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turation, temperature and
cosolvent-driven chiroptical switching in peptide
self-assembly with switchable piezoelectric
responses†

Aparna Ramesh,‡ab Tarak Nath Das,‡c Tapas Kumar Maji *cd

and Goutam Ghosh *ab

Herein, we explore the intricate pathway complexity, focusing on the dynamic interplay between kinetic

and thermodynamic states, during the supramolecular self-assembly of peptides. We uncover

a multiresponsive chiroptical switching phenomenon influenced by temperature, denaturation and

content of cosolvent in peptide self-assembly through pathway complexity (kinetic vs. thermodynamic

state). Particularly noteworthy is the observation of chiroptical switching during the denaturation

process, marking an unprecedented phenomenon in the literature. Furthermore, the variation in

cosolvent contents produces notable chiroptical switching effects, emphasizing their infrequent

incidence. Such chiroptical switching yields switchable piezoresponsive peptide-based nanomaterials,

demonstrating the potential for dynamic control over material properties. In essence, our work pioneers

the ability to control piezoresponsive behavior by transforming nanostructures from kinetic to

thermodynamic states through pathway complexity. This approach provides new insights and

opportunities for tailoring material properties in self-assembled systems.
Introduction

Supramolecular assemblies with chiral helical structures, such
as the double helix of DNA, the triple helix of collagen, and the
a-helix of protein, are widely found in living systems and inti-
mately associated with several biological processes.1 Aside from
improving our understanding of the role of chirality in biolog-
ical contexts,2 the helical chirality of nanoscale architectures in
polymer and supramolecular self-assembly systems is crucial
for expanding their application3 in chiral recognition,4 chirop-
tical switches,5 asymmetric catalysis,6 and optoelectronics.7

Normal physiological processes are quickly disrupted if aber-
rant transitions of chiral structures take place. For instance,
some oncogenes are readily activated and cancer is caused by
the structural alteration of DNA from the normal right-handed
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helix (B-DNA) to the aberrant le-handed helix (Z-DNA).8 Simi-
larly, protein chain conformational disorder or chiral inversion
may affect cellular processes and increase the likelihood of
certain illnesses, such as Parkinson's and Alzheimer's diseases.9

Supramolecular chirality refers to the formation of chiral helical
structures in supramolecular assemblies through various non-
covalent interactions.4a,10,11 Controlling the helical sense or
reversing the macroscopic chirality of nanostructures during
self-assembly is a signicant challenge.4a,5b,12 However, these
inversions have been achieved by modifying the chiral struc-
tures of amphiphiles,13 adjusting the sequence of the constitu-
ents, applying various external stimuli and altering self-
assembly pathways.14–22 Supramolecular chirality inversion or
switching enables dynamic modulation of material properties,
offering a versatile approach to tune functionalities like optical
activities, mechanical behaviors, and electronic properties. It
enhances adaptability in responsive materials and enables
reversible changes in biological interactions and sensing
capabilities. Therefore, it is crucial to master the control of
supramolecular chirality for precise tuning of material proper-
ties, which continues to pose signicant challenges in control-
ling the helical direction or even reversing macroscopic
chirality. In this regard, altering self-assembly pathways in the
aspect of kinetic vs. thermodynamic control, which is termed
pathway complexity, would be a great option to alter supramo-
lecular chirality by precisely tuning the supramolecular self-
Chem. Sci., 2024, 15, 16355–16366 | 16355
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assembly behavior.23 However, over the past decade, researchers
have advanced the eld of controlled supramolecular self-
assembly in terms of pathway complexity with various p-sys-
tems.11c,23-25 However, controlling the self-assembly process of
peptide systems under the guidance of pathway complexity
remains a less explored area of research.25g–j In this context,
short peptide systems equipped with a p-chromophoric unit
can serve as optimal molecular components for self-assembly,
where nanostructures and functionality can be modulated by
varying the external stimulus by engaging various non-covalent
interactions. Furthermore, by adjusting various external factors
under the guidance of pathway complexity, these non-covalent
interactions can be modulated to observe their impact on the
chiroptical behavior. Peptides, known for their high biocom-
patibility, have the potential to mimic natural piezoelectric
systems such as collagen and proteins. However, the study of
the structure–property relationship of such peptide systems is
rare in the literature.26 In this context, peptide systems provide
an environmentally friendly method for producing piezoelectric
devices that boast superior exibility, durability, and respon-
siveness to mechanical stimuli.27 We envision that a multi
stimuli-responsive small peptide can be self-assembled in
a controlledmanner to unlock its potential in organic mechano-
nanodevices.

