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Ovarian cancer is the most lethal gynecological malignancy, owing to the fact that most cases are diag-

nosed at a late stage. To improve prognosis and reduce mortality, we must develop methods for the early

diagnosis of ovarian cancer. A step towards early and non-invasive cancer diagnosis is through the utiliz-

ation of extracellular vesicles (EVs), which are nanoscale, membrane-bound vesicles that contain proteins

and genetic material reflective of their parent cell. Thus, EVs secreted by cancer cells can be thought of

as cancer biomarkers. In this paper, we present gold nanohole arrays for the capture of ovarian cancer

(OvCa)-derived EVs and their characterization by surface-enhanced Raman spectroscopy (SERS). For the

first time, we have characterized EVs isolated from two established OvCa cell lines (OV-90, OVCAR3), two

primary OvCa cell lines (EOC6, EOC18), and one human immortalized ovarian surface epithelial cell line

(hIOSE) by SERS. We subsequently determined their main compositional differences by principal com-

ponent analysis and were able to discriminate the groups by a logistic regression-based machine learning

method with ∼99% accuracy, sensitivity, and specificity. The results presented here are a great step

towards quick, facile, and non-invasive cancer diagnosis.

1. Introduction

In 2021, ovarian cancer is estimated to be the fifth most lethal
cancer in the United States and the most lethal gynaecological
malignancy with 13 770 projected deaths.1 The 5-year survival
rate for women diagnosed with ovarian cancer is 47%.2,3

However, ovarian cancer usually presents at a late stage when
the 5-year relative survival rate is 27%, and few cases are diag-
nosed when the tumour is localized with a 5-year relative survi-
val rate of 92%.4 The high mortality rate of ovarian cancer is
due to the diagnostic delay arising from the lack of early
disease warning signs as well as the lack of early ovarian

cancer screening options.3 There is a need for the development
of non-invasive approaches for the diagnosis of ovarian
cancer, particularly at the early stage, which can be achieved
by the characterization of extracellular vesicles (EVs) and the
analysis of their biomarkers.

EVs are a complex group of membrane-bound vesicles
secreted by all cells and found in bodily fluids.5,6 EVs are gen-
erally classified into three groups (exosomes, microvesicles,
and apoptotic bodies) based on their size and mechanism of
formation.6 Exosomes, which have a diameter of 30–150 nm,
are generated within endosomal compartments and released
by the fusion of multivesicular bodies with the plasma
membrane.7,8 Exosomes are enriched in tetraspanins (e.g.,
CD9, CD63, CD81) or membrane proteins that are involved in
exosome release and sorting of cargo molecules.9

Microvesicles and apoptotic bodies, with diameters of
100–1000 nm and 1–5 μm, respectively, both bud directly from
the plasma membrane, but the latter is released by cells under-
going apoptosis.7,10 Microvesicles also include a subtype of
EVs called oncosomes, which are EVs released by cancer cells.
The presence of larger oncosomes (1–10 μm) has been impli-
cated in driving metastatic spread through integrin signalling
regulation.11 EVs, particularly exosomes and microvesicles,
play an important role in intercellular communication via the
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transfer of proteins and RNA.10,12 Furthermore, EVs are
involved in physio-pathological activities including cancer pro-
gression by mediating crosstalk between tumour and stromal
cells.9,13 Cancer cells have additionally been associated with
an increase in EV production in comparison to normal cells,
which could be related to the specific conditions of the
tumour microenvironment.9 Since EVs carry complex biologi-
cal information from their parent cells, they are particularly
interesting in cancer research as they can be exploited as
cancer biomarkers.14,15

Surface-enhanced Raman spectroscopy (SERS) is a promis-
ing technique for EV detection and characterization.16

Conventional Raman spectroscopy has also been explored in
EV characterization and cancer diagnosis,17–19 but it is often
difficult to obtain well-resolved spectra of biological samples
due to weak Raman scattering and signal intensity, as well as
high background fluorescence.20 SERS can be used to deter-
mine the same chemical information as in conventional
Raman spectroscopy, but it is advantageous in that single
molecule detection is possible, background fluorescence can
be quenched, and signal intensity can see enhancement by
103–1010.21 For the SERS enhancement effect to be observed,
the laser wavelength must be at or near the localized surface
plasmon resonance (LSPR) of the chosen SERS substrate. The
LSPR of a SERS substrate or probe is determined by the size
and shape of nanoscale roughness features on the metal
surface.21,22 When the LSPR is excited, large areas of electro-
magnetic enhancement are generated at the nanoscale metal-
lic features, and the Raman signal intensity of an analyte con-
fined to these regions is greatly enhanced.22 Typical SERS sub-
strates and probes for EV analysis are composed of gold or
silver since their LSPRs are located around common laser
wavelengths used in Raman spectroscopy (i.e., 532 nm,
632 nm, and 785 nm).20 These substrates also usually consist
of nanoparticles,23–36 arrays of nanopillars or nanorods,37–43 or
porous structures or nanoholes44–46 that are sometimes
further functionalized for specific EV capture.35,41,43,46–48 SERS
analysis of cancer-derived EVs has been greatly explored, par-
ticularly in breast,36,38,40,41,43,48,49 lung,26,28,34,39,42,46,50 and
pancreatic cancer.27,31,35 Some studies have explored the SERS
characterization of ovarian cancer-derived (OvCa) EVs,23,25,44,47

but analysis has generally been less thorough compared to the
other cancer-derived EVs listed.

Early work in SERS characterization of OvCa EVs dates back
to 2014, in which simple gold nanoparticles (NPs) were utilized
to analyse EVs from cell line A2780 grown in normoxic
(normal O2) and hypoxic (1% O2) conditions.

