposure (scale bar = 100 mm). Reprinted
from ref. 287, Copyright (2022), with permission from Elsevier. (B1) Confocal images of A2780 cells and spheroids: (a) and (b) non-treated with aAuYs
under laser irradiation; (c) and (d) treated with aAuYS without laser irradiation, and (e) and (f) treated with aAuYS under laser irradiation (scale bars in the
upper and lower panels represent 6 and 20 mm, respectively), and (B2) infrared thermal images of a mice treated with DOX and aAuYS submitted to
NIR laser, Reprinted with permission from ref. 288. Copyright 2021 American Chemical Society; (C1) scheme representing the performed procedure of
hBM-MSCs NPs delivery in 3D spheroids followed by laser irradiation; (C2) heat map enhancing the influence of the number of MSCs loaded with PDA-
ICG-DOX NPs in 3D spheroids viability, 3 days after NIR laser treatment (irradiation (NIR +), and without irradiation (NIR �)). Reprinted with permission
from ref. 174, Copyright (2021), with permission from Elsevier; (D1) scheme representing the incorporation of macrophage loaded with SPIONs into
cancer cells and its effect when submitted to an AMF; (D2) confocal microscopy showing the integration of J774a.1 macrophages (red) in K-EC spheroids
(green) (scale bar = 50 mm); and (D3) metabolic activity of re-cultured spheroids containing T-SPION loaded macrophages with or without AMF
application after 48 h of treatment. Reprinted with permission from ref. 292, Copyright (2019), with permission from Elsevier.
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carried out (Fig. 6D1 and D2).292 Even without being submitted
to an AMF, after 48 hours in culture, spheroids containing
T-SPIONs presented a significant loss of structure, whereas
spheroids with only SPIONs or without SPIONs did not show
any significant structural change. The spheroid’s structure was
even more compromised after treatment with AMF, being more
evident when the toxin was coupled to the SPIONs, accompa-
nied by a decrease in the metabolic activity of spheroids
(Fig. 6D3).292

Hyperthermia before radiotherapy was shown to increase
the efficiency of the treatment since heat can selectively target
and sensitize cancer cells, making them more vulnerable to
radiation-induced DNA damage and cell death. Consequently,
hyperthermia can improve tumor response, overcome radio-
resistance, and potentially reduce the side effectsassociated
with high radiation doses.293 In an elegant approach, copper
sulphide NPs (CuS NPs) were associated at the surface of
upconversion NPs (UCNPs) due to manganese dioxide (MnO2)
coating, forming multifunctional nanoplatforms (UCCM).294

Formulated UCCMs were internalized in mouse colon (CT26)
spheroids to evaluate internalization in a solid tumor model.
It was observed that after 4 hours, CuS NPs were at the center of
the spheroid. This allowed MnO2 to release Mn2+ and oxygen,
consequently reducing hypoxia and resistance to radiation.
Furthermore, the released Mn2+ was shown to be a proper
contrast agent for MRI, allowing real-time control of the tumor
site that can be helpful for treatment guidance. The therapeutic
effect of the UCCM NPs was then evaluated in mice bearing a
human liver tumor, which revealed that the tumors shrank
compared to non-treated tumors and that the normal tissues
were minimally affected. Moreover, the combination of the

treatments was far more effective in destroying the cancer cells
than the treatments alone.294

Studies using 3D in vitro models for screening nanomedicines
for a combination of hyperthermia and radiotherapy are still a
novel approach, thus accounting for the lack of literature reports
on this subject. Recent studies continue to rely on standard 2D
in vitro cultures,296–299 which is also important, but there is a
need to embrace novel and innovative in vitro testing platforms
that can more closely recapitulate human tissues response to
treatments and ultimately contribute to understanding the
underlying mechanisms that contribute to the observed syner-
gistic effects that can accelerate translation to clinical practice.
Table 4 showcases studies reporting the application of 3D tumor
models as screening platforms to evaluate nano-heating agents
for hyperthermia as a stand-alone or combinatory treatment.
The examples reported in this section have provided valuable
insights into the synergistic interactions between hyperthermia
and traditional cancer treatments. This approach allows
improved drug penetration, enhanced cancer cell killing, mod-
ulation of drug resistance mechanisms, and reduction of the
radiation dose and/or chemotherapeutic agents, which is very
important to guarantee the safety of healthy tissues. Optimizing
treatment parameters, such as exposure time, and nano-
medicine or radiation doses, remains crucial. Alongside, recent
advances in the combination of hyperthermia with modern and
more sophisticated therapies, such as immunotherapy, have
been shown to provide better immune recognition and destruc-
tion of the tumor since the heat induced by hyperthermia can
activate and boost immune cells’ anti- tumoral activity.125