Herein, we demonstrate that tetrapeptides appended with
naphthalene diimide self-assembled into irregular nano-
structures exhibiting a strong circular dichroism (CD) signal,
indicative of a specic helical orientation (M-/P-type) associated
with kinetically controlled states (KS-I in 100%H2O and KS-II in
20% DMSO/H2O). Upon cooling from elevated temperatures to
room temperature (RT), a supramolecular chirality switching
Scheme 1 Schematic representation of chiroptical switching through p
self-assembly influenced by denaturation, temperature and cosolvent an

16356 | Chem. Sci., 2024, 15, 16355–16366
(P-/M-type) occurred, resulting in the formation of entangled
long nanobers, representing a thermodynamically controlled
state (TS) (Scheme 1). Surprisingly, denaturation studies also
revealed a supramolecular chirality switching at RT rather than
disassembly, even in the presence of over 80% of a good solvent;
such an observation has yet to be documented. Furthermore,
cosolvent induced studies showed that up to a threshold
content of the cosolvent (up to 50%), the system maintained
a kinetically controlled state (KS) at RT. In contrast, beyond this
threshold, the system directly transitioned into a thermody-
namically controlled state (TS) without passing through
a kinetic state, which was a rare observation in our view. Finally,
we demonstrate the switchable piezoresponsive behavior of self-
assembled nanostructures achieved through pathway
complexity, which to the best of our knowledge is a scarce
observation.26a
Results and discussion
Self-assembly studies of NDI-PEP-L

NDI-PEP-L and NDI-PEP-D were synthesized by employing the
solid phase peptide synthesis method following Fmoc chem-
istry (the detailed synthesis method is discussed in the ESI†).
The self-assembly behavior of both peptides has been investi-
gated by using various spectroscopic and microscopic tech-
niques. The appearance of two sharp absorption bands at
362 nm and 383 nm (I383 > I362) corresponding to the p–p*

transition in UV-vis spectrum of NDI-PEP-L in DMSO indicated
the monomeric state (Fig. 1a).28 However, a signicant reduc-
tion and reversal of the band intensity (I383 < I362) in H2O sug-
gested that the self-assembly occurred through strong p–p
athway complexity (kinetic state vs. thermodynamic state) in peptide
d their impact on switchable piezoelectric responses.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Solvent-dependent (a) UV-vis spectra; (b) PL spectra; (c) FTIR spectra in the N–H stretching region of NDI-PEP-L; (d) CD spectra of NDI-
PEP-L andNDI-PEP-D; (e) 1H-NMR spectra ofNDI-PEP-L (in the region of aromatic protons) at different % of D2O; (f) AFM image ofNDI-PEP-L in
H2O. [C = 0.01 mM for UV-vis, PL, CD, and AFM and C = 1 mM for FTIR and NMR studies].
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interactions (Fig. 1a).28b,29 Photoluminescence (PL) analysis at
an excitation wavelength of 360 nm of NDI-PEP-L revealed
a decrease in emission intensity in H2O compared to the
monomeric state in DMSO, indicating aggregation-caused
quenching (ACQ) along with a broad emission band at
456 nm attributed to strong p–p interactions (Fig. 1b). A
marked upeld shi and signicant broadening of the aromatic
protons in 1H-NMR spectra, upon increasing the amount of D2O
(Fig. 1e), further demonstrated the strong p–p interactions.11c