23 However, with
principal component analysis (PCA) followed by discriminant
function analysis, the two EV types could be only be differen-
tiated with 57.1% sensitivity and 53.8% specificity, and accu-
racy was not reported. One year later, a silver film-coated plas-
monic nanobowl substrate fabricated by soft lithography on
flexible polydimethylsiloxane was proposed for SERS analysis
of EVs isolated from the SKOV-3 cell line.44 The authors did
not evaluate the diagnostic potential of the substrate since the
purpose of the study was to compare EV purity from different

isolation methods. In 2017, a more selective approach using a
thiolated peptide ligand for the capture of EVs from SKOV-3
cells was reported.25 The ligand was also bound to silver NPs
by a thiol-metallic bond for SERS analysis. While the authors
were able to demonstrate the targeted detection of OvCa EVs,
they did not perform statistical analysis to evaluate the diag-
nostic potential of the probe, and so accuracy, sensitivity, and
specificity were not reported. Most recently in 2020, a simple
plasmonic scaffold consisting of a cysteamine-treated micro-
scale biosilicate substrate embedded with silver NPs was intro-
duced for SERS analysis of EVs.47 The authors investigated
OvCa EVs derived from SKOV-3 cells as well as from patients
with ovarian and endometrial cancer. With PCA followed by
linear discriminant analysis, cancer could be diagnosed with
99.4% accuracy, 100% sensitivity, and 99.2% specificity.
However, the authors warned that these numbers must be
interpreted with caution given the small sample size used in
analysis that could lead to biased results.

As evidenced by these four studies, most OvCa EVs analysed
by SERS are derived from the SKOV-3 cell line. For this work,
we sought to characterize EVs derived from OVCAR3 and
OV-90 cells, which are well-established model systems for epi-
thelial ovarian adenocarcinomas. Given that most (90%)
malignant ovarian tumours are epithelial in origin, and of
these cancers, 70% present as high-grade serous and <5%
present as low-grade serous,4 we also chose to characterize EVs
from high-grade serous (EOC6) and low-grade serous (EOC18)
primary cell lines. These four cell lines were compared to EVs
derived from a non-malignant human immortalized ovarian
surface epithelial (hIOSE) cell line as a control. As a SERS sub-
strate, we again employed gold nanohole arrays fabricated by
electron-beam lithography (EBL) that we have extensively
reported and characterized in past work.45,51 Herein, we report
SERS spectra of the five aforementioned cell lines and were
able to discriminate their spectral signals by PCA and logistic
regression with extremely high accuracy, sensitivity, and speci-
ficity of approximately 99% each.

2. Materials and methods
2.1. Cell culture

OV-90 (ATCC® CRL-11732) and NIH:OVCAR3 (ATCC®
HTB-161) were obtained from the ATCC. Human immortalized
surface epithelial cells hIOSE (OSE364) were obtained from the
Canadian Ovarian Tissue Bank at the BC Cancer Agency,
kindly provided by Dr David Huntsman. Primary cell lines
EOC6 and EOC18 were isolated from the ascites of patients
with high-grade and low-grade serous ovarian cancer, respect-
ively. All cell lines, except OVCAR3, were maintained in M199 +
MCDB105 supplemented with 5–15% fetal bovine serum
(FBS). NIH:OVCAR3 cells were cultured in RPMI-1640 sup-
plemented with 20% FBS and 5 µg mL−1 insulin. Media was
exchanged with serum-free media for 20–30 hours to generate
conditioned media (CM) for EV purification. All work involving
the use of patient samples (cell lines, plasma, and ascites) was
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approved by the Health Research Ethics Board of the Alberta
Cancer Committee. Informed consent was obtained for any
experimentation with human subjects.

2.2. Extracellular vesicle (EV) isolation

OvCa CM samples were first centrifuged at 200–300g at 4 °C to
pellet cells. Supernatants (except CM) were diluted 1 : 10 in
phosphate-buffered saline (PBS) and centrifuged at 3000g for
20 minutes at 4 °C to remove cell debris. To remove large
membrane fragments, supernatants were spun at 10 000g for
an additional 20 minutes at 4 °C. Lastly, supernatants were
ultracentrifuged at 120 000–140 000g (SW-28 rotor) for 2 hours
at 4 °C to pellet EVs on an Optima™ L-100 XP ultracentrifuge
(Beckman Coulter). The supernatant was removed and EVs
were resuspended in 100–300 µL of PBS and stored at −80 °C
until further use.

2.3. EV protein extraction and digestion

To prepare CM for proteomic analysis, ∼30 µg of EVs were lyo-
philized to dryness and reconstituted in 8 M urea, 50 mM
ammonium bicarbonate (ABC), 10 mM dithiothreitol (DTT),
and 2% SDS lysis buffer. Proteins were sonicated at 10 × 0.5 s
pulses (Level 1) with a probe sonicator (Fisher Scientific,
Waltham, MA), reduced in 10 mM DTT for 30 minutes at room
temperature (RT), alkylated in 100 mM iodoacetamide for
30 minutes at RT in the dark, and precipitated in chloroform/
methanol.52 On-pellet in-solution protein digestion was per-
formed in 100 µL of 50 mM ABC (pH 8) by adding 1/50
Trypsin/Lys-C (Promega) to digest EV proteins. EV proteins
were incubated at 37 °C overnight (∼20 h) in a ThermoMixer C
(Eppendorf) at 900 rpm before acidifying to pH 3–4 with 10%
formic acid (FA). Salts and detergents were removed from
peptide samples using C18 stagetips made in-house. Briefly,
10 layers were stacked into 200 µL pipette tips and rinsed with
ice-cold methanol. Stagetips were conditioned with solution A
(80/20/0.1%; acetonitrile (ACN)/water/trifluoroacetic acid
(TFA)), followed by solution B (5/95/0.1%; ACN/water/TFA)
prior to loading ∼20 µg of peptides resuspended in solution
B. Duplicate washes were performed with solution B prior to
elution of peptides using solution C (80/20/0.1%; ACN/water/
FA) and final elution using a 50/50 mixture of ACN/0.1% FA.
Peptides were centrifuged at 45 °C under vacuum and
resuspended in 0.1% FA prior to quantification by the
bicinchonic acid assay (BCA) and injection into the mass
spectrometer.

