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Abstract

Quasiclassical methods for nonadiabatic molecular dynamics, based on the Mayer-

Miller-Stock-Thoss mapping, are implemented in the open source computer package

PySurf. This complements the implementation of surface hopping approaches per-

formed in previous works, and leads to a unified code that allows nonadiabatic dynam-

ics simulations using various mapping approaches (Ehrenfest dynamics, the linearized

semiclassical initial value representation, the Poisson-bracket mapping equation, the

“unity” approach for the identity operator, the spin mapping, and the symmetrical qua-

siclassical windowing method) as well as different flavours of surface hopping (fewest-

switches, Landau-Zener, and a mapping-inspired scheme). Furthermore, a plugin is
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developed to provide diabatic vibronic models as input in a sum-of-products form.

This opens the way to the benchmark of different types of trajectory-based propaga-

tors on different models, against exact quantum dynamical simulations performed, e.g.,

by the multiconfigurational time-dependent Hartree method. Illustrative calculations,

performed using the whole set of available propagators, are presented for different

harmonic and anharmonic two-state models, exhibiting various degrees of correlation

between vibrational modes.

1 Introduction

Nonadiabatic phenomena in photochemistry involve the dynamics of nuclear wave packets

evolving in coupled potential energy surfaces (PES) associated to different electronic states.

The computationally most efficient – and therefore most commonly used – approaches to

simulate nonadiabatic molecular dynamics are methods where the nuclei follow independent,

classical-like trajectories.1–4

The main advantage of trajectory-based methods, in contrast to full quantum dynamical

methods for nuclear motion,5–7 is the fact that the electronic Hamiltonian does not need to

be precalculated and fitted, but can be evaluated “on-the-fly” for varying nuclear geometries.

A notable exception in quantum dynamics is the direct-dynamics variational multiconfigu-

rational Gaussian (dd-vMCG) wave packet method,8,9 that is based on a superposition of

Gaussian wave packets that follow non-classical coupled trajectories. This approach allows

on-the-fly nuclear quantum dynamics usually within a local harmonic approximation; how-

ever, due to strong nonlinearities in the equations of motion, the applications of vMCG have

so far limited to relatively small molecular systems.

On the other hand, the use of precalculated surfaces, such as linear or quadratic vibronic

coupling models,7,10,11 is not necessarily a prerogative of quantum dynamical methods. Ana-

lytical Hamiltonian models are widely used in trajectory-based simulations to extend the dy-

namical propagation to long time scales,12,13 or to benchmark approximate methods against

2
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exact quantum mechanical results.14–18

The methods explored in this work follow a general formalism in which only the electronic

dynamics are formally treated with a rigorous quantum mechanical description, represented

by a time-dependent electronic wavefunction

|Ψel, t⟩ =
N∑

n=1

Cn(t) |n(Q)⟩ , (1)

where the kets |n(Q)⟩ indicate a finite basis of N electronic (adiabatic or diabatic) states,

that in general depend on the nuclear coordinates Q. The complex coefficients Cn(t) are

propagated via the time-dependent Schrödinger equation,

dCn

dt
= − i

h̄

N∑
m=1

H(QM)
nm (Q,P)Cm(t) , (2)

where H
(QM)
nm (Q,P) are the elements of a quantum mechanical Hamiltonian matrix, that

generally depend on nuclear coordinates Q = (Q1, ..., QF ) and momenta P = (P1, ..., PF ).

The nuclear coordinates and momenta are initialised by sampling from an initial distri-

bution and evolve according to independent Hamiltonian trajectories,

dQκ

dt
=

Pκ

Mκ

, (3a)

dPκ

dt
= −∂Veff(Q)

∂Qκ

, (3b)

where Mκ is the mass associated to the κ-th degree of freedom and Veff is an effective PES

defining the forces responsible for the nuclear motion.

The use of an effective potential is an unavoidable consequence of the use of classical

(i.e., independent) trajectories for the nuclear coordinates. The choice of Veff is not unam-

biguous and has led to the formulation of a wide variety of methods based on independent

trajectories.4 In general terms, the various approaches can be classified in two categories:

3
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1. Mixed quantum-classical surface hopping methods, where Veff(Q) coincides, at each

time, with the PES of an active adiabatic state. Different approaches – such as the

fewest switches,19 the Landau-Zener,20 or the mapping-inspired21,22 schemes – differ in

the algorithm that determines the time step at which the active state should change

and how the energy conservation should be imposed, i.e. when and how a trajectory

should “hop” from one to another surface.

2. Quasiclassical mapping methods or “Ehrenfest-like approaches”, where the effective

potential for the nuclear dynamics is obtained as a mean-field average of the electronic

Hamiltonian. In contrast to surface hopping, the mapping methods can be rigorously

derived as a classical limit of quantum mechanics,23,24 where the real and imaginary

part of the coefficients Cn(t) are proportional to “electronic” coordinates and momenta.

Therefore, we denote these approaches as “quasiclassical” rather than “mixed quantum-

classical”. The classical limit introduces an ambiguity in the sampling of the electronic

phase space coordinates and in the evaluation of the electronic observables, leading to

variety of different mapping methods.25–29

Notable recent developments on mapping methods include unified formulations for vari-

ous approaches,30,31 rigorous definitions of the zero-point energy parameter for the electronic

variables,31–33 as well as accurate windowing schemes to evaluate the electronic popula-

tion.34,35 Futhermore, ab initio implementations36,37 and initial benchmark studies15,17,38

have recently appeared.

Nevertheless, although the theoretical photochemistry community has gained significant

expertise in surface hopping methods, mapping approaches have not been tested or applied as

extensively. One reason is that using an average potential can seem nonphysical, particularly

when nuclear trajectories move into regions where the potential energy surfaces of different

states are well separated after passing through a near-degeneracy zone. Furthermore, these

methods are known to break detailed balance in most cases,39,40 a property necessary for

internal consistency. The symmetric quasiclassical mapping approach by Cotton and Miller

4
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is partially an exception, since it has been shown to obey detailed balance in the limit of

vanishing electron-nuclear coupling.41

Since mapping approaches constitute a proper classical limit of quantum mechanics,

they are naturally more suitable for the development of non-classical corrections to impose

microscopic reversibility,39,40,42 including those based on interacting trajectories,43,44 or to

formulate quantum-classical analogues of stationary and time-resolved spectroscopic observ-

ables. In particular, trajectory-based approached for time-resolved nonlinear spectroscopy

have been presented and reviewed by several authors.45–48 Recent applications include sim-

ulations of the transient absorption and two-dimensional spectrum of pyrazine,49,50 as well

as pump-probe signals for azomethane51 and a dendrimer structure.52

Another reason that limits the application of mapping approaches to nonadiabatic dy-

namics is the lack of a general-purpose code to systematically compare the various variants

of different families of methods. Connected to this, a computational platform is missing to

systematically benchmark surface hopping or quasiclassical mapping methods against numer-

ically exact quantum dynamical results obtained, for example, by the Heidelberg MCTDH

package53,54 or Quantics.55

Recently, the Pysurf package, developed in our group, was presented.56 This software is

designed to facilitate prototyping and development tasks in general computational chemistry

and, in particular, in the exploration of ground and excited state PES within nonadiabatic

molecular dynamics. Due to its modular structure, it is an ideal platform to implement and

test different propagation schemes for nonadiabatic dynamics.

The goal of this work is to extend the code to provide a computational platform for

the systematic comparison between surface hopping and mapping methods, as well as to

facilitate comparison with quantum dynamical calculations.

