Mechanics control the proliferation of diatoms entrapped in hydrogels†
Abstract
The proliferation of microorganisms in hydrogels is crucial for the design of engineered living materials and biotechnological processes, and may provide insights into cellular growth in aquatic environments. While the mechanical properties of the gel have been shown to affect the division of entrapped cells, research is still needed to understand the impact and the origin of mechanical forces controlling the growth of microorganisms inside hydrogels. Using diatoms as model microorganisms, we investigate the viability, time to division and growth dynamics of cells entrapped in agar hydrogels with tuneable mechanical properties. Cell culture experiments, confocal optical microscopy and particle tracking velocimetry are performed to uncover the role of stress relaxation and residual stresses in the gel and how these affect diatom proliferation. Our experiments reveal that the interplay between the internal pressure of the dividing cell and the mechanical response of the hydrogel control the proliferation behaviour of the entrapped diatoms. By providing quantitative guidelines for the selection of hydrogels for the entrapment and growth of microorganisms, this study offers new insights on the design of living materials for established and emerging biotechnologies.
- This article is part of the themed collection: Soft Matter Open Access Spotlight