2.4. Ultraperformance liquid chromatography coupled to
tandem mass spectrometry (UPLC-MS/MS)

Peptides were analysed using an ACQUITY UPLC M-class
system (Waters) connected to a Q Exactive™ Plus mass spectro-
meter (Thermo Scientific) using a nonlinear gradient. Buffer A
consisted of water/0.1% FA and buffer B consisted of ACN/
0.1% FA. Peptides (∼1 µg estimated by BCA) were initially
loaded onto an ACQUITY UPLC M-Class Symmetry C18 Trap
Column (100 Å, 5 µm, 180 µm × 20 mm) and trapped for
5 minutes at a flow rate of 5 µL min−1 at 99% A/1% B. Peptides

were separated on an ACQUITY UPLC M-Class Peptide BEH
C18 Column (130 Å, 1.7 µm, 75 µm × 250 mm) operating at a
flow rate of 300 nL min−1 at 35 °C using a non-linear gradient
consisting of 1–10% B, 10–20% B, 20–30% B, 30–40% B,
40–50% B, 60–70% B, and 80–90% B for 10 minutes intervals
before cyclic washing between 5–95% B, equalling
140 minutes gradient total. Settings for data acquisition on the
Q Exactive™ Plus are outlined in Table S1.†

2.5. UPLC-MS/MS data analysis

MS raw files were searched with de novo peptide sequencing
software PEAKS (version 10.5) using the Human Uniprot data-
base (reviewed only, updated November 2020). Missed clea-
vages were set to 5 and I = L. Cysteine carbamidomethylation
was set as a fixed modification. Oxidation (M), N-terminal
acetylation (protein), and deamidation (NQ) were set as vari-
able modifications (maximum number of modifications per
peptide = 7) and all other settings were left as default.
Precursor mass deviation was left at 20 ppm and 4.5 ppm for
first and main search, respectively. Fragment mass deviation
was left at 20 ppm. Protein and peptide false discovery rate was
set to 0.01 (1%) and the decoy database was set to revert.
Proteomic data analysis, including PCA for Fig. 1E, and visual-
ization were performed in a Python 3+ environment (Perseus
software). The proteins identified by PCA were ranked within
the software by their suitability to their respective PC scores.
Comparison of the proteomes identified within each sample to
Vesiclepedia databases was performed using the open-source
FunRich (version 3.1.3) software.

2.6. Nanoscale flow cytometry (nFC)

OvCa EVs were analysed for the number of microparticles per
mL and EV size distribution by nFC. Serial injections (2, 5, 10,
or 20 mL) of each concentrate were diluted to 300 mL with
0.22 mm-filtered PBS within low-attachment 96-well plates at
RT. EVs were enumerated in duplicate on the Apogee A60
nanoscale flow cytometer with autosampler, capable of EV
resolution between 150 and 1000 nm.53 130 μL of diluted CM
was injected and analysed at 1.5 μL min−1 for 1 minute. The
size of secreted microparticles was estimated using silica
beads ranging 110–1300 nm using properties of large-angle
light scatter and small-angle light scatter. Silica beads provide
a refractive index (k = 1.42) that is closer to cells (k = 1.35–1.39)
than commonly used polystyrene beads (k = 1.59).

2.7. Electron-beam lithography (EBL)

Nanohole arrays were fabricated by EBL following the protocol
established by Kaufman et al.45 A negative-tone resist (ma-N
2405, MicroChem) was spin-coated onto reactive O2-cleaned
(Trion Technology) glass coverslips at 3000 rpm for 45 seconds
(corresponding to thickness of ∼500 ± 50 nm) and baked at
90 °C for 90 seconds. AquaSAVE™ conductive polymer (Sigma-
Aldrich) was subsequently spin coated at 1000 rpm for 45
seconds and baked at 90 °C for 45 seconds. EBL was per-
formed using a LEO 1530 (Zeiss) scanning electron microscope
(SEM) with a 30.0 kV EHT voltage, 10.0 μm aperture, and
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25.0–30.0 pA current. Square and triangular arrays were written
at sizes of 0.5 and 1.0 μm with 1.0 μm spacing between holes
using ELPHY Quantum software (Raith Fabrication). All array
patches measured 50 × 50 μm2. Following beam exposure,
samples were soaked in DI water to remove the conductive
layer and samples were developed in MF-319 (MicroChem) for
40–45 seconds. Samples were soaked in DI water and air dried
to avoid collapsing the nanopillars. Samples were subjected to
an O2 plasma descum process (Trion Technology) for 60
seconds to remove residual resist surrounding the nanopillars.

A 3 nm adhesion layer of titanium and 30 nm layer of gold was
deposited onto the samples by electron beam evaporation
(Angstrom Engineering). For lift-off, samples were exposed to
Remover-PG (MicroChem) heated to 80 °C for 2 hours.
Remover-PG was removed from the samples by soaking in a
1 : 3 solution of methyl isobutyl ketone (MIBK) and isopro-
panol (IPA). Samples were rinsed with IPA and dried under N2.
For final cleaning, samples were bathed in Nano-Strip®
(Cyantek) heated to 80 °C for 30 minutes, then DI water for
15 minutes, and dried under N2. Finally, samples were sub-

Fig. 1 (A) Schematic illustration of nFC and UPLC-MS/MS analysis of OvCa. (B) nFC results revealed a near-linear decrease in the number of par-
ticles as the volume of sample analysed diminished. The horizontal dashed line indicates the mean particle number when an equal volume of back-
ground media (PBS) was analysed. (C) Size distribution of EVs. (D) Venn diagram highlighting the distinct proteomics cargo contained within EVs
from various OvCa cell lines, leading to distinct proteomic “fingerprints” as demonstrated by (E) PCA. (F) Overlap of OvCa EV proteomes with
Vesiclepedia database filtered for OvCa. (G) Heat map indicating that classical EV markers (e.g., CD9/81/63) were confidently identified in all OvCa
EV samples.
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jected to O2 plasma (Trion Technology) for 5 minutes to
remove any remaining resist from the holes.