The implementation and testing of fewest-switches and Landau-Zener surface hopping

schemes is described in a previous work.57 Here we present the implementation of different

propagation schemes based on the so called Mayer-Miller-Stock-Thoss mapping,23,24 includ-

5
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ing a recently developed mapping-inspired approach to surface hopping.22 The code comes

with a plugin to allow users to provide analytic PES in sum of product form, using a format

similar to that used for the MCTDH or Quantics codes. This enables the systematic and

seamless benchmark of various mixed quantum-classical or quasiclassical methods against

full quantum dynamical results.

The rest of the paper is organized as follows. Section 2 provides the essential deriva-

tion and an overview of the mapping methods for nonadiabatic dynamics implemented in

this work, Section 3 describes the main details of the computational implementation, Sec-

tion 4 illustrates prototypical applications where different methods are compared, Section 5

summarizes and concludes.

2 Mapping approaches for nonadiabatic molecular dy-

namics

Many variants of the nonadiabatic mapping approaches have been formulated over several

decades, and derived using different formalisms.23–26,29,34,58,59 The purpose of this section is

to provide a concise overview of the family of techniques implemented in the PySurf package,

highlighting the fact they can all be connected to the classical limit obtained within the phase

space formulation of quantum mechanics.

In the following we refer to nonadiabatic molecular dynamics that, in a full quantum

mechanical setup, is described by the time-dependent Schrödinger equation

∂|Ψ, t⟩
∂t

= − i

h̄
Ĥ|Ψ, t⟩ , (4)

that accounts for an arbitrary number of electronic states (N) and nuclear degrees of freedom

6
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(F ). In the diabatic representation, we take the molecular Hamiltonian in the form

Ĥ =
F∑

κ=1

P 2
κ

2Mκ

+ V0(Q) +
N∑

n,m=1

|n⟩Vnm(Q)⟨m| , (5)

where |n⟩, |m⟩ denote the discrete diabatic electronic levels, and the vectorsQ = (Q1, ..., QF )

and P = (P1, ..., PF ) collect the nuclear coordinates and momenta, respectively. V0(Q)

is an average diabatic PES and the matrix V(Q) = {Vnm(Q)} is defined to be real and

traceless, i.e.
∑N

n=1 Vnn(Q) = 0.28,30 For simplicity we define the initial state to be a nuclear

wavefunction χ0(Q) associated to one specific diabatic state, i.e.

|Ψ, t = 0⟩ = |n⟩χ0(Q) . (6)

The key step to derive quasiclassical mapping approaches for nonadiabatic molecular

dynamics is the Schwinger mapping of a N -level system to the manifold of singly excited

states of a N -dimensional harmonic oscillator,24,60

|n⟩⟨m| map−−−→ â†nâm , (7a)

|n⟩ map−−−→ |01, ..., 1n, ..., 0N⟩ , (7b)

where âm and â†n are bosonic annihilation and creation operators and |01, ..., 1n, ..., 0N⟩ is a

state of aN -dimensional harmonic oscillator with a single excitation on the “electronic mode”

n. Expressing the bosonic operators in terms of dimensionless coordinates and momenta,

ân = (qn + ipn) /
√
2, the Hamiltonian takes the so called Meyer-Miller-Stock-Thoss (MMST)

mapping form,23,24

Ĥmap(Q,P,q,p) =
F∑

κ=1

P 2
κ

2Mκ

+ V0(Q) +
1

2

(
qTV(Q)q+ pTV(Q)p

)
, (8)

where q = (q1, ..., qN) and p = (p1, ..., pN) are the dimensionless coordinates and momenta

7
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for the mapping variables (in the Schrödinger representation pn = −i∂/∂qn). Combined with

the time-dependent Schrödinger equation

∂Ψmap(Q,q, t)

∂t
= − i

h̄
ĤmapΨmap(Q,q, t) , (9)

the MMST Hamiltonian gives rise to exactly the same dynamics as Eqs. (4) and (6), pro-

vided that the initial state is defined consistently as a singly excited harmonic oscillator

wavefunction

Ψmap(Q,q, 0) =

√
2

πN/4
qn exp

(
−1

2
qTq

)
. (10)

However, the quantum mechanical solution of Eq. (9) with the initial condition given

by Eq. (10) is as difficult as solving the original problem. The potential advantage of the

mapping approach lies in its straightforward formulation in the phase space formalism of

quantum mechanics, upon which the classical limit can be defined rigorously. To this end,

one introduces the Wigner function61

W (Q,P,q,p, t) =

∫
dS

(πh̄)F

∫
ds

πN
Ψ∗map(Q− S,q− s, t)Ψmap (Q+ S,q+ s, t)

× exp

(
−2i

h̄

F∑
κ=1

PkSk − 2i
N∑

n=1

pnsn

)
(11)

regarded as a quasi-probability distribution in the phase space, meaning that the expectation

value of a generic observable Ω(Q,P,q,p) is evaluated as

⟨Ω⟩ (t) =
∫

dQ

∫
dP

∫
dq

∫
dpΩ(Q,P,q,p)W (Q,P,q,p, t) . (12)

In analogy with classical mechanics, the MMST Hamiltonian of Eq. (8) is also treated as a

function of the phase space variables, and not as an operator (therefore the caret is removed

hereafter), and the time evolution of the Wigner function is given by the Wigner-Moyal

8
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equation,62

∂W

∂t
= − i

h̄
Hmape

Λ̂W +
i

h̄
W eΛ̂Hmap , (13)

where the operator Λ̂, consistently interposed between two phase space functions, is defined

as

Λ̂ =
ih̄

2

F∑
κ=1

(←−−
∂

∂Qκ

−−→
∂

∂Pκ

−
←−−
∂

∂Pκ

−−→
∂

∂Qκ

)
+

i

2

N∑
n=1

(←−−
∂

∂qn

−−→
∂

∂pn
−
←−−
∂

∂pn

−−→
∂

∂qn

)
, (14)

and the arrow indicates the side on which the differentiation is done. Using the MMST

Hamiltonian of Eq. (8), the approximation eΛ̂ ≈ 1 + Λ̂ gives the classical Liouville equation

for the phase-space distribution,

∂W

∂t
=

F∑
κ=1

[
∂V0

∂Qκ

+
1

2
qT ∂V

∂Qκ

q+
1

2
pT ∂V

∂Qκ

p

]
∂W

∂Pκ

−
F∑

κ=1

Pκ

Mκ

∂W

∂Qκ

+
1

h̄

N∑
n,m=1

Vnm(Q)

(
qn

∂W

∂pm
− pn

∂W

∂qm

)
, (15)

which can be solved by propagating classical (i.e., independent) trajectories according to

Hamilton’s equations:

Q̇κ =
Pκ

Mκ

, (16a)

Ṗκ = −∂V0(Q)

∂Qκ

− 1

2
qT ∂V(Q)

∂Qκ

q− 1

2
pT ∂V(Q)

∂Qκ

p , (16b)

q̇ = −1

h̄
V(Q)p , (16c)

ṗ =
1

h̄
V(Q)q . (16d)

2.1 Calculation of electronic observables

Equations (16a)-(16d), whose propagation we implemented in PySurf, are common for most

of the different mapping methods proposed over the last decades. The major differences

between various approaches are the way the mapping variables q and p are sampled at the

initial time and how the electronic populations are computed.
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In our implementation the population in the state m, given that the dynamics is ini-

tiated in the state n, is evaluated using the so called linearized semiclassical initial value

representation (LSC-IVR),25

Pm←n(t) = Tr
[
e

i
h̄
Ĥt|m⟩⟨m|e−

i
h̄
Ĥt|n⟩⟨n|ρnuc(0)

]
≈

∫
dQ0dP0dq0dp0F

′
mm(qt,pt)Fnn(q0,p0)Wnuc(Q0,P0)

≡ ⟨F ′mm(t)Fnn(0)Wnuc(0)⟩ (17)

where (q0,p0) and (qt,pt) are the mapping variables at the initial and final times and

Wnuc(Q0,P0) is the initial distribution (Wigner function) for the nuclear coordinates. As

usual, the integral of Eq. (17) is evaluated by Monte Carlo sampling.