Besides being used to predict the efficiency of the treatment,
3D in vitro models can be useful platforms to assist the design

Fig. 7 Developments in hyperthermia for clinical translation: progressive advancements of hyperthermia treatments, 3D tumor models, and non-
invasive thermometry techniques that can accelerate the translation of hyperthermia to clinical practice.
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process of the nano-agents for parameters such as size, mor-
phology, coating, stabilization, and targeting optimization, in a
specific and relevant tumor context. A study using colorectal
cancer spheroids was carried out to understand how the inter-
nalization of NPs was affected by their size, surface, and bulk
characteristics.300 The authors considered poly(styrene) NPs
with different sizes and different coatings and concluded that
unmodified NPs with smaller sizes had more efficiency in
accumulating at the core of the spheroids. Regarding surface
charge, it was shown that better penetration ability was
achieved with positively charged NPs, due to the presence of
negatively charged elements in the ECM that can repel negative
charges. Moreover, it was discussed that lower molecular
weight NPs have greater efficiency in penetrating tumors.300

In another study, the influence of the shape of the NPs on
penetrating 3D HeLa tumor spheroids was assessed.301 Sphere,
long rod, and short rod-shaped NPs were studied, and the
uptake efficiency in spheroids was shown to be strongly depen-
dent on the length-to-width ratio. The authors concluded that
NPs with higher length-to-width ratios had more difficulty
penetrating tumors than those with lower length-to-width
ratios. Additionally, the uptake efficiency was different when
considering 3D tumor spheroids and monolayers.301 The pre-
sented studies emphasize the importance of considering the
physicochemical properties of NPs during the design phase,
aiming to optimize their hyperthermic efficiency.

5. Conclusions and future challenges

With the developments achieved in the last few years, organotypic
3D models have emerged as feasible biomimetic platforms,
capable of replacing the standard 2D models that continue to
be widely explored for screening hyperthermic nanomedicines.
These advanced biomimetic models enable a closer examination
of the effects induced by heat within tumors, taking into con-
sideration factors such as tri-dimensionality, size, composition of
the TME, availability of nutrients and oxygen, intercellular signal-
ing, and nanomedicines properties. The tissue-specific character-
istics of 3D tumor models that allow the incorporation of several
ECM components and other cell types can help in the design of
cell-specific cancer platforms to optimize treatment outcomes.
Due to the inherent unpredictability, complexity, and specificity of
tumors for each patient, this approach allows for personalized
treatment models that offer improved accessibility and predictive
capabilities in accessing the response to hyperthermia therapies.
Despite these improvements at the preclinical stage, the proto-
cols of hyperthermic procedures must be standardized, as well
as the characterization techniques.302,303 As discussed above
(Tables 1, 2 and 4), highly relevant information regarding treat-
ment procedures is lacking from literature reports, which may
impede the establishment of standardized protocols.

It is pertinent to highlight the importance of considering the
design of more complex cellular 3D in vitro structures (i.e.,
regarding ECM components, cellular types, incorporation of
vascularization and diffusion mechanisms, etc.) in the future,

aiming to provide more realistic screening platforms. As it was
understood by the reported studies, spheroids are the predo-
minant model as they are the most simple and cost-effective
testing platforms. Certainly, organoids have gained increasing
attention recently, offering more complexity and a more in vivo-
predictive response to treatments. This development aims to
facilitate the translation of hyperthermic nanomedicines into
clinical practice. Furthermore, combining spheroids or orga-
noids with tumor-on-a-chip platforms and 3D bioprinting
techniques can increase the complexity of the models, as these
allow to introduce components of the tumor vasculature and
flow dynamics/mechanisms. Also, some studies reported here
provided both 3D in vitro and in vivo assessment of the
hyperthermic nanomedicines, which enables to confirm that
these models can provide closer in vivo responses and conse-
quently contribute to accelerating hyperthermic nanotherapies
preclinical validation and subsequent transition to clinical
practice.

Even though hyperthermia demonstrates notable efficacy
in tumors, its widespread clinical implementation is being
delayed by prominent limitations, including inadequate pene-
tration and heterogeneous distribution of heating agents in
tumors, and insufficient control over temperature regulation at
the tumor site. As shown and discussed herein, researchers
have been focused on studying different carriers and targeting
agents capable of improving the internalization of heating
agents in the tumor, which have been shown to provide a more
localized treatment with better therapeutic outcomes.
Approaches that involve focalized delivery are also envisioned
to be further explored in the future.

