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ass spectrometry by means of
high-energy laser desorption ionization (HELDI)

Davide Bleiner ab

Reduction of a sampled mass at the nano-scale degrades the sensitivity. Therefore, a theoretical analysis

was carried out to assess the sample utilization efficiency, and the leeway for the enhancement of the

sensitivity. High (photon)-energy laser desorption ionization (HELDI) is a novel microanalytical technique

that uses XUV laser pulses to enhance and homogenize the sensitivity at the nano-scale, especially for

light elements. While inspecting nanostructures in 3D, local heterogeneities are critical and are spotted

only if the instrumental variance can be discerned from the compositional one. Such underlying

information was found to be accessible when studying the data scatter distribution. Such an analytical

method was applied to analyze functional thin films of photovoltaic kesterite materials, probed with

HELDI hyphenated to time-of-flight mass spectrometry. The results indicated an enhanced analytical

capability for imaging light elements and the ability to discern instrumental variances (random errors)

from true compositional ones (heterogeneity).
1. Introduction

More than 95% of all matter is based on less than 10% of the
periodic table. In particular, elements such as H, C, N, O, and S
are the backbone of almost all chemistry. Light elements such
as Li, Be, B, F, Na, and P provide unique properties to materials,
life chemistry, and environmental cycles. These elements are,
however, challenging from a microanalytical standpoint. Partly,
this is due to their ubiquitous abundance, causing high back-
ground levels. On the other hand, device sensitivities are oen
a function of the host matrices, whichmakes quantitation hard.
Furthermore, analyte detection in a spatially resolved mode
limits the signal amplitude, especially in destructive methods,
where signal accumulation is not possible.

Spatially resolved analysis is oen based on sample
mapping, i.e. where a series of spots are collected hyper-
spectrally.1 In the case when the spot size is orders of magnitude
smaller than the region of interest (ROI), smooth “chemical
images” are obtained. Oen spots of microns are collected on
a ROI of 10–100 mm, such that the elemental images are
“pixelated”. This limits the possibility to visualize the detailed
diffusion and heterogeneity proles of elements, especially in
high gradient interfaces. In fact, the elemental heterogeneity of
a functional material may degrade the localization and control
of the electrical and optical properties. Unfortunately, starting
from loose powder precursors, the preparation of materials can
also lead to porosity, or crevices, which would favor elemental
90, 8057 Zürich, Switzerland
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trapping and/or migration, especially of the mobile light
elements. The microanalysis of these materials is thus impor-
tant to visualize such a phenomenon, but it is generally chal-
lenging to address the chemical details of complex-fabrics
nanostructures.

In fact, the collection of elemental signals across a porous
fabric is obviously unstable. Previously, it was shown how such
a phenomenon could provide chemical and textural informa-
tion.2 For thin lms (scales 10–100 nm), this is particularly
challenging, since there is no microanalytical method able for
directly accessing its length scales. In fact, some techniques are
more suitable for surface analysis (scales < 10 nm), while other
methods inspect the bulk (scales > 100 nm). The 10–100 nm gap
is frequently either too thick or too thin for any direct quanti-
tation in solid microanalysis.

When dealing with chemical visualization, it is important to
distinguish between imaging and mapping.3 In imaging, i.e.
microscopy, the heterogeneity is frozen while the entire eld of
view is acquired concomitantly. In mapping, uctuation of the
data response may be an effect either of the sample heteroge-
neity or of the shot-to-shot measurement. Thereaer, plotting
a calibration curve is a complex problem in such a case. In fact,
the assumption of linearity is valid only under the condition of
perfect homogenization andmatrix-match, which eliminate any
compositional variance (i.e. no horizontal error bars).

Therefore, in the quantitative imaging of materials, one can
deal with three sources of variance. First, the variance (i.e.
noise) of the blank, which is associated with the random
measurement error (so

2). Second, the quantitation variance, or
repeatability, which is the associated compositional error (s1

2).
In principle, there is a covariance between the former and the
J. Anal. At. Spectrom., 2024, 39, 1057–1069 | 1057

http://crossmark.crossref.org/dialog/?doi=10.1039/d3ja00399j&domain=pdf&date_stamp=2024-03-29
http://orcid.org/0000-0003-4773-0046
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3ja00399j
https://rsc.66557.net/en/journals/journal/JA
https://rsc.66557.net/en/journals/journal/JA?issueid=JA039004


JAAS Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 3

1/
07

/2
5 

18
:1

2:
07

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
latter. In solid microanalysis, however, heterogeneity is
a further compositional variance (s2

2), which is observed as
a convoluted term with the compositional error. Defects,
diffusion proles, local enrichments or depletion are not
accessible selectively, while they are non-covariant to the
instrumental error. However, data scatter analysis can reveal
such underlying information. While the present work focused
on mass spectrometry, it is useful to survey briey the micro-
analytical panorama of complementary methods.