The functions Fnn and F ′mm depend only on the mapping variables and define the phase

space observables corresponding to the population operators |n⟩⟨n| and |m⟩⟨m|, respectively

referred to the initial sampling and the evaluation of the electronic population at time t.

As remarked by several researchers,27,28 the use of the classical limit of Eq. (15) makes

the definition of such population functions ambiguous. Different choices for Fnn and F ′mm,

that would be formally equivalent in the full quantum treatment given by Eq. (13), deliver

different results when combined with classical trajectory dynamics. Indeed, one of the goals

of the present implementation is to facilitate the comparison and the benchmark of different

mapping approaches based on different definitions of Fnn and F ′mm.

One possible choice is to map the electronic projector into a pure singly excited oscillator

(SEO) state, and then evaluate the Wigner function of that state. This yields28

|n⟩⟨n| map−−−→ |01, ..., 1n, ..., 0N⟩ ⟨01, ..., 1n, ..., 0N |
phase
space−−−−→

(
2q2n + 2p2n − 1

)
ϕ(q,p)

≡ F SEO
nn (q,p) ,

(18)
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where

ϕ(q,p) = e−
∑

m(q2m+p2m)/πN

≡ e−R
2

/πN . (19)

Note that the quantity R2 =
∑N

m=1 (q
2
m + p2m) is conserved by the equations of motion (16c)

and (16d).

Alternatively one can express the traceless part of the quantum mechanical projectors

|n⟩⟨n| in terms of creation/annihilation operators, and them convert them into phase-space

observables through a Wigner transformation,30

|n⟩⟨n| =
1

N
+ |n⟩⟨n| − 1

N

N∑
m=1

|m⟩⟨m|

map−−−→ 1

N
+ â†nân −

1

N

N∑
m=1

â†mâm

phase
space−−−−→ 1

N
+

q2n + p2n − 1

2
− 1

N

N∑
m=1

q2m + p2m − 1

2

=
1

N
− R2

2N
+

q2n + p2n
2

≡ FWig
nn (q,p) . (20)

In this case the sum over all the population functions is formally equivalent to the iden-

tity:28,30
∑

n F
Wig
nn (q,p) = 1.

The functions F SEO
nn (q,p) and FWig

nn (q,p) can be combined in all possible ways for the

initial and final time in Eq. (17), giving rise to different mapping methods, which have been

proposed and derived independently in the literature. These approaches, implemented in

PySurf, are listed below. For the following, it is useful to introduce the variables R2
n = q2n+p2n,

so that two different population functions can be expressed as

F SEO
nn (q,p) =

2R2
n − 1

πN
e−R

2

, (21a)
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FWig
nn (q,p) =

2−R2

2N
+

R2
n

2
. (21b)

2.1.1 Linearized semiclassical initial value representation (LSC-IVR)

In the original LSC-IVR approach25 the Wigner transform of the singly excited harmonic

oscillator wavefunction, given by Eq. (20), is used both as initial distribution for the mapping

variables and as projector at time t. Formally, this implies that electronic populations are

computed by replacing Fnn(q0,p0) = F SEO
nn (q0,p0) and F ′mm(qt,pt) = (2π)NF SEO

mm (qt,pt)

into Eq. (17), where the normalisation factor (2π)N results from the overlap between pure

state Wigner functions.62 This gives

P LSC−IVR
m←n (t) = (2π)N

〈
F SEO
mm (t)F SEO

nn (0)Wnuc(0)
〉

= (2π)N
〈(
2R2

m(t)− 1
)
ϕ(t)

(
2R2

n(0)− 1
)
ϕ(0)Wnuc(0)

〉
= (2π)N

〈(
2R2

m(t)− 1
) (

2R2
n(0)− 1

)
ϕ2(0)Wnuc(0)

〉
, (22)

where the last step follows from the fact the the factor ϕ, being a function of R2, is conserved

during the dynamics (see Eq. (19)). The last line of Eq. (22) implies that the initial sampling

over the mapping variables can be performed using the Gaussian distribution ϕ2(q(0),p(0)),

and weighting the trajectories by the factor (2R2
n(0)− 1) in the evaluation of the observ-

ables. Although this is the most commonly used strategy, it has the disadvantage that the

trajectories initially located near the circle R2
n = 1/2 get sampled frequently, but contribute

to the ensemble average with a relatively low weight.

For this reason, in addition to the typical Gaussian sampling, we implemented the di-

rect sampling from the absolute value Wigner distribution |(2R2
n(0)− 1)ϕ2(0)|. With this

approach the trajectories are simply weighted by C × sign(2R2
n(0) − 1), where C is a nor-

malisation constant. In the tests discussed in Section 4, this type of Wigner sampling leads

to a faster convergence with respect to the number of trajectories.
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2.1.2 Poisson bracket mapping equation (PBME)

In the Poisson bracket mapping equation approach26 the initial distribution for the map-

ping variables is given by Fnn(r0,p0) = F SEO
nn (q0,p0), whereas the electronic populations

are evaluated using the functions F ′mm(qt,pt) = FWig
mm (qt,pt). With this choice, Eq. (17)

becomes

PPBME
m←n (t) =

〈
FWig
mm (t)F SEO

nn (0)Wnuc(0)
〉

=
1

2

〈(
R2

n(t) +
2−R2

N

)(
2R2

n(0)− 1
)
ϕ(0)Wnuc(0)

〉
. (23)

In this case the usual approach is to sample the initial trajectories from the Gaussian

ϕ(q(0),p(0)) and evaluate the ensemble average by weighting the trajectories by the fac-

tor (2R2
n(0)− 1). To speed up the convergence, similarly to the LSC-IVR approach, we

implemented the sampling from the absolute value distribution |(2R2
n(0)− 1)ϕ(0)|.

2.1.3 Improved population operator scheme.

The schemes based on the so called “improved population operators”, formulated by Saller et

al.,28,30 are designed so that the total electronic population equals unity for each trajectory

of the ensemble. One of such methods, denoted “single unity” in Ref. 28 (or simply “unity”

hereafter), is formally obtained by setting Fnn(q0,p0) = FWig
nn (q0,p0) and F ′mm(qt,pt) =

F SEO
mm (rt,pt) in Eq. (17),

P unity
m←n(t) =

〈
F SEO
mm (t)FWig

nn (0)Wnuc(0)
〉

=
〈(
2R2

m(t)− 1
)
ϕ(t)FWig

nn (0)Wnuc(0)
〉

=
〈(
2R2

m(t)− 1
)
FWig
nn (0)ϕ(0)Wnuc(0)

〉
, (24)

where the last step follows from the conservation of ϕ. The equivalence between the expres-

sion of Eq. (24) and that used by Saller et al.30 is proved in the ESI.
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In our implementation, Eq. (24) is evaluated by sampling from the Gaussian distribution

ϕ(q(0),p(0)) and weighting the trajectories by the factor FWig
nn (0).

