Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

In the past twenty years, membrane-less microfluidic fuel cells (M-MFCs) have undergone a rapid development as emerging chip-based power sources. They possess enormous advantages compared to congeneric membrane-separated micro fuel cells, including low costs, simple structures, superior flexibility, and the absence of membrane-related issues. As a promising micro power source, the technology has undergone significant progress towards providing an affordable solution for powering chip-based microsystems. This review provides a broad and balanced insight into the route towards performance enhancement, starting with a general description of the technology. We analyse the power-generation properties with respect to the thermodynamics and electrochemical kinetics, including fuel/oxidant type, acid–base properties, operating temperature, and electro-catalytic reactions. Moreover, we provide much needed insight into the charge and mass transport phenomena, examining the influence of electron and ion transport, reactant concentration, fuel/electrolyte flow rate, gas–liquid two-phase flow, and the cell design based on various electrode structures and a virtual membrane. Finally, we discuss the open challenges and briefly provide guidance for future industrial M-MFCs’ applications.

Graphical abstract: Route towards high-performance microfluidic fuel cells: a review

Page: ^ Top