Novel approach to monitor local tissue ischemia associated with pressure ulcers using an optical fibre carbon dioxide sensor†
Abstract
In this paper, we describe the development of a novel approach to monitor local tissue ischemia associated with pressure ulcer using an optical fibre carbon dioxide sensor. Carbon dioxide (CO2) is a potential biomarker for local tissue ischemia associated with pressure ulcer (PU) formation. Skin CO2 measurement during loading could provide an earlier indicator for pressure induced tissue damage. This study presents a reflection mode optical fibre CO2 sensor (OFCS) that was fabricated and evaluated for measuring skin CO2 during mechanical loading. The optical fibre tip was coated with organically modified silica gel (ormosil) film (thickness 7.23 ± 0.52 μm) containing thymol blue using a dip coating process. Thymol blue has an absorption peak at a wavelength of ~600 nm with an amplitude proportional to CO2 concentration. The OFCS had a typical response time of approximately 60 seconds and a recovery time of 400 seconds for a 0–5.5% CO2 range. OFCSs were tested on the human skin of six healthy volunteers with corresponding CO2 peak values ranging from 145 ppm to 429 ppm with a percent error range of 6–32.2%. The increase in CO2 emitted from the skin during loading offers future promise for alerting the early stage of PU formation.