2.8. Surface-enhanced Raman spectroscopy (SERS)

Concentrated EV samples were diluted 1 : 20 with Milli-Q
water. 10–20 μL of dilute EV samples were drop-cast onto nano-
hole arrays and subsequently removed using cohesive pro-
perties allowed by a Kimwipe absorbent paper (Kimberly-Clark
Inc.). The edge of the absorbent paper was placed on the
corner of the solution droplet, allowing for solution removal
via capillary action. EV solutions were allowed to dry for
15–30 minutes prior to SERS measurements. EVs were located
in nanoholes by SERS mapping, and spectra were extracted
from these maps. SERS spectra were acquired with an
XploRA™ PLUS spectrometer (Horiba Scientific) using a
785 nm excitation laser source, 600 grooves per mm grating,
100 × objective (N.A. = 0.9), and 100 μm pinhole. Laser power
was set to 5 mW with an acquisition time of 4 seconds per
spectrum.

2.9. Principal component analysis (PCA) and machine
learning

PCA of SERS spectra was completed with Orange software
(version 3.28.1). All SERS spectra were standardized to μ = 0, σ2

= 1 prior to PCA, and outliers were removed by the Local
Outlier Factor method with contamination set to 10%.
Retained spectra were analysed by PCA and the first 25 princi-
pal components (PCs) were selected to explain 97.2% of var-
iance among spectra. Machine learning was subsequently
done by the same Orange software. The first 25 PCs were used
as input data in a logistic regression-based machine learning
algorithm. Models were trained and tested using 5-fold cross
validation.

3. Results and discussion
3.1. Validation of EV size and proteomic cargo

Size quantification of EVs by nFC and proteomic analysis by
UPLC-MS/MS was conducted to validate the enrichment of EVs
by ultracentrifugation (UC) from CM generated by four OvCa
cell lines and one normal control cell line (Fig. 1A). Amongst
several methods available for EV purification,7,54–56 this study
considered UC as an optimal balance between EV yield and
purity. UC provides a heterogenous mixture of EVs which
includes both microvesicles and exosomes. Therefore, the use
of the term EV throughout this study is in accordance with the
International Society for Extracellular Vesicles.57 In support of
previous studies,53 we demonstrate a near-linear detection of
particles as the volume of sample analysed was diminished,
indicating acceptable EV purity (Fig. 1B). The size distribution
of EVs was verified by nFC (Fig. S1†) and estimated by small-
angle light scatter measurements. The majority of EVs
detected were estimated to be less than 240 nm in diameter
(Fig. 1C), which is consistent with the size of microvesicles
and exosomes.58 However, the resolution of exosomes less

than 100 nm in diameter from background noise was unattain-
able based on the properties of the cytometer used in this
study, but subsequent proteomic analysis was able to verify the
presence of common EV markers in each OvCa sample.

UPLC-MS/MS is a powerful tool to detect and quantify pro-
teomic cargo within EVs (Fig. S2†). In total, we identified over
3000 proteins in EVs generated by all five cell lines. However,
unique proteomic cargo was detected among each.
Specifically, 1014 peptides were shared by EVs from all five cell
lines, whereas 138, 410, 115, 304, and 145 peptides were
unique to hIOSE, OV-90, OVCAR3, EOC6, and EOC18, respect-
ively (Fig. 1D). Distinct proteomic fingerprints were identified
by PCA, where PC1 and PC2 scores correspond to tetraspanin-8
(TSPAN8) and histone H2A type 1 (HIST1H2A), respectively
(Fig. 1E). EVs isolated from OVCAR3, OV-90, and EOC6 each
demonstrate a distinguishing proteome compared to EVs iso-
lated from hIOSE and EOC18. A high PC1 score indicates the
presence of TSPAN8 in EVs isolated from OV-90 and EOC6,
while a high PC2 score indicates the presence of HIST1H2A in
EVs isolated from OVCAR-3 and OV-90. EVs isolated from
hIOSE and EOC18 are both associated with low PC1 and PC2
scores, indicating a low presence of TSPAN8 and HIST1H2A in
these EVs. Furthermore, EVs from hIOSE and EOC18 are clus-
tered closely to one another on the score plot, indicating a
high similarity between normal EVs and low-grade OvCa EVs,
as expected. OvCa proteomes identified here were compared
with those available in the Vesiclepedia database filtered for
OvCa cell lines (Fig. 1F). Of 6202 proteins with OvCa EV pro-
teomes in this database, 1429 were shared with EV proteomes
identified within our samples. Classical EV markers (e.g., CD9/
81/63) were also confidently detected in EVs isolated from all
five cell lines in addition to 22 core exosome proteins recently
identified by UPLC-MS/MS (Fig. 1G).59 Collectively, our nFC
and proteomic data support UC as a suitable method for the
enrichment of EVs for downstream SERS analysis.

3.2. SERS characterization of EVs

Gold nanohole arrays of different shapes (squares, triangles)
and sizes (500 nm, 1000 nm) were fabricated by EBL as plas-
monic substrates for EV capture and SERS analysis. The proto-
col for the fabrication of nanohole arrays has been well estab-
lished and documented by our laboratory.45,51 The EBL
process is illustrated in Fig. 2A. Briefly explained, EBL is a
technique that allows for the fabrication of custom features on
a substrate covered with a photoresist, and with some setups
achieving 10 nm resolution.60 For nanohole arrays, a negative-
tone resist is used, which is an electron-sensitive polymer that
undergoes bond formations in areas exposed to the electron
beam.61 After development, unexposed regions of the resist are
removed, leaving nanopillars on the substrate surface. Metals
(i.e., gold) are then deposited to allow for the propagation of
surface plasmons for SERS sensing. Finally, after lift-off, these
nanopillars are removed, leaving in place the desired nano-
holes (Fig. S3†).