This phenomenon was further supported by temperature-
dependent 1H-NMR studies (DMSO-D6/D2O = 1 : 1), where an
upeld shi of the naphthalene ring protons was observed
upon cooling from 363 K to 293 K (Fig. S9†).30 H-bonding
interactions in the self-assembled state of NDI-PEP-L, were
indicated by the solvent-dependent FTIR spectra where
a prominent peak at 3471 cm−1 in DMSO-D6, suggesting the free
N–H stretching of the amide group in the monomeric state
(Fig. 1c). However, a signicant shi to a lower stretching
frequency (at 3391 cm−1) in D2O,25h suggesting strong inter-
molecular H-bonding interactions. This observation was further
corroborated by the notable shi in the amide C]O stretching
bands (amide I region), transitioning from the monomeric state
(1688 and 1663 cm−1) to the self-assembled state (1669 and
1622 cm−1, respectively) as shown in Fig. S10.† These
phenomena demonstrated that the formation of self-assembly
in aqueous media occurred through synergistic effects of
strong p–p stacking and H-bonding. Importantly, the NDI
chromophore and the aliphatic long chain also play a crucial
role in the self-assembly process through hydrophobic interac-
tions. Given the tetrapeptide motif in NDI-PEP-L, our interest
© 2024 The Author(s). Published by the Royal Society of Chemistry
was piqued regarding secondary structure formation during
peptide self-assembly. The far UV circular dichroism (CD)
studies unveiled a distinct band at 217 nm (Fig. S11†), indi-
cating the formation of a b-sheet rich structure.11c,d The FT-IR
spectrum of NDI-PEP-L revealed two intense peaks at 1622
and 1669 cm−1 in the amide-I region, suggesting an intermo-
lecular parallel b-sheet arrangement.31,11c Intriguingly, in the UV
region, signicant negative Cotton effects at 387 and 366 nm
corresponding to the NDI chromophore were observed in the
CD spectra of NDI-PEP-L in H2O whereas, no CD signal was
found in DMSO (Fig. 1d), which is characteristic of the mono-
meric state. The monosignated CD signal observed in the UV
region may be due to induced circular dichroism (ICD) that
might have originated from highly asymmetric interactions
caused by off-resonance coupling of transition dipoles.32

Furthermore, we studied the linear dichroism (LD) of NDI-PEP-
L which revealed an insignicant signal (Fig. S12†), demon-
strating the transfer of molecular chirality from the peptide
backbone to the supramolecular chirality (macroscopic
chirality) during the assembly process.10c The negative Cotton
effect demonstrated the le-handed (M-type) helical organiza-
tion of NDI chromophores.7e,33 To further validate this obser-
vation, CD spectrum of the NDI-PEP-D isomer, an enantiomer
of NDI-PEP-L, was recorded under similar condition, showing
a positive CD signal (P-type, right-handed helical organization),
which was the exact mirror image of the NDI-PEP-L CD signal
(Fig. 1d). To gain insight into the morphology of NDI-PEP-L, we
performed atomic force microscopy (AFM), which exhibited the
formation of short nanorod like small aggregates (Fig. 1f).
Additionally, the dynamic light scattering (DLS) study revealed
Chem. Sci., 2024, 15, 16355–16366 | 16357
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a broad particle size distribution, corroborating the formation
of anisotropic nanostructures (Fig. S13†).34
Temperature-induced chirality switching