2.1.4 Spin mapping (SM)

Another option to evaluate the population according to Eq. (17) is to choose the FWig
nn

functions for both the initial and final times. However, in the absence of the damping factor

ϕ(q,p) the integral of Eq. (17) diverges. This divergence can be eliminated by constraining

the dynamics on the multi-dimensional spherical surface defined as R2 =
∑

m (q2m + p2m) =

R
2
, with a given fixed radius R for all the trajectories. The justification for fixing the value

of R2 is the need of recovering the Casimir invariant of the SU(N) group,58 which describes

quantum N -level systems.

To include the constraint, the mapping variables are sampled from the distribution

Fnn(q,p) = AFWig
nn (q,p)δ

(
R2 −R

2
)
, where the constant A = N !/

(
πNR

2N−2
)

is fixed

to normalise the distribution as
∫
Fnn(q,p)dqdp = 1. Evaluating the populations as

P spin
m←n(t) = A

〈
FWig
mm (t)FWig

nn (0)δ
(
R2(0)−R

2
)
Wnuc(0)

〉
(25)

we can obtain value of the sphere radius as R
2
= 2
√
N + 1,59 by simply requiring that at

the initial time Pn←n(t) = 1. The derivation of the values of the constants A and R
2
is given

in the ESI.

The simulation of the electronic population dynamics using Eq. (25) is equivalent to

the spin mapping method introduced by Runeson and Richardson in the so called W -

representation.29,58 In their implementation the initial sampling is taken as uniform over

the spherical surface. In PySurf the sampling is done directly from the absolute value

distribution
∣∣FWig

nn (q(0),p(0))
∣∣ δ (R2(0)−R

2
)
, and the trajectories are simply weighted by

sign
(
FWig
nn (q(0),p(0))

)
.
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2.1.5 Ehrenfest

The standard Ehrenfest approach for nonadiabatic dynamics can be viewed as a special case

of mapping approach, where the function FWig
nn is used for both the sampling at time t = 0

and the evaluation of the population at later times.

In a similar way to spin mapping, the integral of Eq. (17) is made convergent by restrict-

ing the dynamics on a sphere. In this case the squared radius R
2
is taken equal to 2, by

initialising the mapping variables taking R2
n(0) = 2 for the initial state n and R2

m(0) = 0 for

the unpopulated states m. Formally, this corresponds to the expression

PEhrenfest
m←n (t) =

1

πN

〈
FWig
mm (t)FWig

nn (0)δ
(
R2

n(0)− 2
) ∏
m̸=n

δ
(
R2

m(0)
)
Wnuc(0)

〉
. (26)

2.1.6 Symmetrical quasiclassical (SQC) mapping

The symmetrical quasiclassical windowing method developed by Cotton and Miller is also

based on independent trajectories governed by the MMST Hamiltonian, but is formulated

in terms of action-angle variables (see Refs. 34,35 for details). In a nutshell, the approach is

based on histogram-shaped population functions, that mimic the fact that the eigenvalues

of the quantum mechanical observables R2
n are quantised and can take only odd integer

values. To approximately recover this behaviour, Cotton and Miller proposed to evaluate

the populations using the expression

pSQC
m←n(t) = A(t)

〈
F SQC
mm (t)F SQC

nn (0)Wnuc(0)
〉
, (27)

where histogram binning functions are used, i.e.

F SQC
nn (q,p) = χ[1,1+2γ]

(
R2

n

2

) ∏
m̸=n

χ[0,2γ]

(
R2

m

2

)
, (28)
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and χA is the indicator function for the interval A. In our implementation, the parameter

γ is set to (
√
3− 1)/2 ≈ 0.366, which is the recommended value for most applications.35 In

Eq. (27) A(t) is a time-dependent normalisation constant, simply evaluated as34

A(t) =

[∑
m

P SQC
m←n(t)

]−1
. (29)

In most recent works, Cotton and Miller proposed to evaluate the electronic populations

by using triangular binning functions, instead of histograms.35 At present, these triangular

functions have been used only in a few applications. Therefore, they will be implemented

and tested in future work.

2.2 Adiabatic representation

Direct dynamics simulations, where the electronic Hamiltonian is obtained by quantum chem-

ical calculations performed on-the-fly, are typically performed in the adiabatic representation,

defined by the eigenstates of the electronic Hamiltonian.

Starting from the quantum mechanical MMST Hamiltonian of Eq. (8), defined in the

diabatic representation, the corresponding adiabatic Hamiltonian H̃map is obtained by a

unitary transformation

ˆ̃
Hmap = U †ĤmapU , (30)

where U is a unitary operator, U †U = UU † = 1, properly chosen so that the electronic

Hamiltonian matrix V(Q) is transformed to a diagonal form. To this end, we define the

orthogonal matrix C(Q) of the coordinate-dependent eigenvectors of V(Q), and construct

the adiabatic electronic Hamiltonian as

Ṽ(Q) = CT (Q)V(Q)C(Q) , (31)

where Ṽ(Q) is the diagonal matrix which contains the adiabatic PESs Ṽm(Q), which in
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the direct dynamics implementation are provided by electronic structure calculations. The

adiabatic electronic states are obtained accordingly as linear combinations of diabatic states,

|ñ(Q)⟩ =
N∑

m=1

Cmn(Q)|m⟩ . (32)

At this stage, we can define the diabatic-to-adiabatic unitary transformation in the quan-

tum mechanical mapping formalism, as the transformation that changes the coordinates and

momenta as

U †qnU =
N∑

m=1

Cnm(Q)qm , (33a)

U †pnU =
N∑

m=1

Cnm(Q)pm , (33b)

U †QκU = Qκ , (33c)

U †PκU = Pκ + h̄
N∑

n,m=1

D(κ)
nm(Q)qnpm , (33d)

where the D(κ)(Q) matrices are related to C(Q) by

D(κ)(Q) = CT (Q)
∂C(Q)

∂Qκ

. (34)

These are anti-symmetric and contain the derivative couplings,

D(κ)
nm(Q) =

〈
ñ(R)

∣∣∣∣ ∂

∂Qκ

∣∣∣∣ m̃(R)

〉

=

 0 for n = m

−
(
CT (Q)∂V(Q)

∂Qκ
C(Q)

)
nm

/
(
Ṽn(Q)− Ṽm(Q)

)
for n ̸= m

. (35)

Note that the coordinate transformations of Eqs. (33a)-(33d) conserve the canonical

commutators, which, according to Stone’s theorem, guarantees the existence of the unitary
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operator U which implements the transformation. With the above definition for U , the

adiabatic MMST Hamiltonian is obtained from Eqs. (8) and (30) as

H̃map =
F∑

κ=1

(
Pκ + h̄

∑N
n,m=1 D

(κ)
nm(Q)qnpm

)2
2Mκ

+ V0(Q) +
1

2

N∑
n=1

Ṽn(Q)
(
q2n + p2n

)
. (36)

In the classical limit, the nonadiabatic dynamics can be simulated by solving the related

Hamilton’s equations. To this end, it is convenient to propagate the kinematic momenta

P ′κ = Pκ + h̄
∑N

n,m=1 D
(κ)
nm(Q)qnpm, instead of the canonical ones. With this choice the

equations of motion take the form

Q̇κ =
P ′κ
Mκ

, (37a)

Ṗ ′κ = − ∂V0

∂Qκ

−
N∑

n=1

q2n + p2n
2

∂Ṽn

∂Qκ

+
N∑

n,m=1

qnqm + pnpm
2

D(κ)
nm(Q)

(
Ṽn(Q)− Ṽm(Q)

)
, (37b)

q̇n =
Ṽn(Q)

h̄
pn −

F∑
κ=1

P ′κ
Mκ

N∑
m=1

D(κ)
nm(Q)qm , (37c)

ṗn = − Ṽn(Q)

h̄
qn −

F∑
κ=1

P ′κ
Mκ

N∑
m=1

D(κ)
nm(Q)pm . (37d)

Therefore, dynamical simulations in the adiabatic representation do not require a diabatic-

to-adiabatic transformation, but can instead be performed through direct computation of

the adiabatic potentials Ṽn(Q) and the derivative couplings D
(κ)
nm(Q), i.e. the same quantities

required for surface hopping simulations.