Regarding temperature control, there is a need to have a
reliable method for real-time assessment, thereby mitigating
damage to healthy tissues around the tumor mass. However,
invasive devices (e.g., optical fibers and thermocouples) cur-
rently represent the prevailing method for temperature control
in hyperthermia procedures.304 As noted in the examples
documented in Table 4, a substantial number of studies did
not present the temperature that the 3D models reached during
the treatment, which can be due to the difficulty in controlling
the temperature in real-time. Currently, non-invasive thermo-
metry systems based on MRI,305,306 magnetic particle imaging
(MPI),307 or fluorescence thermometry308,309 are being devel-
oped, representing an outstanding breakthrough in the field by
allowing temperature control in real-time and in a minimally
invasive way. However, 3D tumor models are challenging tools
when it comes to obtaining temperature maps with adequate
spatial resolution and for imaging. With increasing tumor size,
light has less penetration ability, as it gets more scattered.
Consequently, the ability to acquire temperature maps or high-
resolution images declines, particularly considering deeper
regions within the tumor. Furthermore, larger tumor sizes
can be a barrier to prompt acquisition of images, thus com-
promising the real-time control of the heat therapy.23,304,310 To
address these limitations, researchers have been exploring
strategies to confer nanomedicines with theranostic capabil-
ities, i.e., the ability to perform an image-guided therapy.311–313
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By using nanomedicines for temperature control, the problem
of spatial resolution can be addressed, but imaging techniques
capable of capturing such fine-scale response are needed.310

MRI has a spatial resolution in the order of the millimeters,314

which can be crucial to provide high-resolution temperature
maps, as the ones obtained in.315,316 By tuning the transition
temperature of MNPs to room temperature, it is possible to use
those nanomaterials as temperature sensors in the range of
hyperthermia.317 Consequently, these agents can be simulta-
neously used as contrast agents and thermometers for MRI
during hyperthermia treatments. However, MRI-based thermo-
metry still faces challenges with low signal-to-noise ratio and
inaccurate temperature calibrations.318

Integrating advancements in 3D in vitro tumor models with
emerging hyperthermia techniques and non-invasive 3D ther-
mometry systems could mitigate the disparities in readouts
between preclinical and clinical trials for screening advanced
anti-cancer therapeutics (Fig. 7). This convergence of technol-
ogies holds promise for enhancing the translational relevance
of treatments, foreseeably facilitating their widespread use in
clinical practice.
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J. Baran, Applications of Noble Metal-Based Nanoparticles
in Medicine, Int. J. Mol. Sci., 2018, 19, 4031.

77 Z. Lv, S. He, Y. Wang and X. Zhu, Noble Metal Nanomater-
ials for NIR-Triggered Photothermal Therapy in Cancer,
Adv. Healthcare Mater., 2021, 10, 2001806.

78 B. Zhou, Y. Li, G. Niu, M. Lan, Q. Jia and Q. Liang, Near-Infrared
Organic Dye-Based Nanoagent for the Photothermal Therapy of
Cancer, ACS Appl. Mater. Interfaces, 2016, 8, 29899–29905.

79 S. Luo, E. Zhang, Y. Su, T. Cheng and C. Shi, A review of
NIR dyes in cancer targeting and imaging, Biomaterials,
2011, 32, 7127–7138.

80 X. Zheng, F. Zhou, B. Wu, W. R. Chen and D. Xing,
Enhanced Tumor Treatment Using Biofunctional Indocya-
nine Green-Containing Nanostructure by Intratumoral or
Intravenous Injection, Mol. Pharmaceutics, 2012, 9, 514–522.

81 H.-J. Yoon, H.-S. Lee, J.-Y. Lim and J.-H. Park, Liposomal
Indocyanine Green for Enhanced Photothermal Therapy,
ACS Appl. Mater. Interfaces, 2017, 9, 5683–5691.

82 M. Zheng, P. Zhao, Z. Luo, P. Gong, C. Zheng, P. Zhang,
C. Yue, D. Gao, Y. Ma and L. Cai, Robust ICG Theranostic
Nanoparticles for Folate Targeted Cancer Imaging and
Highly Effective Photothermal Therapy, ACS Appl. Mater.
Interfaces, 2014, 6, 6709–6716.