To further investigate the mechanistic details of the self-assembly
behavior of NDI-PEP-L, variable temperature (VT) UV-vis spectro-
scopic measurement was performed, where no monomeric state
was found in H2O at 363 K (Fig. S14a†), indicating incomplete
disassembly even at high temperature. This was further supported
by VT-CD where a signicant CD signal was noticed at high
temperature (Fig. S14b†). These studies suggested the formation
of strong aggregates in H2O, facilitated by strong intermolecular
interactions. Short nanorod structures that were observed in H2O
also remained unchanged even upon exposure to heating and
subsequent cooling (Fig. S15†). Since reaching the monomeric
state was found to be difficult even at high temperature in a poor
solvent (H2O), a ‘good and poor solvent’ strategy was employed to
achieve the monomeric state at elevated temperatures.35 In this
regard, we used 20% DMSO in H2O where the UV-vis spectral
behavior was almost similar to that in 100% H2O (Fig. S16a†) at
RT, indicating no change in the internal order of the chromo-
phores. Upon heating a 0.01 mM solution of NDI-PEP-L in 20%
DMSO/H2O at 363 K, a distinct change in both spectral intensity
and sharpness was observed, resembling the spectral behavior
characteristic of the monomeric state (Fig. S17†). The cooling
curve (363 to 298 K, at 1 K min−1) exhibited a non-sigmoidal
transition, indicating cooperative supramolecular polymeriza-
tion (Fig. 2a and b).11c,28b The cooling curves at different concen-
trations (Fig. 2b and S18,† ST1) were analyzed by tting the data in
the nucleation-elongation model,36 yielding the following param-
eters: enthalpy (DH) = −81.89 kJ mol−1, entropy (DS) = −140.1 J
mol−1 K−1, elongation temperature (Te) = 349 K (for C = 0.01
mM), Gibbs free energy (DG) = −40.23 kJ mol−1 and degree of
Fig. 2 (a) VT (cooling) UV-vis spectra of NDI-PEP-L in H2O/DMSO (8 : 2
and fitted to the cooperative model [cooling rate = 1 K min−1], and temp
H2O : DMSO (8 : 2) [C= 0.01 mM] indicate disassembly at 363 K and chira
NDI-PEP-L in H2O/DMSO (8 : 2) [C = 0.01 mM], (f) corresponding coolin
AFM images of NDI-PEP-L (g) at RT (KS-II) and (h) after cooling (TS) in H

16358 | Chem. Sci., 2024, 15, 16355–16366
cooperativity (s) = 2.8 × 10−3. This phenomenon was further
supported by CD spectroscopy where a similar Cotton effect was
observed in both 100% H2O and 20% DMSO in H2O, demon-
strating a similar organization of the molecules (Fig. S16b†).
Temperature-dependent CD spectra revealed the formation of
a CD silent monomeric state upon heating at 363 K (Fig. 2c). It's
notable that upon cooling from 363 K to 298 K, the CD signal of
NDI-PEP-L reversed, suggesting supramolecular chirality switch-
ing from the M-type to P-type (from le-handed to right-handed;
Fig. 2c) helical assembly. This temperature-assisted stereo-
mutation process was further validated with the stereoisomer,
NDI-PEP-D. A positive CD signal was observed for a 0.01 mM
solution of NDI-PEP-D in 20% DMSO/H2O at RT, which inverted
upon heating and subsequent cooling process (Fig. 2d). No such
chirality switching (except intensity) was found in the case of
100% H2O aer cooling from 363 K. Slow cooling experiments
(from 363 to 298 K at 1 Kmin−1) in 20%DMSO/H2Omonitored by
CD spectroscopy (Fig. 2e) exhibited a non-sigmoidal curve (Fig. 2f),
suggesting cooperative supramolecular self-assembly, consistent
with the ndings from the VT-UV-vis studies. This phenomenon
demonstrated the prominent role of temperature in supramolec-
ular chirality inversion.17

Interestingly, there was no observable difference in the
absorption spectra under similar conditions, suggesting
a minimal change in the internal ordering of the overall system
during the inversion process (Fig. S17†). The initial aggregate at
RT exhibiting a negative CD signal is regarded as the kinetic
state (in 100% H2O as KS-I and 20% DMSO in H2O as KS-II),
while the second aggregate obtained aer the thermal anneal-
ing process is recognized as the thermodynamic state (TS).37 An
additional investigation was conducted into the stability of the
thermodynamically stable state (TS) through thermal anneal-
ing, revealing no disassembly even at elevated temperatures. CD
) [C = 0.01 mM], (b) cooling curve of NDI-PEP-L monitored at 383 nm
erature-dependent (c) CD spectra of NDI-PEP-L and (d) NDI-PEP-D in
lity inversion upon cooling back to 298 K. (e) VT (cooling) CD spectra of
g curve fitted to the cooperative model [cooling rate = 1 K min−1], and

2O : DMSO (8 : 2).