2.2.1 Mapping-inspired surface hopping

The mapping approaches described in the previous sections are mean-field approaches, where

the nuclear dynamics is governed by an effective potential, obtained by averaging the diabatic

or adiabatic PESs. This description has the well known disadvantage to become nonphysical

when the nuclei move from a near-degeneracy zone towards regions where the potentials are

largely separated in energy.
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In contrast, surface hopping methods are based on propagating the nuclei on one “ac-

tive” – typically adiabatic – PES. A possible strategy to define the active surface can be

formulated from the adiabatic description given in Section 2.2, and leads to a so called

mapping approach surface hopping (MASH). MASH is a non-stochastic technique based on

jumps between active surfaces governed by the dynamics of the mapping variables qn and

pn. The first formulation of this method was given by Mannouch and Richardson21 for

two-state problems, and a multi-state “mapping-inspired” surface hopping (MISH) was later

developed by Runeson and Manolopoulos for Hamiltonians with an arbitrary number of elec-

tronic states.22 Although a size-consistent multi-state generalisation of MASH has also been

recently presented,63 at present the implementation in PySurf follows the MISH formulation

of Ref. 22.

According to Eq. (37b), the weight of each adiabatic potential to define the force on

the nuclei is given by R2
n/2 = (q2n + p2n) /2. Starting from this observation, the key steps

leading to MISH can be formulated as follows: (i) at each time during the dynamics, the

active surface is defined as the one with the largest weight, so that the nuclear (kinematic)

momenta evolve as22

Ṗ ′κ = − ∂V0

∂Qκ

−
N∑

n=1

Θn(q,p)
∂Ṽn

∂Qκ

, (38)

where

Θn(q,p) =

 1 if R2
n > R2

m ∀m ̸= n ,

0 otherwise ;
(39)

(ii) the mapping variables are initialised in the sphere R2 =
∑N

n=1R
2
n = 2 (so that the

weights sum to one) and uniformly in the region where the prescribed initial state has the

largest weight,

Fnn(q,p) = NΘn(q,p)δ
(
R2 − 2

)
, (40)

with N = 2N !/ (2π)N ;22 (iii) the populations are evaluated using a modified version of the
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FWig
mm function, where the traceless part is rescaled so to obtain Pn←n(t = 0) = 1,

F ′mm(q,p) =
1

N
+ αN

(
R2

n

2
− 1

N

)
. (41)

To this end, αN must be set equal to (N − 1)/(HN − 1), where HN is the N -th harmonic

number.22 Note that with this definition it is guaranteed that the population functions sum

to one.

As usual in surface hopping, whenever a change of active surface n → m occurs, the

nuclear momenta need to be rescaled to ensure the conservation of energy. Following the

derivation of Runeson and Manolopoulos,22 this is achieved by rescaling the momentum as

P ′κ −→ P ′κ + ε
N∑
l=1

[
D

(κ)
nl (qnql + pnpl)−D

(κ)
ml (qmql + pmpl)

]
. (42)

If, even with the rescaling, the conservation of energy cannot be ensured, the surface hop is

aborted, and the momentum is reversed along the rescaling direction.

3 Implementation details

The architecture of the PySurf code, sketched in Fig. 1 was illustrated in detail in Ref.

56. Briefly, the code is written in Python and consists of three parts. The core modules

contain the Python classes that provide the basic functionalities for sampling, propagating

classical trajectories, and getting PESs, forces and nonadiabatic couplings via the so called

“surface-point-provider” (SPP).56 The database modules include functionalities for storing

and reading data (coordinates, energies, forces, etc.) using a specifically tailored engine

based on the Network Common Data Form (NetCDF). Finally, the code comes with a Plu-

gin engine that allows users to extend the code with specific sub-programs for sampling,

propagating trajectories, interfacing electronic structure codes, interpolating precomputed

data, or evaluating energies using predefined models.
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Sampler Propagator Ab initio Interpolator Model

Sampling Propagation SPP

Initial Conditions Output Database

Q-Chem
Interface

Turbomole
Interface

PySCF
Interface

...

Rbf
Interpolator

...

Linear Vibronic
Coupling

Sum-of-products
Hamiltonian

...

LZSH

FSSH

MISH

LSC-IVR

PBME

unity

spin mapping

...

Wigner
Sampler

Normal Mode
Sampler

Mapping variab.
samplers

...

Plugins

Core

Database

Figure 1: Architecture of the PySurf code: the core modules (blue) provide basic functionali-
ties; the database modules (green) include classes to store and read coordinates, energies and
dynamical data; the plugins (gray) allow adding new sub-programs with specialised tasks.
The new plugins developed in this work are indicated in red. The version of PySurf used for
the calculation of this work is freely available on GitHub.64

In particular, the possibility of adding plugins is one of the key aspects that make the

code modular and efficient.56 The development of the present work involved the creation

of three new sets of plugins, highlighted in red in Fig. 1: (i) samplers for the mapping

variables, described in Section 2 for the various mapping methods; (ii) propagators to solve

Eqs. (16a)–(16d), based on the integrator described in Section 3.1 below; (iii) a plugin to

provide analytic potential energy surfaces in a general sum-of-product form, described in

Section 3.2.
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3.1 Integration of the quasiclassical mapping trajectories

Within the propagator plugins a new class implementing the coupled propagation of the nu-

clear and mapping variables was implemented. Given that the various approaches described

in Section 2.1 rely on the same equations of motions, Eqs. (16a)-(16d), a unique integrator

suffices for all of them.

The implemented integrator is inspired by the ones proposed in Ref. 65. In the diabatic

representation, for each time step, from t to t + δt, the following intermediate steps are

performed:

1. The mapping variables are updated for a half-step (δt/2) by integrating Eqs. (16c)-

(16d) while keeping the nuclear coordinates fixed. The integration is performed ana-

lytically as

qt+ δt
2
= cos

(
V(Qt)δt

2h̄

)
qt + sin

(
V(Qt)δt

2h̄

)
pt , (43a)

pt+ δt
2
= − sin

(
V(Qt)δt

2h̄

)
qt + cos

(
V(Qt)δt

2h̄

)
pt . (43b)

2. The coordinates are integrated for the full step using the mapping variables at the

half-step, i.e.,

Qκ,t+δt = Qκ,t+
Pκ,t

Mκ

δt− δt2

2Mκ

(
∂V0(Qt)

∂Qκ

+
1

2
qT
t+ δt

2

∂V(Qt)

∂Qκ

qt+ δt
2
+

1

2
pT
t+ δt

2

∂V(Qt)

∂Qκ

pt+ δt
2

)
.