For instance, X-ray uorescence spectrometry, while
providing modest access to light elements, is very robust for
micro and bulk characterization.4–6 X-Ray photoemission spec-
trometry is extremely surface-sensitive, and does not have the
depth dynamic range to investigate thin lms down to the
substrate.7 Secondary ion mass spectrometry is also an appre-
ciated method for the microanalytical proling of thin lms,
but it lacks a 3D capability, and has severe matrix effects.8,9

Laser ablation methods, with either optical emission (LIBS10–12

or the most recent LIXS13,14) or mass spectrometry (LA-ICP-
MS15,16), are, in principle, suitable for the highly spatially
resolved analysis of light and heavy elements, but the thick
sampling in the micrometer length-scale hamper their use in
combination for the nanostructured lms of functionalized
materials. Finally, glow discharge spectrometry offers excellent
depth resolution, but the lateral resolution is quite coarse,17–19

which makes it unsuitable for elemental heterogeneity
mapping.20

Extreme ultraviolet (XUV) laser pulses have been accom-
plished through single-pass amplied spontaneous emission
(ASE) across a capillary discharge.21–23 Pulses at l ∼ 46.9 nm can
shrink the diffraction limit and allow accessing nano-scale
lateral resolution.24–29 As a further advantage, the high-energy
photon at ∼26 eV is just above the ionization energy of He,
i.e. of any element in the periodic table. This implies direct
single-photon desorption ionization.30 Henceforth, (high-
energy, HE) laser desorption ionization (LDI) can dramatically
enhance the sensitivity for direct solid microanalysis. The
strong absorption cross-section permits improving the depth
resolution to the nano-scale.28 As a combined effect, laser
microanalysis using XUV pulses offers sub-micron-scale lateral
and nano-scale depth resolution sampling, while effectively
enabling the direct desorption and ionization of any element of
the periodic table (elemental nano-tomography).

As discussed previously,27,31 there is a tradeoff between the
spatial resolution and sensitivity. Fig. 1 summarizes the empirical
range of the limit of detection (LOD) for a selection of microan-
alytical methods, as a function of the spot size. The theoretical
limit was calculated from the number of atoms in a given volume,
with the width as the spot size and height as the sampling depth.
Considering an absolute limit of one atom out of the total number
of sampled ones in the volume, the ratio gives the theoretical
limit. This value is, in practice, degraded by the sample utilization
efficiency (SUE), i.e. the proportion of sampled atoms contributing
to the effective signal over the total number of sampled atoms.
The fact that all these techniques were far from the theoretical
limit (dashed lines, calculated for different depth ranges) suggests
that the SUE has huge room for improvement, which should be
1058 | J. Anal. At. Spectrom., 2024, 39, 1057–1069
a research priority in analytical science. Indeed, the SUE was
estimated from the shown “cloud plot”, determining the vertical
distance between the actual LOD (colored areas) and the corre-
sponding theoretical limits (dashed line). The SUE for each of the
analytical techniques is indicated in Fig. 1 next to the acronym of
the analytical method. It should be also noted that this cloud plot
shows the relative LODs. As pointed out elsewhere,32 in solid
microanalysis, absolute and relative LODs can be more or less
indicative limits for the various analytical techniques depending
on the reference spatial resolution. Since the probed volume can
change by several orders of magnitude among the various tech-
niques, a poorer spatial resolution would degrade the absolute
gures, even at a constant relative LOD. In the cloud plot (Fig. 1),
the absolute LOD increased perpendicularly away from the
dashed lines toward the upper right corner of the plot (from
zeptograms to nanograms), while the relative LOD increased
vertically from bottom up (Y axis).

Summarizing, the use of ion probes is plagued by matrix
effects, which can be mitigated using photon probes, even
though these are limited by diffraction to the micron scale. On
the other hand, the utilization of ion signals (i.e., mass spec-
trometry) generally offers a better sensitivity. Finally, the use of
electron probes offer nano-scale spatial resolution, but requires
sample preparation for coating non-conductors. It is note-
worthy that the utilization of XUV pulses, as in HELDI,
combines the advantages of photons with those of electrons.
Furthermore, the large photon energy and cross-section would
predict a matrix-independent direct desorption/ionization. This
is a preliminary requirement for substantial enhancement of
the SUE in a fully quantitative mode.

The aim of this work was to apply HELDI-MS for the super-
resolution (i.e. resolution beyond the diffraction limit) hyper-
spectral depth proling of nanostructures, using advanced
data-processing techniques, to spot defects and heterogeneities
at the sub-micron scale. The quality of the chemical data is
essential to implement successfully smart mapping procedures.
This quality was accomplished here thanks to the micro-
sampling with coherent XUV pulses.

The paper is organized as follows: Section 1 provides
a topical introduction, Section 2 summarizes the experimental
information to reproduce the results, Section 3 presents the
observed data and discusses the insights that can be gained,
and Section 4 summarizes the main conclusions.

