Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Sustainable polymers from biomass with a nonhydrolytic backbone are highly desirable because they meet performance requirements. However, their inert nature hinders chemical recycling under mild conditions. In this work, we report a series of recyclable lignin-based sustainable polymers with an all-hydrocarbon backbone showing excellent thermal stability (decomposition temperature up to 380 °C) and tunable mechanical properties. These renewable polyolefins from lignin can be depolymerized back to pristine monomers with a quantitative (>90%) recovery rate under gentle heating (50 °C) by using a Grubbs II catalyst within several minutes. These polyolefins are prepared by the ring-opening metathesis polymerization (ROMP) of cyclooctene with a trans-dioxolane ketal installed at the 5,6-positions and lignin derivatives as pendants. The additional fused ring significantly reduces the ring-strain energy of the cyclooctene monomer to ∼5.0 kcal mol−1, inducing the resulting polymer to be depolymerizable to establish a closed-loop life cycle.

Graphical abstract: Closed-loop recycling of lignin-based sustainable polymers with an all-hydrocarbon backbone

Page: ^ Top