Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Emerging technologies, such as artificial intelligence (AI) and big data, are driving the exponential growth of data traffic in fiber-optic communication networks. This surge in data transmission demands high-speed optical transceivers capable of handling the increased workload. Electro-optic (EO) modulators, which utilize the electro-optic effect to encode electrical signals into optical carriers, play a critical role in facilitating high-speed optical transceivers. However, achieving both high-speed (bandwidth >100 GHz) and high-efficiency (half-wave voltage Vπ < 1 V) modulation poses significant challenges with commercially available silicon and indium phosphide electro-optic modulators due to inherent limitations in material properties. To overcome these limitations, Pockels electro-optic materials have emerged as promising candidates for next-generation high-speed and high-efficiency EO modulation. These materials exhibit femtosecond or attosecond response times for the linear electro-optic effect. In this manuscript, we highlight recent advancements in two prominent Pockels materials: organic poled polymers (also known as electro-optic polymers or EOP) and inorganic thin-film lithium niobate (TFLN). We summarize their unique material properties and explore their performance in electro-optic modulators using various configurations. Additionally, we discuss the fundamental limitations and practical challenges associated with these materials. This perspective might shed light on the potential of Pockels electro-optic materials for achieving high-speed and high-efficiency EO modulation, while also outlining areas that require further investigation and improvement.

Graphical abstract: Perspectives of thin-film lithium niobate and electro-optic polymers for high-performance electro-optic modulation

Page: ^ Top