2. Materials and methods
2.1 HELDI-mass spectrometry

High-energy (HE) photons are dened as those just above the
elemental ionization energy. As helium shows the highest
ionization energy (24.6 eV), any photon energy above that can,
in principle, ionize any element. This direct ionization process
is analytically advantageous, and can enable matrix-
independent signal generation for mass spectrometry. The
prompt photoemission triggered by HE photons in any matrix
helps to minimize the desorption damage upon sampling. Laser
desorption ionization (LDI) is well known in mass spectrom-
etry.33 In particular, matrix-assisted LDI (MALDI34) is quite
This journal is © The Royal Society of Chemistry 2024
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Fig. 1 Cloud plot with the theoretical and actual limits of detection (LODs) as a function of the spot size. The theoretical limits were calculated
for various sampling depths, with the specific thickness nomenclature shown in the inset (mind the underscore for the abbreviation). The red
curve gives the dependency for a 1 : 1 aspect ratio, i.e. the spot is equal to the sampling depth. Since all the actual LODs were far from the
theoretical ones, the sample utilization efficiency (SUE) was estimated accordingly. HELDI-MS can cover a domain that is not addressed by any of
the state-of-the-art analytical techniques. Legend: AES = Auger emission spectroscopy, GDS = glow discharge spectroscopy, LA-ICP-MS =
laser ablation inductively coupled plasma mass spectrometry, LIBS = laser-induced breakdown spectrometry, LIXS = laser-induced X-ray
spectrometry, SIMS= secondary ion mass spectrometry, XPS= X-ray photoemission spectrometry, XRF= X-ray fluorescence spectrometry. See
text for details.
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popular in organic mass spectrometry, but requires a complex
sample preparation to enhance the coupling of the laser and
target. In HELDI, in contrast, high photon energy in the XUV
favors the strong coupling of radiation to the sample material as
it is, without any need for sample preparation.

The 3D analysis was carried out by means of combining
a prototype XUV laser and a self-developedmass spectrometer.35

Argon discharge in a ceramic capillary generated coherent
pulses (l= 46.9 nm or 26 eV) with a deposited energy of approx.
3 mJ over a duration of about 1 ns (FWHM), such that the uence
was approx. 380 J cm−2. The pulse to pulse energy variance was
<1%. The samples were mounted on a micrometric stage that
could translate over the x and y axis to expose various positions
of the sample (Fig. 2a). XUVmicrosampling is devoid from solid
particles, as is also the case in traditional optical laser ablation,
but produces an ion plume in the source of the mass spec-
trometer. In fact, the high photon energy ionizes the sample
photolytically. The repeated delivery of pulses (2 Hz) to
a specic spot permits retrieving a vertical depth-resolved
prole. This mode of acquisition is called z-proling. Shiing
the sample under the laser pulse, gives a lateral surface-resolved
prole. This mode of acquisition is called xy-proling. The
online mass spectrometry in the laser sampling gives
This journal is © The Royal Society of Chemistry 2024
a hyperspectral imaging. Fig. 2a shows the sample surface aer
the HELDI sampling was carried out.
2.2 Thin-lm samples

The materials used for preparing the thin-lm samples
included a precursor solution of thiourea (99%+, Sigma-
Aldrich), tin chloride dihydrate (SnCl2$2H2O, 98%, Sigma-
Aldrich), zinc chloride (ZnCl2, 99.99%, Alfa Aesar), copper
chloride dihydrate (CuCl2$2H2O,$99.99%, Sigma-Aldrich), and
lithium chloride anhydrous (LiCl, 99%, Fluka) dissolved in
dimethyl sulfoxide (DMSO, 99.9%, Alfa Aesar). A 200–300 nm
thick SiOx alkali diffusion barrier layer was sputtered onto
a 1 mm thick soda lime glass with a subsequent deposition of 1
mm of molybdenum. The precursor solution was spin coated
onto the Mo layer and dried on a hotplate at 320 °C in air. The
spin-coating and drying steps were repeated 12 times in order to
obtain the desired precursor lm thickness of 1.5 mm. The
sample was annealed in a rapid thermal processing furnace
(RTP Annealsys AS ONE 150) inside a closed graphite box with
selenium pellets (800 mg). The temperature gradient employed
for annealing was the three-stage process with holding at 300 °
C, 500 °C, and 550 °C. CZTS (CuZnSn sulde) tin lms were
deposited and implanted with Li, as this is known to enhance
J. Anal. At. Spectrom., 2024, 39, 1057–1069 | 1059
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Fig. 2 (a) Scanning electron microscopy image of the spot array. (b) Color maps of a selection of target elements on a cross-section. The maps
highlight the sample fabric and the structural discontinuities for the following analytes, after the micrograph (gray): Cu (dark blue), Zn (green), Mo
(light blue), Se (cyan), Sn (yellow). The scale bar corresponds to 1 mm. The sample structure was irregular, with crevices and particle-like elemental
distributions. This real heterogeneity affects the stability of the depth-profiling signals. Therefore a statistical analysis should discern the variance
to be attributed to the measurement method, and those providing information on the sample purity or homogeneity.
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the photovoltaic efficiency. Fig. 2b shows the elemental distri-
butions as obtained by means of energy dispersive X-ray spec-
trometry on a cross-section made with a focused ion beam.
2.3 Hyperspectral data collection and processing