© 2024 The Author(s). Published by the Royal Society of Chemistry
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spectroscopy indicated a slight reduction in the CD signal at
high temperatures, which returned to its original position upon
cooling to RT (Fig. S19†), suggesting a highly stable aggregated
state. In order to gain further insight into the morphological
analysis of two different aggregate systems, AFM analysis was
carried out under both conditions. KS-II showed the formation
of spherical nanoparticles at RT which transformed into highly
crosslinked nanobers (TS) aer thermal annealing followed by
cooling (Fig. 2g and h). The formation of these nanostructures
was conrmed by DLS analysis, which showed a uniform
particle size distribution and faster correlation decay kinetics,
indicating a smaller, isotropic nanostructure compared to KS I.
In the case of TS, a much larger size distribution and slower
correlation function decay kinetics supported the formation of
higher-order nanostructures (Fig. S20†).33 Thermal annealing of
NDI-PEP-L solution in 20% DMSO/H2O leads to dissociation of
the kinetic assembly into monomers and subsequent cooling
drives the one directional ordered arrangement of these small
peptides into a nanobrillar structure. The dynamic nature of
the non-covalent interactions displayed this kinetic modula-
tion, which regulates the supramolecular chirality through
stepwise organization into a thermodynamic aggregate.10e The
melting curve of the aggregate (KS-II) as determined fromUV-vis
and CD spectroscopic studies, was found to differ from the
cooling curve having higher elongation temperature (Fig. S21
and S22†). The presence of hysteresis with a higher melting
point in the heating curve indicated that the system was under
kinetic control (Fig. S21b†).38 Time-dependent CD spectroscopy
indicated the absence of chirality inversion over time in both
pure H2O and a 20% DMSO/H2O mixture, implying the forma-
tion of stable kinetic states with substantial energy barriers
hindering the transition to the TS at RT (Fig. S23†). The inability
to shi from KS-I to TS and the capacity to transition from KS-II
to TS upon thermal annealing suggested the signicant inu-
ence of DMSO (cosolvent) and temperature on the chirality
switching process. DMSO has the capacity to disrupt H-
bonding, thereby leading to signicant conformational
changes in such assemblies.10e Temperature also plays a crucial
role in adjusting the strength of noncovalent interactions like
H-bonding and van der Waals forces, which are fundamental in
governing the self-assembly behavior of supramolecular
Fig. 3 (a) UV-vis spectra and (b) CD spectra of NDI-PEP-L during the den
analysis after the completion of the denaturation process showing a hig

© 2024 The Author(s). Published by the Royal Society of Chemistry
systems. By modifying the thermal energy of the system,
temperature impacts the kinetic energy of molecules, resulting
in alterations in the geometry, orientation, and intensity of
noncovalent interactions. Consequently, this temperature-
induced adjustment can trigger a reorganization of the
building blocks, facilitating the formation of highly stable
specic supramolecular structures.17

Denaturation-induced chirality switching

The mechanistic understanding of the self-assembly process
was clearly elucidated from the cooling curve analysis in the
presence of 20%DMSO. As in 100%H2O, we could not reach the
monomeric state even at elevated temperature we were curious
to investigate the self-assembly mechanism from KS-I (in 100%
H2O) at RT by the denaturation method using UV-vis and CD
spectroscopy. The introduction of a monomeric solution of
NDI-PEP-L (0.01 mM in DMSO) into the aqueous solution of KS-
I resulted in an increase in the absorption intensity of the NDI
chromophoric unit. But surprisingly, it failed to reach the
monomeric state even aer reaching ∼83% of the DMSO
solvent in the mixture, as evidenced by the spectral character-
istics (Fig. 3a). NDI absorption spectra that are highly sensitive
towards p–p stacking interaction can be recognized from the
intensity ratio of the peaks at 383 and 363 nm. Throughout the
denaturation process, a ratio of absorption peaks (I383/I363)
lower than 1 was observed (whereas greater than 1 for the
monomeric state), indicating the stable aggregated state ofNDI-
PEP-L (Fig. 3a).28,29 The denaturation study was further investi-
gated with CD spectroscopy under similar conditions. In the
initial phase of the denaturation process, a decrease in the
intensity of the CD signal was noticed, eventually approaching
zero. Intriguingly, upon further increase in the content of
cosolvent (DMSO), the CD signal was found to reverse (from
a negative CD signal to a positive CD signal), accompanied by an
increase in the intensity up to ∼78%. The intensity of the CD
signal reached a maximum with a saturation point at ∼78%
(Fig. 3b). To conrm, we further checked the UV-vis spectrum of
the nal solution obtained aer the denaturation study in CD
spectroscopy which revealed similar spectral behavior to the
UV-vis spectrum obtained before the denaturation study, indi-
cating the presence of the aggregated state (Fig. S24†) even in
aturation process starting from 100% H2O [C = 0.01 mM], and (c) AFM
hly crosslinked nanofibrous structure [C = 0.01 mM].