The benefits of these nanohole array platforms are two-
fold: the nanoscale size of the holes allows for capture of
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smaller EVs (i.e., exosomes and microvesicles), and the plas-
monic nature of the substrate allows for SERS sensing. Prior to
SERS, EVs are drop-casted on the substrate surface, and the
solution is removed by placing the corner of an absorbent
wipe on the edge of the droplet. This capillary flow induces the
EVs in solution to fall into these holes or “traps” and the solu-
tion is dried before SERS analysis. The mechanics of this
capture have been previously demonstrated with polystyrene
beads by Kaufman et al.45 Furthermore, we have previously
demonstrated that these gold substrates display absorbance
bands (i.e., LSPRs) around 650–690 nm and 750–780 nm.51

When the incident laser wavelength matches the LSPR, surface
plasmons are excited to collective oscillation, producing large
areas of electromagnetic radiation at the nanoholes. Therefore,
when EVs are confined in these holes, we expect to observe a
signal that is greatly enhanced compared to traditional Raman
spectroscopy. For acquisition of SERS spectra, mapping experi-
ments are necessary to locate trapped EVs, since the EVs are
smaller in diameter than can be viewed optically. Areas on the
maps with higher intensity are presumed to be EVs, while
areas with low intensity and no discernible peaks are identi-
fied as the background. The process of sample preparation for
SERS and the SERS acquisition process is illustrated in Fig. 2B.

EVs isolated from the hIOSE cell line serve as a control
group (Fig. 3A). The majority of peaks found in hIOSE EVs are
attributed to proteins and amino acids, which include the
peaks at 755 cm−1 (tryptophan), 818 cm−1 (C–C stretching in
collagen), 935 cm−1 (proline, valine, protein backbone),
1029 cm−1 (phenylalanine), 1303 cm−1 (collagen, amide III),
and 1545 cm−1 (amide II).62,63 Several nucleic acid peaks are
located at 724 cm−1 (adenine), 787 cm−1 (cytosine, uracil,
thymine), 1185 cm−1 (cytosine, guanine, adenine), 1356 cm−1

(guanine), and 1482 cm−1 (guanine, adenine).62,63 Lipid and
carbohydrate peaks can be found at 1254 cm−1 and 865 cm−1,
respectively.62,63 A complete list of SERS peaks of hIOSE EVs
are summarized in Table S2.†

EVs from two established OvCa cell lines, OV-90 and
OVCAR3, serve as cancer models (Fig. 3B). SERS spectra of EVs
from both OV-90 and OVCAR3 are dominated by protein and
amino acid peaks. For OV-90 EVs, these peaks are located at
755 cm−1 (tryptophan), 908 cm−1 (tyrosine), 1008 cm−1

(phenylalanine), 1036 cm−1 (phenylalanine), 1151 cm−1 (C–N
stretch), 1274 cm−1 (amide III), 1335 cm−1 (collagen, amide
III), and 1533 cm−1 (amide II).62,63 For OVCAR3 EVs, the
protein and amino acid peaks are found at 741 cm−1 (trypto-
phan), 818 cm−1 (collagen), 935 cm−1 (proline, valine, protein
backbone), 956 cm−1 (CH3 stretching), 1055 cm−1 (C–O, C–N
stretching), 1176 cm−1 (tyrosine), 1197 cm−1 (tryptophan),
1226 cm−1 (amide III), and 1584 cm−1 (phenylalanine).62,63

Second most abundant for OV-90 and OVCAR3 EVs are nucleic
acid peaks. For OV-90 EVs, these nucleic acid peaks are located
at 675 cm−1 (guanine), 782 cm−1 (thymine, cytosine, uracil),
822 cm−1 (phosphodiester), 1186 cm−1 (cytosine, guanine,
adenine), and 1201 cm−1 (nucleic acids and phosphates).62,63

For OVCAR3 EVs, the nucleic acid peaks are located at
675 cm−1 (guanine), 724 cm−1 (adenine), 1176 cm−1 (cytosine,
guanine), 1376 cm−1 (adenine), and 1483 cm−1 (guanine,
adenine).62,63 Carbohydrate peaks in the OV-90 SERS spectrum
are found at 943 cm−1, 1118 cm−1, and 1370 cm−1, and in the
OVCAR3 SERS spectrum are found at 848 cm−1, 929 cm−1, and
994 cm−1.62,63 Lastly, OV-90 lipid peaks are located at
714 cm−1, 719 cm−1, and 1467 cm−1, while an OVCAR3 lipid
peak is found at 1299 cm−1.62,63 The complete list of spectral
peaks for OV-90 and OVCAR3 EVs are summarized in Tables
S3 and S4,† respectively.