The 10 × 10 × 10 data point blocks (each point is a full MS
spectrum) were processed by a self-written m-script (Matlab) that
allowed extracting the underlying information to be visualized in
a few seconds. The script performed a time-of-ight mass cali-
bration of the raw signals based on a few reference peaks indi-
cated by the user, which in the present work were at nominal
mass-to-charge values of 6, 12, 23, 63, 80, 120 Da. The average
mass spectra (and variances) were calculated layer by layer. Aer
that, the spectra acquired across a 3D space were assembled in
a 3D matrix. Plots could be extracted from the 3D matrix to visu-
alize specic tomographic projections. In general, two types of
projections are preferred: layers and cross-cuts. The former refers
to the xy-planes parallel to the sample surface (layer at zero depth)
depth-wise. Cross-cuts are the zy-planes showing the depth
prole. In order to show all the zy-planes in one plot, the 3D
matrix is “unfolded” like a paper map. This way one can observe
next to each (every 10 points) the next zy-planes, which allows
visually correlating the depth proles in the third dimension.

Based on the total collected signal, the script normalizes the
elemental signals to obtain a semi-quantitative output. This
implies a comparable sensitivity of all the elements because of
the high-energy photoionization. Finally 3D elemental
mappings are visualized and can be rotated and inspected to
show the full block composition of the analyzed domain.

By plotting elemental intensities across a xyz-position grid (3D
block), one can visualize the semi-quantitative distribution of
elemental contents in the material (chemical tomography). The
latter is affected by the material fabric (e.g. porosity, crevices), by
the kinetics (e.g. interdiffusion), and impurities. Each of these
factors has characteristic length-scales. Consequently, the local
1060 | J. Anal. At. Spectrom., 2024, 39, 1057–1069
values in one specic xyz-position must be compositionally
consistent with all neighboring data points in the 3D block. The
direct plotting of the raw-data lacks any statistical or chemo-
metrical ensemble-validation. In fact, it is essential to test the local
value in the form of a data network consistency. Besides a better
condence, one can also gain length-scale insights, because
connecting the measured dots allows retrieving insightful distri-
butions (kernels). The sub-segmentation of the base scale (spot
size), by means of adaptive smooth kernels, helps obtaining
detailed proles of the analytes. Therefore, this study rst
assessed chemometric methods, and then applied them to a real
case in materials science of thin lms.
2.4 Fundamental aspects

The convolution of so and s1 (see introduction) with s2 causes
the calibration plot to spread out. The mean counting produced
by a given amount of analyte (i.e. the number of atoms) assumes
a well-known shape dictated by the Poisson distribution. The
latter tends to atten out at a larger mean, until it becomes
almost indistinguishable from a Gaussian curve. The exact
values of the signal noise (so) and repeatability (s1) affect the
sensitivity (S). The limit of detection (LOD) is thereaer calcu-
lated as follows:36,37

LOD ¼ 3so

S
(1)

In a solid sample, one can write LOD ∼ s1, as explained in
detail here below. This is understood since the “limit of detec-
tion” is ultimately limited by the repeatability. Henceforth, one
can determine the sensitivity from eqn (1) as a ratio of the noise
and repeatability, as follows:

S = 3so/s1. (2)
This journal is © The Royal Society of Chemistry 2024
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Fig. 3 Point spread function of the four reference thresholds (LOB, LOD, LOQ, LOL) with values given in Table 1. (a) Set A in Table 1, standard case
with values according to canonical definitions of the four limits; (b) set B visualizes a change in means for LOQ (mq = 10) and LOL (mq = 33.3); (c)
set C visualizes a change in variances for LOQ (s1

2 = 6) and LOL (s1
2 = 2); (d) set D visualizes a change in the covariances for LOQ (cov01 = 2) and

LOL (cov01= 3). The four cases visualize how the calibration lines and data point spread function (PSF) are distributed in relation to the underlying
sources of the statistics. See text for discussion.
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A classical calibration curve assumes that the data point is
a delta function, i.e. a point with no concentration spread. The
spread indicates the probability of nding a data point in
different positions within given condence intervals. Poisson
statistics predicts such a point spread function for a counting
statistics limited case. However, the occurrence of heterogeneity
(s2) can alter this model, as shown in Fig. 3, where only four
reference points are plotted (see below). The distribution
envelope is convex along the calibration line and transverse to
it. As the points are higher in mean value, the absolute proba-
bility sinks, because the distribution attens.