Chem. Sci., 2024, 15, 16355–16366 | 16359
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Fig. 4 Qualitative energy surface diagram of the NDI-PEP-L system under different aggregated conditions with different nanostructures in
kinetic states (KS-I and KS-II) and the thermodynamic state (TS). Both KS-I and KS-II formed short nanorods and nanoparticles, respectively, with
M-type helical orientations which further transformed into TS under different conditions, resulting in the formation of an entangled nanofibrous
morphology having P-type helical orientations.
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the presence of high cosolvent (DMSO) contents. Thus, the
overall denaturation analysis indicated the transformation of
the kinetic product (KS-I) to the thermodynamic product (TS),
rather than the disassembled state. This chiral switching
occurred through a non-chiral aggregated state where the CD
signal was almost zero, revealing nanoparticle structures, as
conrmed by AFM studies (Fig. S25†). This supramolecular
chirality inversion was further validated with the enantiomer
(NDI-PEP-D), where the positive CD signal inverted into
a negative signal, indicating the change in the helical confor-
mation from P- to M-type (Fig. S26†). To the best of our
knowledge this kind of denaturation induced supramolecular
chirality inversion has yet to be demonstrated. Additionally, to
further validate this phenomenon, a fresh 0.01 mM NDI-PEP-L
solution was prepared in 80% DMSO/H2O, which showed
monomeric spectral characteristics, as evident from UV-vis and
CD spectroscopic analysis (no Cotton effect; Fig. S27†). There-
fore, it is evident that a slow change in the solvent polarity
induces dynamicity in the system, which aided in rearranging
the noncovalent interactions and the assembly into a thermo-
dynamically favorable state. However, the direct sample prepa-
ration method yielded a monomeric state, as expected, owing to
the presence of a high amount of good solvent (cosolvent) in the
system. First, the kinetically controlled self-assembly (KS-I) is
16360 | Chem. Sci., 2024, 15, 16355–16366
formed through a rapid aggregation process with an M-type
structure, which is stable enough and requires energy to
transform into the thermodynamically controlled self-assem-
bled state (TS). In this context, it is feasible to supply the
required energy for the transformation, either by heating or
through a slow relaxation process, which involves adding a good
solvent to the system. The morphological analysis for these two
aggregated states was performed through AFM which revealed
short nanorod structures in 100% H2O as the kinetic product
(KS-I), which further evolved into cross-linked nanobrillar
architectures (TS) upon completion of the denaturation process
(∼83% DMSO/H2O) (Fig. 1d and 3c). These studies suggested
the considerably higher stability of the TS even in the presence
of a substantial quantity of a good solvent in the system. This
nanostructural and conformational transition during denatur-
ation, which involved a change from kinetic to thermodynamic
states, further demonstrated the pathway complexity, as
observed in previous temperature-studies. These above
phenomena associated with intricate pathway complexity were
represented in a qualitative energy surface diagram (Fig. 4).