EVs from two primary OvCa cell lines, EOC6 and EOC18,
were also probed as models of high-grade and low-grade
serous cancer, respectively (Fig. 3C). Like the EVs from the
three aforementioned cell lines, the SERS spectra of EOC6 and
EOC18 EVs are dominated by protein and amino acid peaks.
For EOC6 EVs, these peaks are located at 639 cm−1 (tyrosine),
939 cm−1 (C–C skeletal stretching), 1003 cm−1 (phenylalanine),

Fig. 2 (A) Schematic illustration of the fabrication of nanohole arrays by EBL and (B) subsequent sample preparation and SERS acquisition.
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1159 cm−1 (C–C/C–N stretching), 1162 cm−1 (tyrosine),
1225 cm−1 (amide III), 1265 cm−1 (collagen, phenylalanine),
1439 cm−1 (collagen), and 1558 cm−1 (tryptophan, tyrosine,
amide II).62,63 For EOC18 EVs, protein and amino acid peaks

are found at 756 cm−1 (tryptophan), 852 cm−1 (proline, hydro-
xyproline, tyrosine), 935 cm−1 (proline, valine, protein back-
bone), 987 cm−1 (phenylalanine), 1032 cm−1 (phenylalanine,
proline), 1209 cm−1 (tryptophan, phenylalanine), 1248 cm−1

(amide III), 1338 cm−1 (amide III), and 1362 cm−1

(tryptophan).62,63 However, much fewer nucleic acid peaks are
located compared to OV-90 and OVCAR3 EVs, which are found
at 797 cm−1 (uracil) for EOC6 EVs and 677 cm−1 (guanine) and
1577 cm−1 (guanine, adenine) for EOC18 EVs.62,63 Lipid peaks
for EOC6 EVs are located at 736 cm−1, 775 cm−1, and
1367 cm−1, and in EOC18 EVs are found at 1166 cm−1,
1300 cm−1, 1466 cm−1.62,63 Lastly, carbohydrate peaks of EOC6
EVs are present at 845 cm−1 and 1023 cm−1, while one carbo-
hydrate peak at 1425 cm−1 is present in the SERS spectra of
the EOC18 EVs.62,63 The complete list of spectral peaks of the
EOC6 and EOC18 EVs are summarized in Tables S5 and S6†,
respectively.

We would like to note that these spectral assignments have
been made tentatively based on our expectations for EVs to
show protein, nucleic acid, and lipid SERS signals. Since EVs
are molecularly heterogeneous, it is difficult to precisely vali-
date the origin of these chemical moiety fingerprints as there
is a great amount of spectral overlap among protein, nucleic
acid, and lipid peaks in the fingerprint region.64,65

Furthermore, these moieties can be detected not only from
EVs themselves, but from CM and other contaminants. To alle-
viate these difficulties, researchers often use dimensionality
reduction tools such as PCA to determine key differences and
patterns among groups of samples.21

3.3. Spectral analysis by PCA

Often, the first two PCs are used to compare different classes
of samples as they contain most of the information of the orig-
inal data set. However, sometimes the first two PCs alone are
not enough to differentiate classes of samples,66 as demon-
strated with our data, since PCA is an unsupervised technique.
The goal of PCA is to maximize variance in a dataset, which is
achieved while ignoring class labels. In our case, the PC18 and
PC25 scores best separated the EV types, although they
account for a very small percentage of the original data set
(Fig. 4A–C). These PCs were determined by the informative
projections feature in Orange software, which ranks attribute
pairs by classification accuracy. PC18 best differentiates the
normal group from the cancer groups, where the latter tends
to be associated with more negative PC18 scores (Fig. 4D).
PC25 interestingly best separates the cancer groups in terms of
the severity of cancer, where higher-grade cancers (e.g., EOC6,
OVCAR3, OV-90) tend to be associated with more positive PC25
scores.

PC loading spectra of PC18 and PC25 scores are compared
to the average spectrum of each EV type presented in Fig. 3 to
interpret which spectral peaks are responsible for the most var-
iance in the data set (Fig. 5). PC18 is best described by protein
assignments at 728 cm−1 (tryptophan) and 1237 cm−1 (amide
III), nucleic acid assignments at 782 cm−1 (thymine, cytosine,
uracil), 1180 cm−1 (cytosine, guanine), and 1483 cm−1

Fig. 3 Average SERS spectra of (A) ovarian epithelial cell line-derived
EVs (control), (B) established OvCa cell line-derived EVs, and (C) primary
OvCa cell line-derived EVs. Average SERS spectra of hIOSE, OV-90,
OVCAR3, EOC6, and EOC18 are comprised of 207, 123, 106, 166, and
156 spectra, respectively.
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(guanine, adenine), and a carbohydrate peak at 942 cm−1

(polysaccharides) (Table 1 and Fig. 5A). The more positive
PC18 peaks at 782 cm−1, 1181 cm−1, and 1483 cm−1 tend to be
more associated with the normal EVs than the OvCa EVs (i.e.,
all three peaks are found in the hIOSE spectrum but not in
each of the OvCa spectra). Interestingly, these three peaks are
all nucleic acid in origin. PC25 is best described by protein
assignments at 743 cm−1 (tryptophan), 832 cm−1 (tyrosine),
973 cm−1 (CH3, CCH vibrations), and 1170 cm−1 (tyrosine), a
carbohydrate peak at 940 cm−1 (polysaccharides), and a lipid
peak at 1060 cm−1 (ceramide) (Table 2 and Fig. 5B). More posi-
tive PC25 peaks located at 940 cm−1, 1060 cm−1, and
1170 cm−1 tend to be associated more with the high-grade
cancer EVs (EOC6) than the low-grade cancer EVs (EOC18).
While PCA is a valuable tool to determine how spectra differ
from one another, the PC scores determined can also serve as
classifiers in machine learning algorithms to better differen-
tiate classes of data.

3.4. Machine learning for ovarian cancer diagnosis

A logistic regression-based machine learning algorithm was
used to classify normal and OvCa EVs based on the first 25
PCs calculated. Several algorithms were tested and compared
based on the value of the area under the curve (AUC) of the
receiver operating characteristic (ROC) curves (Fig. S4†).

Logistic regression was chosen for the high AUC obtained
as well as extremely high accuracy, precision, and recall,
although some algorithms like support vector machine worked
almost as well (Table S7†). The algorithm was trained and
tested with 5-fold cross validation to reduce potential
overfitting.