Fig. 3 was realized plotting a few important reference values
for quantitation as indicated in the guideline protocols, and the
associated calibration line. For instance ICH-Q2 38 or CLSI
EP17 39 dene three reference thresholds and Table 1 (case A)
summarizes such thresholds, which are the basic “data points”
in Fig. 3a. First, the limit of blank (LOB) is the “highest apparent
analyte concentration expected to be found when replicates of
a sample containing no analyte are tested”. The LOB is estimated
as follows:

LOB = mblank + 1.645sblank (3)
This journal is © The Royal Society of Chemistry 2024
where the mean (mblank) and the standard deviation (sblank) of
the one-sided population give 95% of the observations. While
this reference value relates to themeasured variable, e.g. counts,
it corresponds to zero for the abundance variable, e.g. the
concentration. This data point is in the le-bottom corner of the
plots, and is hardly visible in the linear scale. The dispersion
probability is close to 100%, which is so by denition for the
blank.

Second, the limit of detection (LOD) is dened as the
threshold abundance needed to assess reliably the analyte
occurrence in a qualitative analysis.37 The LOD may reside at
quantitation values below the linear range, and therefore is not
necessarily a point on the calibration line. The LOD is estimated
as follows:

LOD = mblank + 3.3sblank (4)

Thereaer, such a signal level corresponds to the norm (or
unit) in the quantitation variable (X axis). The difference
between the absolute versus relative LOD is very important in
solid microanalysis, as discussed above.32 Finally, the limit of
quantitation (LOQ) is dened as the threshold value for reliable
J. Anal. At. Spectrom., 2024, 39, 1057–1069 | 1061
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Table 1 Values used to prepare the plots in Fig. 3 with respect to the limit of blank (LOB), limit of detection (LOD), limit of quantitation (LOQ), and
limit of linearity (LOL). See text for details

LOB LOD LOQ LOL

Mean of signal (A–D) 1.645 (A–D) 3.3 (A–D) 10 (A–D) 33.3
Mean of concentration (A–D) 0 (A–D) 1 (A, C, D) 3 (A, C, D) 10

(B) 10 (B) 33.3
Variance of signal (A–D) 1.645 (A–D) 1.645 (A–D) 1.645 (A–D) 1.645
Variance of concentration (A–D) 0.1 (A–D) 1 (A, B, D) 3 (A, B, D) 10

(C) 6 (C) 2
Covariance between signal and
concentration

(A–D) 0 (A–D) 0 (A, B, C) 0 (A, B, C) 0
(D) 2 (D) 3
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quantitative analysis. Following a similar criterion as above
(one-sided, 95%), the LOQ is estimated as follows:

LOQ = mblank + 10sblank (5)

In terms of the quantitation variable (x axis), eqn (5) indicates
that in the denition of the LOQ, the signal corresponds to 3 times
the LOD (Fig. 3a). This pragmatic criterion is not globally adopted,
and the analytical community has been lax in dening binding
terms. Actually, the discussed analytical nomenclature is not offi-
cially coded for solidmicroanalysis, but workers have resorted to the
available one for wet samples. However, it must be said that solid
microanalysis has some peculiarities that do not facilitate a direct
extrapolation. First, the blank is not easily estimated, as matrix-
matched reference blanks are rare. Second, multipoint calibra-
tions are not so easy, since it is difficult to get a series of matrix-
matched solid standards of progressive concentration. Commonly
in solid microanalysis, one relies on a bracketing calibration within
the LOQ and an upper bound. The latter denes the limit of line-
arity (LOL). This is not the detector LOL, but the operative (cali-
brated) LOL. Adopting a similar criterion as above, the present work
dened the LOL as the fourth upper point in Fig. 3 as follows:

LOL = mblank + 33.3sblank (6)

In terms of the quantitation variable (x axis), the LOQ signal
would correspond to 10-fold the LOD based on the adopted
criterion (Fig. 3a). Obviously, one can have a dynamic range of
calibration much larger than such an order of magnitude. In this
work, the attention was on an extreme case, were outliers can
more dramatically affect the calibration. Fig. 3 shows the
mentioned four reference values, in order bottom up, LOB, LOD,
LOQ, LOL, in four different cases, indicated as A (Fig. 3a), B
(Fig. 3b), C (Fig. 3c), D (Fig. 3d) in Table 1. The dispersion40 is
given by point spread functions (PSFs) that represent the scatter
probabilities of the data points. These are the consequence of
either measurement error or material heterogeneity. The values
are characterized by ve parameters, i.e. the mean (for x and y
coordinates), variance (x and y) and covariance (this is symmetric,
so only one value). First, the centroid of the points is associated
with the mean values as coordinates: mquant, msignal. Following the
discussion above, these are given as follows (Table 1): LOB (0,
1.645), LOD (1, 3.3), LOQ (3, 10), and LOL (10, 33.3).
1062 | J. Anal. At. Spectrom., 2024, 39, 1057–1069
3. Results and discussion

Following the discussion above, Fig. 3 shows the multivariate
point spread function (PSF) calibration plots. PSF is a well-
established concept in optics and photonics. In Fig. 3a, one
observes a basic case, where the canonical protocol values dis-
cussed above (eqn (3)–(6)) are shown, with zero covariance (see
Table 1, set A). The latter implies no sample heterogeneity, only
counting statistics. In Fig. 3b, the sensitivity (calibration slope)
is reduced, while the PSF is identical to the former case (see
Table 1, set B). In Fig. 3c, the quantitation variance is increased,
while all the other values remain identical (see Table 1, set C).
This causes a change in the PSF. This is not a consequence of
changes in the sensitivity or instrumental error, but can be
attributed to sample heterogeneities. Finally, in Fig. 3d, only the
covariance is changed (see Table 1, set D). This has the effect of
stretching the PSF, because of the enhanced correlation.