Cosolvent-induced chirality switching

In our investigation into temperature-dependent studies, we
observed a signicant inuence of the cosolvent (DMSO) on
© 2024 The Author(s). Published by the Royal Society of Chemistry
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supramolecular chirality switching. Intrigued by this, we delved
into understanding how varying amounts of cosolvent affected
supramolecular chirality switching (Fig. 4). UV-vis and CD
spectra were collected across a range of DMSO percentages,
from 0% to 100%. Our ndings revealed that NDI-PEP-L
remained in a stable aggregated state up to a 70% DMSO/H2O
solvent mixture, as indicated by broad absorption maxima and
a lower intensity peak observed at 383 nm (Fig. S28†) in UV-vis
spectra. CD spectra under similar conditions exhibited negative
signals up to 50% DMSO/H2O, resembling KS-II observed in
20% DMSO/H2O. Interestingly, a complete inversion of the CD
signal was observed aer reaching 60% DMSO in H2O, indi-
cating the direct formation of TS without any KS at RT (Fig. 5a).
Further increases in DMSO percentage led to an increase in the
CD peak intensity at 70% DMSO/H2O, followed by a reduction
due to higher cosolvent contents. The CD signal approached
zero at 80% DMSO/H2O, signifying complete disassembly of the
supramolecular polymer. The inversion of supramolecular
chirality occurred within the 50% to 60% DMSO/H2O solution
range, while maintaining the aggregated state throughout the
transition process. This transition from the KS to TS occurred
Fig. 5 Cosolvent dependent CD spectra of (a) NDI-PEP-L and
(b) NDI-PEP-D [C = 0.01 mM, RT].

© 2024 The Author(s). Published by the Royal Society of Chemistry
through a non-structurally aggregated state, bypassing a mono-
meric state at RT. NDI-PEP-L formed ill-dened nanoparticles
in 50% DMSO/H2O (Fig. S29†), highlighting a transition
through a non-chiral aggregated state lacking proper molecular
arrangements. This sensitivity to stereomutation underscores
the signicance of both the presence and threshold concen-
tration of DMSO (here, 50%) required to directly form a TS at
RT. This phenomenon was further validated with the NDI-PEP-
D isomer, exhibiting similar observations with opposite CD
signals (Fig. 5b).
Switchable piezo-responsive behavior

Self-assembled peptide systems with a directional H-bonded
network are especially intriguing because they generate
specic dipole moments throughout the nanoarchitecture. The
directional dipolar nature within an anisotropic nanostructure
prompted us to investigate the material characteristics of this
peptide system under the two distinct aggregated conditions.
Self-assembled short peptides are increasingly recognized as
adaptable components for creating biocompatible mechanical
devices with tailored functionalities. Hence, the possible
piezoelectric behavior of the self-assembled NDI-PEP-L was
examined. Piezo force microscopy (PFM) analysis was carried
out for KS-I, KS-II and TS. Samples were prepared on a con-
ducting ITO coated glass substrate and followed by the PFM
measurement by monitoring the phase and amplitude alter-
ation upon applying an external electrical bias. The vertical
piezoresponse of the peptide nanostructure was evaluated using
the piezoelectric coefficient (d33). No piezoresponse was found
upon applying the potential for both KS-I and KS-II (Fig. S30,†
6a and b). Interestingly, the TS of NDI-PEP-L exhibited a char-
acteristic buttery loop opening (amplitude curve) (d33 = 26.5
pm V−1) (Fig. 6c and S31†). Simultaneously, a distinct 180°
phase change was observed, suggesting a shi in the dipolar
orientation of the H-bonded amide linkages in response to the
applied external potential (Fig. 6d). The piezoresponsive
behavior was further conrmed by analyzing the same with the
enantiomer. NDI-PEP-D also showed similar response towards
external bias in its TS (d33 = 25.2 pm V−1) (Fig. S32 and S33†).
The obtained difference in the piezoresponse of the three
different states (KS-I, KS-II and TS) can be attributed to the short
range or lower order multidirectional dipolar orientation of the
amide linkage in KS-I and KS-II.26a In sharp contrast, it's
presumed that the TS featured a long-range, unidirectional
arrangement of the H-bonded amide connectivity, leading to
the emergence of piezo-responsiveness. The thermal annealing
process reorganized the peptide system, resulting in the
production of more ordered nanostructures with distinct
features. The micrometer-long crosslinked nanobers with
well-oriented dipoles, impart an anisotropic quality and
generate spontaneous polarization, which can be manipulated
under external bias to realize the piezoelectric response. In this
context, the M-type helical packing of NDI-PEP-L organized the
amide functional groups randomly, causing the formation of
nanoparticles with nonuniform dipolar orientations. However,
in the TS, the P-type helical packing arranged the dipoles in
Chem. Sci., 2024, 15, 16355–16366 | 16361
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Fig. 6 PFM (a) amplitude voltage butterfly loop (off state) and (b) phase voltage hysteresis loop (off state) obtained for NDI-PEP-L in the
kinetically aggregated state (KS II). PFM (c) amplitude voltage butterfly loop (off state) and (d) phase voltage hysteresis loop (off state) obtained for
NDI-PEP-L in the thermodynamically aggregated state (TS).
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a much more regular pattern, resulting in a consistent dipolar
orientation of the amide bonds throughout the brillar nano-
structure. This phenomenon further illustrates the pivotal
inuence of specic packing arrangements in constructing self-
assembled nanostructures with tunable piezoelectric proper-
ties. Although there may not be a direct link between chirality
and piezoelectric characteristics, the different nanostructures
generated from the KS and TS through pathway complexity are
pivotal in driving the observed switchable piezoelectric
responses. In our view, the occurrence of switchable piezores-
ponsive behavior inuenced by pathway complexity is a rare and
noteworthy phenomenon.26a
Conclusion