With the logistic regression machine learning method, we
have monitored how classification accuracy increases with an
increasing number of PCs retained (Table S8†). The first 5 PCs
(91.5% total explained variance), 15 PCs (95.5% total explained
variance), and 20 PCs (96.5% total explained variance) were
investigated as classifiers for the algorithm (Fig. S5D†). As
shown in the traditional score plot, PC1 and PC2 do not well-
differentiate the classes of spectral data (Fig. S5A†).
Informative projections calculated by Orange software indi-
cated that from the first 5 PCs, PC2 and PC3 provide the best
classification accuracy, but substantial overlap is still observed
among the data clusters (Fig. S5B†). The resulting accuracy,
recall, and precision achieved by the algorithm is therefore
poor, and corresponds to 46.3%, 50.6%, and 46.3%, respect-
ively. When the first 15 PCs are included as classifiers for the
algorithm, accuracy, sensitivity, and specificity increases mar-
ginally to 69.0%, 69.6%, and 69.0%, respectively. For the first
15 PCs, PC6 and PC9 are able to better differentiate the EOC6
and EOC18 EVs from the hIOSE EVs compared to when the 5

Fig. 4 PC score plots comparing (A) normal (hIOSE) vs. cancer (OV-90, OVCAR3) EVs, (B) normal vs. high-grade cancer (EOC6) EVs, (C) normal vs.
low-grade cancer (EOC18) EVs, and (D) all groups to highlight separation along PC18. In (A)–(C), each point corresponds to one SERS spectrum
while the points in (D) correspond to the centroids of each group in (A)–(C).
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PCs are used as classifiers, but substantial overlap remains
among OV-90, OVCAR3, and hIOSE EVs (Fig. S5C†).

The importance of including lower rank PCs such as PC18
and PC25 is demonstrated by including the first 20 and 25 PCs
as machine learning classifiers. When the first 20 PCs are
included, the informative projection indicates that PC6 and
PC18 best differentiate OvCa EVs from normal EVs (Fig. S5D†).
As aforementioned, PC18 contains information that best clas-
sifies the cancer-derived EVs. Therefore, accuracy, sensitivity,

and specificity increase to 94.6%, 94.8%, and 94.6%, respect-
ively. PC25, as aforementioned, contains spectral information
that best differentiates the high-grade OvCa EVs from the low-
grade OvCa EVs. Thus, when the first 25 PCs, which contain
97.2% total explained variance, are included as machine learn-
ing classifiers, 98.6% accuracy, sensitivity, and specificity are
achieved.

We further wanted to determine the algorithm’s capability
of discriminating (1) normal (hIOSE) EVs from established

Fig. 5 Average SERS spectra of EVs derived from each cell type (also shown in Fig. 3) compared with (A) PC18 and (B) PC25 loading spectra. Key
peaks (i.e., spectral peaks that best describe each PC) are highlighted with vertical dashed lines.

Table 1 SERS peaks that best differentiate normal vs. cancer groups

Raman shift
(cm−1) Presumed origin

Ref. peak
(cm−1)

728 Ring breathing of tryptophan 728 (ref. 62)
782 Thymine, cytosine, uracil ring

breathing modes
782 (ref. 62 and
63)

942 Skeletal modes of polysaccharides 941 (ref. 62 and
63)

1181 Cytosine, guanine 1180 (ref. 62
and 63)

1237 Amide III, CH2 wagging vibrations
from glycine

1237 (ref. 62
and 63)

1483 Guanine, adenine ring breathing
modes

1485 (ref. 62
and 63)

Table 2 SERS peaks that best differentiate low-grade vs. high-grades

Raman shift
(cm−1) Presumed origin

Ref. peak
(cm−1)

743 DNA, tryptophan 742 (ref. 62)
832 Asymmetric O–P–O stretching,

tyrosine
731 (ref. 62 and
63)

940 Skeletal modes of polysaccharides 941 (ref. 62 and
63)

973 CH3, CCH vibrations in proteins 973 (ref. 62 and
63)

1060 C–C in-plane bending, C–N
stretching, ceramide

1061 (ref. 62)

1170 C–H in-plane bending mode of
tyrosine

1170 (ref. 62
and 63)
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OvCa cell line (OV-90, OVCAR3) EVs (Fig. 6A), (2) normal EVs
from high-grade OvCa EVs (Fig. 6B), (3) normal EVs from low-
grade OvCa (EOC18) EVs (Fig. 6C), and (4) low-grade OvCa EVs
from high-grade OvCa EVs (Fig. 6D). Heat maps shown in
Fig. 6 were created to visualize the machine learning output
scores of each sample. The output scores given represent the
probability of a test sample belonging to a cancerous group.
For Fig. 6A–C, an output score of 1.0 corresponds to a cancer-
ous sample and is shown in red on the heat maps, while an
output score of 0 corresponds to a normal sample and is
shown in yellow on the heat maps. A vast majority of OvCa EVs
were successfully classified as cancerous, as indicated by the
red and dark orange bars in Fig. 6A–C. In Fig. 6D, an output
score of 1.0 corresponds to a high-grade cancer sample and is
shown in red on the heat maps, while an output score of 0
corresponds to a low-grade cancer sample and is shown in
yellow on the heat maps. Similarly, a majority of the EOC6 EVs
were successfully classified as high-grade, also indicated by
the red and dark orange bars in Fig. 6D.

EVs isolated from hIOSE were compared to EVs isolated
from OV-90, OVCAR3, and EOC6 to determine the platform’s
capability of correctly diagnosing OvCa. When the established
cell line EVs were used as training sets for the cancer group,
196 out of 198 OvCa EV samples were correctly identified as
cancerous, while 199 out of 200 normal EV samples were cor-
rectly identified as non-cancerous (Fig. 6A), corresponding to
99.2% classification accuracy, 99.0% sensitivity, and 99.5%
specificity. When the EOC6 EVs were used as a training set for
a cancer group, 155 out of 157 OvCa samples were correctly
identified as cancerous, while 199 out of 200 normal EVs were
again correctly classified as non-cancerous (Fig. 6B). The
resulting classification accuracy was identical to the normal vs.
established OvCa cell line model at 99.2%. The sensitivity
dipped slightly to 98.7%, but the specificity remained the
same at 99.5%.