Analysis of data point distributions is thus extremely
insightful to distinguish data scatters in the PSF that could be
attributed to instrumental or compositional variances. The
latter can cause “bad” non-linearities in the ensemble data set,
which are not to be considered as indicating poor measurement
performance. In fact, this study highlights that detailed analysis
of the data PSF can value the variance by aiding an educated
assessment.

In order to quantify such effects, one needs descriptors
associated with the data linearity (heterogeneity-bound regres-
sion spread) and the linearity slope (sensitivity-bound correla-
tion). The former corresponds to the Pearson correlation
coefficient,41 while the latter corresponds to the Spearman rank
correlation coefficient.42 While the former reects the scatter
but not the regression slope, the latter assesses how mono-
tonically steep a sensitivity curve is. Henceforth, the Pearson
correlation coefficient in a PSF subset is a good metric for
assessing the occurrence of heterogeneity, because in such
a case the data do not scatter along the sensitivity slope. On the
other hand, the Spearman rank correlation coefficient is a good
metric of the variance associated with counting, because the
PSF subset is scattered along the sensitivity slope. A comparison
of the two descriptors is insightful to discern the source of
variance, i.e. instrumental or compositional.

One may wonder, besides considering the analytical models,
how many points are needed to populate the PSF within
This journal is © The Royal Society of Chemistry 2024
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Fig. 4 Frequency distribution of the local limits of detection (LODs in mg g−1 or ppm) for a selection of analytes: (a) total ion current, (b)
background equivalent concentration, (c) hydrogen, (d) lithium, (e) sodium, (f) sulfur, (g) copper, (h) zinc, (i) selenium, (j) tin. The frequency
histograms give an area normalized quantification (area is 100%).
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a certain condence range to be able to discern. From proba-
bility theory, Chebyshev43,44 considered well-known inequality
to express the probability of a deviation from the mean as k-
times the standard deviation, as follows:
This journal is © The Royal Society of Chemistry 2024
Pðjx� mj$ ksÞ# 1

k2
(7)

which indicates that most of the PSF data points cluster
would be next to the centroid. This permits utilizing the
J. Anal. At. Spectrom., 2024, 39, 1057–1069 | 1063
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model above also with relatively few data points (in this work
1000 per sample), as is common in destructive microanalysis
(i.e. when the replicates are limited by denition). A statis-
tical analysis of the data spread is thus insightful for spot-
ting heterogeneities.
3.1 Heterogeneity analysis

In the case of compositionally structured samples, e.g. multi-
layer thin lms, one has to consider that the external precision
(spot to spot) dominates over the internal precision (random
error). Therefore, s2 is important to assess the heterogeneity of
a material, induced either by design (layered composition) or by
unwanted contamination during the material synthesis. The
challenge is to discern statistically between signal variance
consistent with measurement uncertainty and compositional
heterogeneity. The latter is correlated to the layering and/or
porosity. Therefore, one can compare the standard deviation
s1 at a given depth z (lateral signal heterogeneity) to that ob-
tained over a xed position xy (vertical signal heterogeneity).
The latter is affected by the ablation depth and thin-lm
layering (material structure).

To that purpose, the local sensitivity was determined here in
the experimental data set, following the procedure discussed
above. Thereaer, all the LODs in a 3D sampling matrix were
determined for each laser spot, in order to build a population
distribution. This procedure was consistent with the classical
multipoint calibration, but was based on a larger ensemble of
data points, rather than on a limited set of them.

Fig. 4 shows a histogram for the distribution of the obtained
LODs for each xyz shot in the 3D block, for a selection of
elements. Fig. 4a shows the total ion current (TIC), which is
a “ctive analyte” for a ceiling assessment of the ultimate LOD
assuming the use of the entire collected signal. This upper-end
Fig. 5 Heterogeneity plot based on the signal fluctuation normalized
information (RHS ordinate, red). For reference, the TIC and background
modes: elements such as H that are heavily concentrated on the surfac
sulfur, copper and zinc). See text for details.

1064 | J. Anal. At. Spectrom., 2024, 39, 1057–1069
value of the dynamic range lay in the 3 ppb domain. At the other
extreme of the dynamic range, Fig. 4b shows the LOD calculated
for the background equivalent concentration (BEC). This lower-
end value lay in the range of 25 ppm. The range of these values,
3–25 ppm, thus indicated the bracketing range of sensitivities
for HELDI mass spectrometry of any target analyte. Specically,
Fig. 4c–j show the LODs for a selection of major, minor and
trace elements in the sample materials (see caption for details).