In summary, our study unveiled the multi-responsive chirop-
tical switching in peptide self-assembly and switchable piezo-
electric responses through pathway complexity. We synthesized
a tetrapeptide appended with naphthalene diimide, NDI-PEP-L
(L-isomer), which self-assembled into kinetically controlled (KS-
I) short nanorod structures with an M-type (le-handed) chro-
mophoric organization in H2O. However, in the presence of
a good solvent (cosolvent), specically 20% DMSO in H2O, this
peptide formed irregular nanoparticles with a similar M-type
chromophoric organization, representing another kinetically
controlled state (KS-II). Cooling experiments using UV-vis
spectroscopy exhibited a cooperative self-assembly mechanism,
resulting in the formation of long entangled nanobers,
a thermodynamically stable state (TS). Intriguingly, CD spec-
troscopy during cooling demonstrated a chiroptical switching
from a M-type (le-handed) to a P-type (right-handed) helically
organized state, although similar UV-vis spectra were noticed
aer cooling. Denaturation studies further revealed a surprising
observation where a chiroptical switching from a KS (M-type for
the L-isomer) to a TS (P-type for the L-isomer) happened rather
than a disassembled state even though the system contained
over 80% of good solvent (DMSO). This observation represents
a novel contribution to the existing literature. Subsequent CD
studies, varying the cosolvent (DMSO) content in the aqueous
medium, showed that beyond a critical cosolvent content (>50%
DMSO), the peptide directly transitioned into a TS (P-type for
the L-isomer) at RT, bypassing the kinetic state – also a rare
phenomenon in the literature. This unique chiroptical behavior
16362 | Chem. Sci., 2024, 15, 16355–16366
was further supported by similar observations with the enan-
tiomer (D-isomer, NDI-PEP-D), which exhibited mirror-image
CD signals. This chiroptical switching facilitated the creation of
switchable piezoresponsive behavior in peptide-based nano-
materials, highlighting dynamic control over material proper-
ties. Essentially, our work pioneered dynamic piezoresponsive
control in peptide-based nanomaterials through pathway
complexity, opening new avenues for tuning material properties
in self-assembled states. Overall, mastery over competing
kinetic and thermodynamic pathways offers a route to design
adjustable nanostructures with precise dimensions and shapes,
pivotal for optimized interactions with biological systems and
diverse applications across biomedicine and materials science.
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