83 X. Xu, H. Wu, Y. Yang, B. Liu, J. Tian, H. Bao and T. Liu,
PLGA-coated methylene blue nanoparticles for photoa-
coustic imaging and photodynamic/photothermal cas-
caded precisely synergistic therapy of tumor, RSC Adv.,
2022, 12, 1543–1549.

84 B. He, H. Hu, T. Tan, H. Wang, K. Sun, Y. Li and Z. Zhang,
IR-780-loaded polymeric micelles enhance the efficacy of
photothermal therapy in treating breast cancer lymphatic
metastasis in mice, Acta Pharmacol. Sin., 2018, 39, 132–139.

85 K. Wang, Y. Zhang, J. Wang, A. Yuan, M. Sun, J. Wu and
Y. Hu, Self-assembled IR780-loaded transferrin nano-
particles as an imaging, targeting and PDT/PTT agent for
cancer therapy, Sci. Rep., 2016, 6, 27421.

86 M. Liu, P. Zhang, L. Deng, D. Guo, M. Tan, J. Huang,
Y. Luo, Y. Cao and Z. Wang, IR780-based light-responsive
nanocomplexes combining phase transition for enhancing
multimodal imaging-guided photothermal therapy, Bioma-
ter. Sci., 2019, 7, 1132–1146.

87 S. K. Sharma, N. Shrivastava, F. Rossi, L. D. Tung and N. T. K.
Thanh, Nanoparticles-based magnetic and photo induced
hyperthermia for cancer treatment, Nano Today, 2019,
29, 100795.

88 X. Yu, S. Ding, R. Yang, C. Wu and W. Zhang, Research
progress on magnetic nanoparticles for magnetic induc-
tion hyperthermia of malignant tumor, Ceram. Int., 2021,
47, 5909–5917.

89 J. Pearce, A. Giustini, R. Stigliano and P. Jack Hoopes,
Magnetic Heating of Nanoparticles: The Importance of
Particle Clustering to Achieve Therapeutic Temperatures,
J. Nanotechnol. Eng. Med., 2013, 4, 110071.

90 A. E. Deatsch and B. A. Evans, Heating efficiency in
magnetic nanoparticle hyperthermia, J. Magn. Magn.
Mater., 2014, 354, 163–172.

91 D. Egea-Benavente, J. G. Ovejero, M. D. Morales and
D. F. Barber, Understanding MNPs Behaviour in Response
to AMF in Biological Milieus and the Effects at the Cellular
Level: Implications for a Rational Design That Drives
Magnetic Hyperthermia Therapy toward Clinical Imple-
mentation, Cancers, 2021, 13, 4583.

92 M. Osaci and M. Cacciola, Specific loss power in super-
paramagnetic hyperthermia: nanofluid versus composite,
IOP Conf. Ser.: Mater. Sci. Eng., 2017, 163, 12008.

93 G. Vallejo-Fernandez, O. Whear, A. G. Roca, S. Hussain,
J. Timmis, V. Patel and K. O’Grady, Mechanisms of
hyperthermia in magnetic nanoparticles, J. Phys. D: Appl.
Phys., 2013, 46, 312001.

94 P. Das, M. Colombo and D. Prosperi, Recent advances in
magnetic fluid hyperthermia for cancer therapy, Colloids
Surf., B, 2019, 174, 42–55.

95 V. Vilas-Boas, F. Carvalho and B. Espiña, Magnetic
hyperthermia for cancer treatment: Main parameters
affecting the outcome of in vitro and in vivo studies,
Molecules, 2020, 25, 1–30.

96 D. Ortega and Q. A. Pankhurst, Magnetic hyperthermia,
Nanoscience, 2013, 1, 60–88.

97 Q. A. Pankhurst, J. Connolly, S. K. Jones and J. Dobson,
Applications of magnetic nanoparticles in biomedicine,
J. Phys. D: Appl. Phys., 2003, 36, R167–R181.

98 I. Raouf, S. Khalid, A. Khan, J. Lee, H. S. Kim and
M.-H. Kim, A review on numerical modeling for magnetic
nanoparticle hyperthermia: Progress and challenges,
J. Therm. Biol., 2020, 91, 102644.

99 H. Fatima, T. Charinpanitkul and K.-S. Kim, Fundamentals
to Apply Magnetic Nanoparticles for Hyperthermia Ther-
apy, Nanomaterials, 2021, 11, 1203.

100 A. Millan, A. Urtizberea, N. J. O. Silva, F. Palacio, V. S. Amaral,
E. Snoeck and V. Serin, Surface effects in maghemite nano-
particles, J. Magn. Magn. Mater., 2007, 312, L5–L9.