As the range of sensitivities was homogeneously restricted
within less than one order of magnitude, one can conclude that
TIC signal normalization would provide a very accurate semi-
quantitative measure of the elemental concentrations. The
efficient ionization mechanism of HELDI, thanks to the high
photon energy as discussed above, is a major advantage to
achieve a homogeneous distribution of semi-quantitative
sensitivities.

Furthermore, the LOD distributions shown in Fig. 4 were
characterized with respect to the mode and spread of the indi-
vidual histograms. The histogram mode indicated the value for
s1. In fact, this mode was the most frequent response value,
which was indicative of the sensitivity. On the other hand, the
histogram standard deviation was related to s2. In fact, the
histogram spread was associated with the heterogeneity.
Notably, if the analyte accumulated mainly in one layer, e.g.
hydrogen on the surface, its 3D LOD could be dramatically
affected by a drop of intensity in other parts of the sample.

Indeed, the case of H is worth a few more words (Fig. 4c). Its
mode occurred at higher values than all the other analytes, and
this was because of its poor concentration, mainly on the
surface. As shown below, the concentration dropped rapidly
over a few tens of nm. Impressively, the data clearly indicated
that HELDI could spot surface H with an LOD of approx.
<1 ppm. To the best of available knowledge, this analytical
capability is unmatched by any other existing method.
to the noise (LHS ordinate, blue) and based on the compositional
(BKG) values are given as bracketing extremes. One can group two

e, and all others that are more or less layered in the thin films (notably

This journal is © The Royal Society of Chemistry 2024
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Following the discussion in Section 3.1, the histograms shown
in Fig. 4 permitted obtaining s1 and s2. In fact, if the distribution
of the data was fully dictated by counting statistics (Poisson
dispersion), the spot-to-spot variance would be given by the uc-
tuation of the measurement precision. Hence in this standard
case, the spread (s2) was equal to the mode (s1). In the case of an
overdispersed histogram45 (hyperskedastic or spread larger than
the mode), one could conclude that the increase in spread of the
data values was a consequence of the heterogeneity. In the theo-
retical opposite case (not observed here) of an underdispersed
histogram (hyposkedastic spreadmuch lower than themode), one
could conclude that thematerial suffered from contamination, i.e.
a systematic bias shied the data population. Following this
analysis, the ratio s2/s1 is proposed to determine the level of
heterogeneity of the 3D block analyzed. From a practical stand-
point, this is an alternative method to the current comparison of
the Pearson correlation and Spearman rank correlation
mentioned above, and is simpler and more straightforward.

Fig. 5 shows the heterogeneity, with respect to the signal
uctuation (blue curve, LHS ordinate) and the compositional
uctuation (red curve, RHS ordinate), for a selection of analytes.
For reference for the extreme ranges, again “ctive analytes”, such
as TIC and the background (BKG), are shown for the signal uc-
tuation curve. One should look at the blue curve with respect to
Fig. 6 Depth mapping in a cross-section of the thin films for a selection
are given as bracketing extremes. (a) Total ion current, (b) background equ
copper, (h) zinc, (i) selenium, and (j) tin.

This journal is © The Royal Society of Chemistry 2024
the threshold of 1. Lower values than this threshold indicate that
the signal experienced its major charge along the vertical (depth)
direction. This was the case for H that was highly concentrated on
the surface, while it dropped rapidly over a depth of a few tens of
a nm. All other analytes stayed close to 1, which indicates that the
lateral and vertical signal uctuation were comparable.

The red curve indicates how much compositional heteroge-
neity affected the various analytes. The case of H has been
discussed. All other analytes indicated a compositional
heterogeneity of 5 to 40. To a certain extent, this is the conse-
quence of the material structure, where the analyte tends to
reside mainly in the functional layer of the reference. Matrix
elements, such as S, Cu, and Zn, were not localized in the
functional layers. Henceforth, as a function of the porosity or
impurity of the matrix, these analytes indicated larger values.
Similarly, Na came from the SLG (soda lime glass) substrate. Li
was introduced as an implanted ion, and therefor was less
heterogeneous. Still the implanted dose control could be better,
as shown by the case of H as homogeneous surface impurity.
3.2 Tomographic quantitation

Fig. 6 shows the quantitative analyte distributions in cross-sections,
with an edge side of 10 mm. The abscissa is the push-broom
of target analytes. For reference, the TIC and background (BKG) values
ivalent concentration, (c) hydrogen, (d) lithium, (e) sodium, (f) sulfur, (g)

J. Anal. At. Spectrom., 2024, 39, 1057–1069 | 1065
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Fig. 7 Semi-quantitative concentrations for a selection of target analytes in the kesterite thin films obtained by HELDI mass spectrometry with
two kernel sizes of k1 = 1 and k2 = 3. The latter affects the spatial resolution of the elemental mappings. (a) Li7 (k1), (b) Li7 (k2), (c) S32 (k1), (d) S32
(k2), (e) Cu63 (k1), (f) Cu63 (k2), (g) Zn64 (k1), (h) Zn64 (k2).
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coordinate, which unfolds the 3D block every 10 points, the next ten
points are plotted one layer more above the page, like unfolding
a map. The granular structure and porosity of the material were
1066 | J. Anal. At. Spectrom., 2024, 39, 1057–1069
evident. Careful observation highlighted the layered structure. The
obtained concentrations (heat map color scales) were in agreement
with the nominal concentration of the various analytes.
This journal is © The Royal Society of Chemistry 2024