(44)

3. The momenta are propagated for the full step using an average between the forces at

the initial and final step, i.e.,

Pκ,t+δt = Pκ,t

− δt

2Mκ

(
∂V0(Qt)

∂Qκ

+
1

2
qT
t+ δt

2

∂V(Qt)

∂Qκ

qt+ δt
2
+

1

2
pT
t+ δt

2

∂V(Qt)

∂Qκ

pt+ δt
2

)
− δt

2Mκ

(
∂V0(Qt+δt)

∂Qκ

+
1

2
qT
t+ δt

2

∂V(Qt+δt)

∂Qκ

qt+ δt
2
+

1

2
pT
t+ δt

2

∂V(Qt+δt)

∂Qκ

pt+ δt
2

)
(45)
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4. The mapping variables are integrated for the second half-step using the electronic

Hamiltonian evaluated at time t+ δt,

qt+δt = cos

(
V(Qt+δt)δt

2h̄

)
qt+ δt

2
+ sin

(
V(Qt+δt)δt

2h̄

)
pt+ δt

2
, (46a)

pt+δt = − sin

(
V(Qt+δt)δt

2h̄

)
qt+ δt

2
+ cos

(
V(Qt+δt)δt

2h̄

)
pt+ δt

2
. (46b)

Similar equations are derived and implemented for the propagation in the adiabatic

representation. Note that this scheme involves one evaluation of the electronic Hamiltonian

and its gradients for each time step.

For computations based on surface hopping methods, the integration of the equations of

motion is based on a velocity Verlet integrator, as described in a previous work.57,66 In terms

of computational cost, the propagation of a trajectory according to quasiclassical mapping

methods is roughly as expensive as for surface hopping trajectories.

We noticed that for some mapping methods (in particular the PBME and the “unity”

approaches) a relatively large number of trajectories are needed to converge the results.

However, being classical, the trajectories can be propagated independently in parallel, which

can be done in multi-node computing infrastructures, using the scripts provided with the

code. On the other hand, running trajectories in parallel implies that the propagated ob-

servables (geometries, populations, etc.) are stored on disk for subsequent analysis. As

described in Ref. 56 this is done using the standard NetCDF3 database format, for which

libraries are available in a number of programming languages. Unavoidably, a large number

of trajectories and degrees of freedom correlates with a larger disk usage.

3.2 Input-given model electronic Hamiltonians

In order to facilitate the benchmark of the various mixed quantum-classical and quasiclassical

methods against exact quantum mechanical results, the new class of SPP was implemented.
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This class provides the user with the possibility of defining analytical models, involving an

arbitrary number of (diabatic) electronic states and pontential energy surfaces and couplings,

given as a sum-of-products (SOP) form.

The SOP form is crucial for the efficiency of full quantum dynamical methods based

on tensor decomposition, such as those related to the multiconfigurational time-dependent

Hartree (MCTDH) approach. With the new class the information about the electronic

Hamiltonian governing the dynamics can be provided within a “potential energy surface

file” that has similar structure as the operator files used in the Heidelberg MCTDH pack-

age or in the Quantics code.54,55 In this way the approximations derived from the classical

treatment of the nuclear motion can be seamlessly verified, paving the way to systematic

benchmarks for various classes of diabatic model, such as the linear or quadratic vibronic

coupling models.10,11

4 Example applications

This section illustrates the application of different trajectory-based approaches to various

types of nonadiabatic processes, using predefined diabatic model Hamiltonians. In particular,

simulations were performed using the six mapping approaches described in Section 2, as well

as three different types of surface hopping methods, i.e., the Landau-Zener scheme (LZSH),20

Tully’s fewest-switches approach (FSSH),19 and the non-stochastic mapping-inspired surface

hopping (MISH).22

The goal of the present work is to illustrate the benefits of having various surface hopping

and quasiclassical mapping methods implemented in the same code, which is instrumental to

systematic benchmark studies. Such investigations should be preferably performed on larger

sets of models for various classes of photochemical and photophysical processes,18 therefore

they constitute the natural follow-up studies based on the present implementation.

Diabatic observables obtained by the trajectory-based calculations are compared with
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numerically exact full quantum results obtained by the MCTDH as implemented in Heidel-

berg MCTDH package.54 All simulations based on mapping approaches were performed in

the diabatic representation. The surface hopping calculations were performed, as usual, in

the adiabatic basis, and the computed observables were transformed to the diabatic basis

afterwards, to properly compare them with the exact quantum wave packet results.14

The details of the computational setup of the calculations are provided in the ESI. All

input files and PySurf scripts used in this work are freely available in a GitHub repository.64

4.1 B2u −→ B3u internal conversion in photoexcited pyrazine

The simulation of the internal conversion in pyrazine is one of the most common benchmark

tests for validating new methods for nonadiabatic dynamics or new implementations. In

this work we refer to the popular 4-modes linear vibronic coupling model that includes the

excited diabatic states B2u and B3u. The quantum mechanical Hamiltonian is given as

Ĥ =
4∑

κ=1

h̄ωκ

2

(
P 2
κ +Q2

κ

)
+

∑
n,m=B2u,B3u

|n⟩⟨m|

(
Vnδnm +

4∑
κ=1

λnm,κQκ

)
, (47)

with parameters taken from Ref. 67. The trajectories are initialised in the diabatic state

B2u using the Wigner function Wnuc(t = 0) ∝ exp [−
∑

κ(P
2
κ +Q2

κ)], that corresponds to the

ground vibrational state of the undisplaced harmonic oscillator.

The population of the B3u state as a function of time, computed using different trajectory-

based methods, is shown in Fig. 2. Panels (a) and (b) show the results obtained by various

mapping approaches as well as the quantum mechanical reference (thick black line). In the

numerically exact simulation, the B3u states gets populated up to ≈ 90% in 45 fs. At longer

times the population exhibits recurrences where the population of the B3u state reaches min-

ima around 80 fs and 150 fs. These recurrence times are correctly predicted by all mapping

approaches. However, all methods underestimate the extent of the short time (< 50 fs) trans-

fer. Nevertheless, the error is small (< 10%) for the PBME, the SM and the SQC approaches,
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Figure 2: Time-dependent population of the B3u state of pyrazine, calculated using exact
quantum dynamics simulations (thick black line) and compared with (a,b) mapping ap-
proaches and (c) surface hopping approaches.

which anyhow recover the extent of population transfer quantitatively at longer times. The

unity and Ehrenfest approaches are accurate at the recurrence times, but underestimate the
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maximum value of the B3u population by more than 20%. The worst agreement with the

reference result is obtained by the LSC-IVR that, although capturing the recurrence times,

undervalues the extent of population transfer by 40% in the short time scale and by 20% at

longer times.

Fig. 2(c) compares the exact quantum mechanical results with the surface hopping pre-

dictions. All quantum-classical simulations predict the recurrence times correctly. In the

first transfer event (< 50 fs) all the surface hopping methods underestimate the B3u popu-

lation by ≈ 5% (for the FSSH and MISH methods) or by ≈ 10% (for the LZSH approach).

At times longer than 70 fs the FSSH prediction agrees almost perfectly with the reference

results, while both MISH and LZSH slightly underestimate the maximum population by

5 − 10%, with a MISH being decisively in better agreement with the reference. Errors are

small at the recurrence times and larger when the B3u population reaches its maximum.

A detailed investigation into the reasons why one method performs better than another

requires extensive benchmarking across a large database of molecular models. Therefore, it is

beyond the scope of the present work, whose main goal is to illustrate a novel implementation.

Nevertheless, it is well known that mapping approaches – based on effective average potentials

– often fail to describe wave packet branching, and this limitation is likely the source of the

larger errors described above.

To illustrate this aspect, we plotted in Fig. 3 the vibrational distributions along the

coupling mode Q1 for the wave packet in the B3u state, initially unpopulated. Panel (a)

shows the numerically exact quantum mechanical result. The vibrational distribution is

perfectly symmetric and exhibits a nodal line for Q1 = 0, as a signature of the geometric

phase effect. The density broadens and shrinks repeatedly in the range −5 < Q1 < 5 with

periods between 40 and 50 fs, branching in opposite directions with respect to the nodal line.

