Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

We report, for the first time, the detailed dynamics of dissociative electron attachment to the atmospherically important chlorine dioxide (OClO) molecule exploring all the product anion channels. Below 2 eV, the production of vibrationally excited OCl dominates the DEA process whereas at electron energies greater than 2 eV, three-body dissociation is found to result in O and Cl production. We find that the internal energy of OCl and the kinetic energy of Cl are large enough for them to be relevant in the ozone-depleting catalytic cycle and more investigations on the reaction of these anions with ozone are necessary to completely understand the role of DEA to OClO in ozone depletion. These results also point to an urgent need for comprehensive theoretical calculations of the DEA process to this atmospherically important molecule.

Graphical abstract: DEA dynamics of chlorine dioxide probed by velocity slice imaging

Page: ^ Top