EVs isolated from hIOSE were compared to EVs isolated
from EOC18 to determine the platform’s capability of cor-
rectly diagnosing low-grade OvCa, which can be more of a
challenge compared to high-grade OvCa since low-grade
OvCa cells tend to resemble normal cells more closely. With
the EOC18 EVs as a training set for the cancer group, all 136
OvCa samples were correctly identified as cancerous, while
198 out of 200 normal EVs were correctly classified as non-
cancerous (Fig. 6C). The 99.4% accuracy achieved here is
comparable to the previous two models, suggesting we can
successfully classify both low-grade and high-grade OvCa
samples with extremely high accuracy. Furthermore, we were
also able to achieve high sensitivity and specificity at 100%
and 99.0%, respectively.

EVs isolated from EOC6 and EOC18 were compared to
determine the platform’s capability of predicting whether an
OvCa sample is high-grade or low-grade, since the grade of
OvCa can help predict the prognosis of the disease as well as
how the cancer may respond to treatment. 154 out of 157
EOC6 samples were correctly identified as high-grade, while all
136 EOC18 samples were correctly identified as low-grade,

Fig. 6 Heat maps (left) to visualize output scores of (A) normal vs.
established cancer cell line EVs, (B) normal vs. high-grade cancer EVs,
(C) normal vs. low-grade cancer EVs, and (D) low-grade vs. high-grade
cancer EVs, with corresponding confusion matrices (right). In the heat
maps, each horizontal bar corresponds to one SERS spectrum. Groups
labelled on the left indicate the origin of the sample, while the colour of
the bar indicates the algorithm’s prediction. In (A)–(C), a red or dark
orange colour (output score >0.5) corresponds to a cancer prediction
and a yellow or light orange colour (output score <0.5) corresponds to a
normal prediction. In (D), a red or dark orange colour (output score
>0.5) corresponds to a high-grade cancer prediction and a yellow or
light orange colour (output score <0.5) corresponds to a low-grade
cancer prediction.
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corresponding to 99.0% accuracy, 98.1% sensitivity, and a
100% specificity (Fig. 6D).

The accuracies, sensitivities, and specificities achieved with
each of the four models compared in Fig. 6 is summarized in
Table 3. The high accuracies presented here indicate that this
platform and methodology is not only promising in terms of
ovarian cancer diagnosis, but also promising in determining
the grade of disease. Since EVs are found in bodily fluids such
as urine, plasma, and saliva, this approach has a strong poten-
tial for non-invasive ovarian cancer diagnosis.

4. Conclusions

In conclusion, we have presented plasmonic gold nanohole
arrays for the capture of single EVs which we subsequently
characterized by SERS. To our knowledge, this is the first time
EVs from these five cell lines (OV-90, OVCAR3, EOC6, EOC18,
and hIOSE) have been characterized by SERS. We then were
able to determine their main compositional differences by
PCA. We found that normal EVs could generally be differen-
tiated from OvCa EVs by the presence of peaks at 782 cm−1

(thymine, cytosine, uracil ring breathing modes), 1181 cm−1

(cytosine, guanine), and 1483 cm−1 (guanine, adenine ring
breathing modes). Interestingly, high-grade cancer could also
be predicted based on the presence of peaks at 940 cm−1 (poly-
saccharides), 1060 cm−1 (C–C in-plane bending, C–N stretch-
ing, ceramide), and 1170 cm−1 (tyrosine).

The PC scores calculated were then used as classifiers in a
logistic regression-based machine learning algorithm, which
was able to differentiate normal EVs from the established
OvCa cell line EVs with 99.2% accuracy, 99.0% sensitivity, and
99.5% specificity. Normal EVs could also be discriminated
from the high-grade primary cell line EVs with 99.2% accuracy,
98.7% sensitivity, and 99.5% specificity. Interestingly, we were
also able to differentiate the normal EVs from the low-grade
primary cell line EVs with 99.4% accuracy, 100% sensitivity,
and 99.0% specificity. Lastly, the low-grade and high-grade
primary cell line EVs could also be discriminated with 99.0%
accuracy, 98.1% sensitivity, and 100% specificity. These results
are similar to those achieved most recently by Rojalin et al.,47

but it is worth noting that gold-based SERS substrates gener-
ally offer higher stability in air compared to silver-based sub-
strates and would perhaps be more suitable in a clinical
setting.

The results presented in this paper are a great step towards
early, non-invasive, facile, and rapid ovarian cancer diagnosis.

However, it must be noted that at this stage, the results are
proof-of-concept, and should be interpreted with caution.
Until clinical samples are obtained from ovarian cancer
patients and healthy individuals, we cannot determine pre-
cisely how the model will perform with new test data. It should
also be noted that without a method for specific EV capture
(e.g., by antibodies), EVs must first be isolated from complex
patient biofluids prior to SERS analysis using this platform.
Future work in this study will involve challenging these SERS
platforms with EVs from real ovarian cancer patient samples
as well as from healthy individuals to determine the feasibility
of using this methodology in a clinical setting.
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Table 3 Comparison of accuracies, sensitivities, and specificities
achieved with each group compared in Fig. 6

Model Accuracy Sensitivity Specificity

hIOSE vs. OV-90, OVCAR-3 99.2% 99.0% 99.5%
hIOSE vs. EOC6 99.2% 98.7% 99.5%
hIOSE vs. EOC18 99.4% 100% 99.0%
EOC6 vs. EOC18 99.0% 98.1% 100%
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