101 C. L. Dennis and R. Ivkov, Physics of heat generation using
magnetic nanoparticles for hyperthermia, Int. J. Hyperthermia,
2013, 29, 715–729.

102 A. G. Kolhatkar, A. C. Jamison, D. Litvinov, R. C. Willson
and T. R. Lee, Tuning the Magnetic Properties of Nano-
particles, Int. J. Mol. Sci., 2013, 14, 15977–16009.

103 H. Shirzadfar, M. Nadi, D. Kourtiche, S. Yamada and
T. Hauet, Needle-type GMR sensor to estimate the mag-
netic properties of diluted ferrofluid for biomedicine
application, Irbm, 2015, 36, 178–184.

104 A. K. Gupta and M. Gupta, Synthesis and surface engineer-
ing of iron oxide nanoparticles for biomedical applica-
tions, Biomaterials, 2005, 26, 3995–4021.

105 S. Prijic, J. Scancar, R. Romih, M. Cemazar, V. B. Bregar,
A. Znidarsic and G. Sersa, Increased cellular uptake of
biocompatible superparamagnetic iron oxide nano-
particles into malignant cells by an external magnetic
field, J. Membr. Biol., 2010, 236, 167–179.

Nanoscale Horizons Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

3.
07

.2
02

5 
05

:3
0:

05
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3nh00305a


This journal is © The Royal Society of Chemistry 2024 Nanoscale Horiz., 2024, 9, 334–364 |  357

106 X. Chu, J. Yu and Y. L. Hou, Surface modification of
magnetic nanoparticles in biomedicine, Chin. Phys. B,
2015, 24, 014704.

107 H. Aslam, S. Shukrullah, M. Y. Naz, H. Fatima, H. Hussain,
S. Ullah and M. A. Assiri, Current and future perspectives
of multifunctional magnetic nanoparticles based con-
trolled drug delivery systems, J. Drug Delivery Sci. Technol.,
2022, 67, 102946.

108 B. Dorjsuren, B. Chaurasiya, Z. Ye, Y. Liu, W. Li, C. Wang,
D. Shi, C. E. Evans, T. J. Webster and Y. Shen, Cetuximab-
Coated Thermo-Sensitive Liposomes Loaded with Magnetic
Nanoparticles and Doxorubicin for Targeted EGFR-Expressing
Breast Cancer Combined Therapy, Int. J. Nanomed., 2020, 15,
8201–8215.

109 A. Toro-Cordova, M. Flores-Cruz, J. Santoyo-Salazar,
E. Carrillo-Nava, R. Jurado, P. Figueroa-Rodriguez,
P. Lopez-Sanchez, L. Medina and P. Garcia-Lopez, Lipo-
somes Loaded with Cisplatin and Magnetic Nanoparticles:
Physicochemical Characterization, Pharmacokinetics, and
In-Vitro Efficacy, Molecules, 2018, 23, 2272.

110 L. Tavano, C. Oliviero Rossi, N. Picci and R. Muzzalupo,
Spontaneous temperature-sensitive Pluronics based nio-
somes: Triggered drug release using mild hyperthermia,
Int. J. Pharm., 2016, 511, 703–708.

111 R. Juneja and I. Roy, Iron oxide-doped niosomes as drug
carriers for magnetically targeted drug delivery, Int.
J. Nanomed., 2018, 13, 7–9.

112 P. S. Zangabad, S. Mirkiani, S. Shahsavari, B. Masoudi,
M. Masroor, H. Hamed, Z. Jafari, Y. D. Taghipour,
H. Hashemi, M. Karimi and M. R. Hamblin, Stimulus-
responsive liposomes as smart nanoplatforms for drug
delivery applications, Nanotechnol. Rev., 2018, 7, 95–122.

113 C. M. Wells, M. Harris, L. Choi, V. P. Murali, F. D. Guerra
and J. A. Jennings, Stimuli-Responsive Drug Release from
Smart Polymers, J. Funct. Biomater., 2019, 10, 34.

114 K. S. Joshy, R. Augustine, A. Mayeen, S. M. Alex, A. Hasan,
S. Thomas and H. Chi, NiFe2O4/poly(ethylene glycol)/
lipid–polymer hybrid nanoparticles for anti-cancer drug
delivery, New J. Chem., 2020, 44, 18162–18172.

115 A. Mohanty, S. Uthaman and I.-K. Park, Utilization of
Polymer-Lipid Hybrid Nanoparticles for Targeted Anti-
Cancer Therapy, Molecules, 2020, 25, 4377.
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