This oscillatory dynamics is clearly discernible in the vibrational distributions computed

using surface hopping methods [panels (h–j)], although the nodal line (a purely quantum

feature) is not present and the neat oscillations slowly fade out at times > 100 fs.
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Figure 3: Vibrational density distribution in the B3u state as a function of the coupling mode
Q1 of pyrazine, computed (a) quantum mechanically, (b–g) using mapping approaches and
(h–j) using surface hopping approaches. The atomic displacement vectors of the mode are
sketched in the top right panel.

In contrast, the quasiclassical mapping methods [panels (b–g)] predict rather broad dis-

tributions with little structure. Clear oscillations are visible in the Ehrenfest results of panel

(f). However, the amplitude of the oscillations is relatively small as compared to the exact

quantum results. This is in line with the fact the Ehrenfest dynamics underestimates signif-

icantly the extent of B2u −→ B3u transfer. In comparison, a resemblance to an oscillatory

wavepacket branching is noticeable also in the SM and SQC results, which are the best

performing mapping approaches.
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Figure 4: Vibrational density distribution in the B3u state as a function of the tuning mode
Q2 of pyrazine, computed (a) quantum mechanically, (b–g) using mapping approaches and
(h–j) using surface hopping approaches. The atomic displacement vectors of the mode are
sketched in the top right panel.

Fig. 4 depicts the vibrational distribution along the tuning mode Q2 – the most displaced

mode in the B3u surface – computed via quantum as well as trajectory-based methods. The

quantum distribution, shown in panel (a), oscillates in the range −4 < Q2 < 5 with a pe-

riod of ≈ 60 fs, localising markedly at the turning points and exhibiting some wave packet

branching. Also for the dynamics of this mode, the best predictions are obtained by surface

hopping methods [panels (h–j)]. An accurate description of the broadening and the localisa-

tion at the turning points is also obtained by the SQC and – to a lesser extent – the Ehrenfest
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methods [panels (g) and (f), respectively]. In contrast, the remaining mapping approaches

significantly overestimate the amount of density around Q2 ≈ 0. This qualitatively wrong

result is in line with the worst performance in predicting the electronic population dynamics,

especially as compared to the surface hopping methods.

Finally, it is worth noticing that for the LSC-IVR, unity and SM approaches, the vibra-

tional distribution is locally negative (red areas in the plots). This is a well know problem

of some mapping approaches, and it is due to the fact that the electronic mapping variables

are sampled from a quantum mechanical (partially negative valued) Wigner function, which

is then propagated using classical equations.

4.2 2B1 −→2 B2 internal conversion in the 2,6-bis(methylene)

adamantyl cation

As an example of a high-dimensional system, we simulate the electronic relaxation from the

2B1 to the 2B2 states of the 2,6-bis(methylene) adamantyl (BMA) radical cation, modelled

by the two-level full dimensional (78D) linear vibronic coupling model constructed in Ref.

68. The diabatic model has the same form as that used for pyrazine, given in Eq. (47),

and was used in previous works17,38 to test various trajectory-based methods. The dynamics

are initiated in the diabatic 2B1 state using a Gaussian distribution for the vibrational

coordinates, with the same form as that used in Section 4.1.

The population of the 2B2 state as a function of time, computed using different surface

hopping and mapping methods is shown in Fig. 5. The reference quantum mechanical result

was obtained by a multi-layer MCTDH calculation, whose details are given in the ESI. In

contrast to the pyrazine dynamics, the 2B2 state is populated rather slowly (about 11% in

200 fs). Indeed, although the wave packet crosses a 2B1/
2B2 intersection in 20–30 fs, it largely

remains localised in a region where the energy gap between electronic states is relatively large

(≈ 6400 cm−1, see Fig. 10 of Ref. 68 and the related discussion in the paper).

As shown in panels (a) and (b), the population dynamics is correctly predicted by the
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Figure 5: Time-dependent population of the 2B2 state of BMA, calculated using exact quan-
tum dynamics simulations (thick black line) and compared with (a,b) mapping approaches
and (c) surface hopping approaches.

PBME, unity and SM approaches until≈ 150 fs. The LSC-IVR, unity and Ehrenfest methods

are also relatively accurate, but overestimate the 2B2 by ≈ 5% between 50 and 150 fs. At
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times > 150 fs all mapping approaches deviate slightly from the exact quantum result. The

present results are essentially identical to those of Ref. 38, which were obtained using a

different code; this reinforces the correctness of the present implementation.

The surface hopping results, shown in panel (c), compare differently with quantum dy-

namics, depending on the specific flavour of surface hopping. The FSSH and MISH ap-

proaches, that rely on the computation of nonadiabatic couplings, overestimate the popula-

tion of the 2B2 state by ≈ 5% throughout the entire simulation time, therefore they perform

slightly worse than the best quasiclassical methods (PBME and unity). These results match

nicely those of Refs. 38 and 17.

The LZSH scheme has the worst performance. Landau-Zener trajectories, that are propa-

gated only relying on adiabatic potential data, tend to hop completely to the lowest adiabatic

surface at the first passage through the intersection (within 20–40 fs). Afterwards, no more

transitions occur between adiabatic surfaces, and the diabatic populations start oscillating

around the average value of ≈ 0.5 (not shown in the figure), as expected by the fact that

the minima of the two diabatic surfaces differ only by 90 cm−1.

Summarising, although more general conclusions require more extensive studies, the

present results suggest that the quasiclassical mapping approaches might be more suitable

to describe electronic relaxation dynamics in the case of weak diabatic coupling and rapidly

separating surfaces.

4.3 B3g −→ B2g internal conversion in the butatriene cation

As a third example, we consider a two-state quadratic vibronic model for the coupled B3g

and B2g state of the butratriene cation, that are accessible by photoionisation. In particular,

we analyze the population dynamics resulting after initiallly populating the B3g state with

the same type of Gaussian Wigner function as for the case of pyrazine discussed in Section

4.1. For the simulation, the most general form of the diabatic quadratic vibronic coupling
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model is adopted,

Ĥ =
18∑
κ=1

h̄ωκ

2

(
P 2
κ +Q2

κ

)
+

∑
n,m=B3g,B2g

|n⟩⟨m|

(
Vnm +

18∑
κ=1

λ(nm)
κ Qκ +

1

2

18∑
κ,κ′=1

Ω
(nm)
κκ′ QκQκ′

)
, (48)

including all the 18 modes of the molecule, with parameters taken from Ref. 69.

The population dynamics predicted quantum mechanically and using various mapping

and surface hopping approaches is depicted in Fig. 6. In the quantum calculation the B2g

state is populated up to 70% in the first 15 fs, and subsequently the population starts oscil-

lating around the value of 0.6 with a period of ≈ 15 fs. The oscillations become more regular

after 60 fs and their amplitude decays significantly after 120 fs. The long time population in

the B2g state is in the range 0.50–0.55.

Among the mapping approaches, the PBME, the unity and the SM methods deliver very

similar results. They all predict oscillations with the same period and amplitudes as for

the quantum mechanical results, which persist also at a longer time scale. Although the

population dynamics is reasonably accurate until 60 fs, these mapping approaches overes-

timate the B2g population after 60 fs by ≈ 10%. Conversely, the LSC-IVR, Ehrenfest and

SQC approaches underestimate the amplitude of the population oscillations, but predict the

correct long time population. Interestingly, the LSC-IVR and Ehrenfest methods are the

ones exhibiting the worst accuracy for the pyrazine model of Section 4.1.