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3ja00399j


Paper JAAS

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 3

1/
07

/2
5 

18
:1

2:
07

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
3.3 Super-resolution by supervised learning

In order to enhance the details, a specic chemical visualization
by means of supervised learning was deployed. The chemical
visualization tested in this work was based on a convolution
bootstrapping method. In this procedure, the block of data
points was analyzed in smaller subgroups. Within such
subgroups, the relations between pairs, i.e. in terms of covari-
ance, were computed. As the code evaluated covariances
between different alternatives, it also calculated standard
errors, condence intervals, etc. With this mathematical anal-
ysis, the hypothesis is tested, which was the function that best
(minimization of the covariance) represented the distribution
(concentration) of a given elemental signal. This was useful to
enhance the resolution while statistically computing kernel
functions between all pairs of data points xi and xj (for clarity
here discussed in 1D, but the results were computed on xyz data
collection blocks). Obviously, convolution is a straightforward
image-processing technique that ts the raw value of a pixel
according to the values of its surrounding pixels. The specic
convolution kernel chosen is important to parametrize the
supervised learning process.46 This can be parameterized in
terms of the kernel parameters q, which scales as a function of
the correlation between two sample points; whereby the closer
these points, the higher the expected correlation. The latter
could be expected to degrade as a function of coordinate
interspacing jxi− xjj, because, over a characteristic length-scale,
the thin lm will show heterogeneity. Hence, it is useful to
express the covariance function as k(xi,xjjq), using a Gaussian
kernel dened as follows:

k
�
xi; xj jq

� ¼ sf
2 exp

"
� 1

2

�
xi � xj

��
xi � xj

�T
sl

2

#
(8)

where sf
2 is the signal variance and sl

2 is the characteristic
heterogeneity length-scale. The data analysis permits obtaining
high-resolution elemental distribution functions, with statis-
tical consistency, that are N-fold depixelated, i.e. a linear
improvement in spatial resolution. The level of resolution that
can be accomplished depends on the network size (so-called
Metcalfe law), such that for a large network, more covariances
can be computed to maintain a robust output. However, one
needs to reach the resolution that the material's heterogeneity
implies, to avoid overtting. In fact, it requires paying attention
to the computational effort that would be needed to process
a huge data set with very large depixelation. A pragmatic
approach from the analytical scientist demands a certain
understanding of the material under investigation. As a rule of
thumb, the characteristic heterogeneity length-scale gives the
order of magnitude resolution needed.

Fig. 7 shows the 3D block distribution, computed for two
kernel sizes (showing how many data points are used for
covariance analysis), a direct neighbor point size (k1= 1) on x, y,
and z, and a three-point size on each dimension (k2 = 3). These
blocks can be rotated or dissected, as the internal parts (not
shown) are also quantied. Increasing the kernel size makes the
data processing more intensive, while averaging out the raw
pixelation. If the kernel size is much larger than the
This journal is © The Royal Society of Chemistry 2024
characteristic heterogeneity (here k = 3), one will not notice any
visualization change. Besides the graphical improvement of the
chemical images, i.e. removal of pixelation, important technical
improvements of the information could be observed. First, the
leveling of the analyte concentration, as best shown in Fig. 7a
and b (Li). An optimization of the analyte distribution allows
improving the chromatic scale. Second, the appearance of
a functional layer could be clearly observed, as shown in Fig. 7c
and d as well as Fig. 7g and h. The examples are emblematic,
because with a unit kernel size, the block showed a spotted
structure. In Fig. 7e, one could also observe a spotted structure,
but only with a larger kernel size can one notice the bulk matrix
content (Fig. 7f) instead of a layer for Cu.

4. Conclusions

Direct solid microanalysis is a powerful analytical method to
highlight compositional gradients in a material. Its quantitative
approach is limited if a classical external calibration is adopted,
due to the lack of blank assessment and matrix-matched cali-
bration standards. It also becomes even less robust while
reducing the observation length-scale down to the nano-scale.
The fundamental aspects of this approach have been studied
to identify the underlying information in the data scatter.
Besides, shot noise, true scatter due to heterogeneity is high-
lighted. The multivariate convolution generated a point spread
function of the single calibration points. The structure of such
a spread, with respect to the shape and slope, permitted
discerning instrumental variances from compositional ones. A
detailed analysis, with quantitative descriptors (e.g. Pearson vs.
Spearman) gave insights into 3D chemical imaging (chemical
tomography). This model was implemented in XUV laser mass
spectrometry, to retrieve super-resolution information by
means of supervised learning procedures.
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