In constrast to the mapping approaches, all surface hopping methods give similar results,

as shown in Fig. 6(b). In particular, both FSSH and MISH are especially good in the

first 60 fs. After that time, LZSH, FSSH and MISH deliver essentially identical predictions,

slightly overestimating the regularity of the oscillations. Similar to the mapping approaches,

LZSH and FSSH they overestimate the long time B2g population by a small extent (≈ 5%),

whereas MISH is more accurate.
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Figure 6: Time-dependent population of the B2g state of the butatriene cation, calculated
using exact quantum dynamics simulations (thick black line) and compared with (a,b) map-
ping approaches and (c) surface hopping approaches.
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4.4 Photoisomerisation of a retinal chromophore model

The last example concerns the cis-trans photoisomerisation dynamics of the 2-cis-penta-

2,4-dieniminium cation (cis-PSB3), a protonated Schiff base that can be regarded as an

prototype model for the 11-cis retinal chromophore. PSB3 is described by the two-state

three-coordinate anharmonic diabatic model constructed by Olivucci and coworkers.70 The

three coordinates are a bond length alternating vibration (r), a dihedral torsion (θ) that

connects the cis and trans structures of PSB3, and a hydrogen out-of-plane wagging mode

(ϕ).

Specifically, we use the diabatic model with the functional form and parameters given in

Ref. 16, neglecting the kinematic coupling between the various modes. This model is based on

anharmonic functions that couple the three nuclear modes in a complex way, but nevertheless

the total Hamiltonian has a SOP form that is suitable for MCTDH calculations. The plugin

for arbitrary SOP diabatic potentials (see Sect. 3.2) allows running both quantum and

quantum-classical simulations with essentially the same potential file. The initial condition

for the nuclear coordinates is given by the same Gaussian distribution described in the

Appendix of Ref. 16, and the trajectories are initialised in the upper diabatic state (denoted

state “2”) in a cis configuration.

In contrast to the previous examples, in this case the relevant quantity to be compared

across different quantum-classical methods is the time-dependent quantum yield (TDQY)

for the cis −→ trans isomerisation, computed as

QY(t) =
P

(1)
trans(t) + P

(2)
trans(t)

P
(1)
cis (t) + P

(1)
trans(t) + P

(2)
trans(t)

, (49)

where P
(n)
cis/trans is the fraction of trajectories associated to a cis (cos θ > 0) or trans (cos θ < 0)

configuration in the diabatic state n. Considering that, at time t = 0, P
(2)
cis ≃ 1, the

denominator of Eq. (49) normalises over all possible photoproducts.16

Fig. 7 shows the TDQY computed quantum mechanically via a MCTDH propagation,
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Figure 7: Time-dependent quantum yield for the formation of the trans-PSB3 isomer, calcu-
lated using exact quantum dynamics simulations (thick black line) and compared with (a,b)
mapping approaches and (c) surface hopping approaches.

as well as using various quantum-classical approaches. The quantum dynamical simulation

predicts a rise of the TDQY starting around 25 fs and peaking at ≈ 0.7 at 70 fs. This
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maximum is followed by a decay back to 0.4 at 120 fs. After this time, the TDQY oscillates

back and stabilises around 0.5 with less pronounced oscillations. This behaviour differs from

that of Ref. 16, where a smaller primitive grid was used, but agrees nicely with the results

of Ref. 71.

The quasiclassical mapping methods yield a different type of result. The LSC-IVR,

PBME and unity approaches [panel (a)] fail at describing either the initial rise of the TDQY,

and the subsequent decay and oscillatory stabilisation. Among them, the unity method is the

only one able to predict the long time quantum yield quantitatively, whereas the LSC-IVR

and PBME descriptions underestimate it by 5–10%. The SM, Ehrenfest and SQC methods

[panel (b)] describe better the initial rise and decay of the TDQY, but fail in reproducing

the oscillatory behaviour. This is likely due to the inadequacy of the mapping approaches

in describing wave packet branching, as described for pyrazine in Section 4.1. Nevertheless,

both the SM and SQC approaches predict the long time quantum yield with reasonable

accuracy. Conversely, the Ehrenfest scheme overestimates the TDQY for times > 50 fs.

Fig. 7(c) illustrates the predictions obtained by surface hopping. The three approaches,

LZSH, FSSH and MISH, have a similar performance. FSSH replicates the TDQY curve

obtained by quantum dynamics for the whole simulation time. The LZSH and MISH ap-

proaches respectively over- and under-estimate the extent of the initial rise in the quantum

yield, but are remarkably accurate at times > 100 fs, with MISH having a slightly better

performance. The accuracy of the predictions for the diabatic population dynamics, shown

in the ESI, follows the same trends as for the TDQY.

It is worth noting that the error in the quantum yield for some approaches is relatively

large compared to the ≈ 2% accuracy with which the quantum yield can nowadays be

determined experimentally.72 This example shows that errors of ≈ 10% in the quantum

yield, often attributed to an inadequate level of electronic structure theory, could also be

due to a poor performance of certain trajectory-based methods for nonadiabatic dynamics.

We hope that the present implementation will enable further benchmark studies to provide
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guidance on the choice of the “best” mixed quantum-classical or quasiclassical method to

simulate molecular photoisomerisation dynamics.

5 Conclusions and perspectives

In this work various numerical methods based on the MMST mapping for nonadiabatic

molecular dynamics are implemented. The implementation further includes the mapping-

inspired surface hopping method by Runeson and Manolopoulos22 as well as a plugin to

provide analytic diabatic potential energy surfaces in a sum-of-product form.

Building on previous implementations of the fewest-switches and Landau-Zener surface

hopping schemes, the present development creates a comprehensive computational suite for

quantum-classical nonadiabatic dynamics based on independent trajectories. All methods

are seamlessly integrated into the Python package PySurf.64 Its modular design enables

the independent implementation of additional quantum-classical propagators, sampling al-

gorithms, and evaluators for forces and nonadiabatic couplings, ensuring flexibility and ease

of integration across different modules. In particular, users can easily implement other ex-

isting or novel quasiclassical approaches based on the MMST mapping. Following Fig. 1,

this simply requires implementing a new sampling for the mapping variables, without the

need of modifying the either the propagator, the surface point provider or the interfaces with

electronic structure codes.

In particular, the interface with different quantum chemistry packages, such as Q-Chem

(used, e.g., in Ref. 57), is automatically available in the new implementation of mapping

propagators in the adiabatic representation (see Section 2.2). Such interface will be used in

forthcoming investigations to run mapping and surface hopping calculations “on-the-fly”.

On the other hand, the plugin for analytic potential energy surfaces allows the use of

essentially the same potential file to both PySurf and the most popular quantum dynamical

codes, such as Heidelberg MCTDH or Quantics. This makes PySurf an excellent platform to
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perform systematic benchmarks of trajectory-based against full quantum dynamical results

for large sets of Hamiltonian models and various classes of photochemical processes.18

The first tests for such benchmarks are presented here for prototypical photophysical and

photochemical processes: the internal conversion in pyrazine, 2,6-bis(methylene) adamantyl

and butatriene cation, as well as cis-trans isomerisation in a protonated Schiff base. Keeping

in mind that the present simulations are far from constituting a comprehensive benchmark

test, the current results suggest that the most commonly used FSSH method often provides

the best agreement with quantum dynamics, together with the recently developed MISH

scheme. Furthermore, in general, surface hopping schemes seem to require fewer trajectories

for their convergence.

The perspective for future studies is to extend significantly the benchmark set, so to

perform quantum and quantum-classical simulations systematically and on a high number

of models. This will contribute to the creation of guidelines to help users to choose the best

quasiclassical or quantum-classical approach to simulate specific photochemical phenomena.
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(12) Plasser, F.; Gómez, S.; Menger, M. F. S. J.; Mai, S.; González, L. Highly efficient
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