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Unitary coupled-cluster theory for the electron
propagator: electron attachment and physical
properties via the intermediate state
representation†

Manuel Hodecker, ‡ab Andreas Dreuw a and Adrian L. Dempwolff *a

A scheme for the calculation of electron-attachment (EA) processes within the framework of unitary

coupled-cluster (UCC) theory is presented. Analogous to the description of electron-detachment, the

intermediate state representation (ISR) approach is used for the formulation and its relation to the

algebraic-diagrammatic construction scheme is pointed out. Due to the UCC ansatz, the resulting

equations cannot be given by closed-form expressions, but need to be approximated. Explicit working

equations for two computational schemes referred to as EA-UCC2 and EA-UCC3 are given, providing

electron-attachment energies and spectroscopic amplitudes of electron-attached states dominated by

one-particle excitations correct through second and third order in perturbation theory, respectively.

In the derivation, an expansion of the UCC transformed Hamiltonian involving Bernoulli numbers as

expansion coefficients is employed. In a benchmark against full configuration interaction (FCI) results

including 50 states of 21 different species, both neutral and charged, closed- and open-shell, the novel

methods are characterized by mean absolute errors of 0.15 eV (EA-UCC2) and 0.10 eV (EA-UCC3).

Furthermore, an approach for the computation of physical properties of electron-attached as well as

electron-detached states within the UCC framework is presented. It also builds upon the ISR approach,

featuring an expectation value-like formulation similar to that of the equation-of-motion coupled-

cluster (EOM-CC) method or the ISR approach of the algebraic-diagrammatic construction (ADC)

method. Explicit expressions for the expectation value of a general one-particle operator correct

through second order in perturbation theory are given and shown to be equivalent to those of the

second-order ADC/ISR procedure.

1 Introduction

Molecular electron-attachment processes play a vital role in
many fields of chemistry, biology, and materials science. Char-
acterization of the resulting anions by means of the corres-
ponding electron affinities (EAs), as well as properties of their
electronic states,1–3 is therefore of great interest and often
indispensable in the development of, e.g., organic photovoltaics

or microelectronics.4–6 In spite of their practical importance,
many anions are very reactive and short-lived or metastable
species,7–9 making their experimental characterization cumber-
some. The theoretical investigation of anionic species using
high-level computational approaches is therefore inevitable,
which due to effects such as orbital relaxation and electron
correlation is not an easy task either.10–12

Computational schemes based on the electron propagator
(or one-particle Green’s function)13 have been established
in the study of ionization or electron-attachment spectra for
many decades.14–26 These approaches allow for direct computa-
tions of electron-attachment (or ionization) energies and
spectral intensities, which is a clear advantage over the con-
ceptually simpler ‘‘D-methods,’’ where the N- and (N + 1)-
electron species are treated separately and the EA is succes-
sively computed by taking the difference between the two
large total energies. The latter are generally feasible with all
(open-shell) quantum-chemical methods, but apart from the
aforementioned disadvantage of having to perform two
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separate calculations, transition properties are not accessible,
either.

In propagator methods, one can set out from the Dyson
equation,13,24 leading to schemes where the electron attach-
ment (G+) and detachment (G�) parts of the electron propagator
G(o) are coupled. Examples of Dyson approaches are the
algebraic-diagrammatic construction (ADC) schemes,19,24,27–29

the outer-valence Green’s function (OVGF),19,30,31 and the par-
tial third-order approach (P3).32,33 However, the coupling of the
G+ and G� parts is disadvantageous if one is interested in one
of the parts only. Therefore, electron propagator methods have
been developed, in which the Dyson equation is not employed
and the G+ and G� parts are treated separately. An example for
such methods are the non-Dyson ADC schemes, which are also
referred to as IP- and EA-ADC.34,35 Explicit equations for the
secular matrix and transition moments within the IP/EA-ADC
schemes can be derived either via the original ADC
procedure,34 or purely algebraically, employing the intermedi-
ate state representation (ISR) concept24,36–38 or an effective
Liouvillian formalism.39–41 The latter two approaches bear the
additional advantage that they provide access to an explicitly
constructable set of basis states, which allows for the calcula-
tion of final-state wave functions and from those one-electron
density matrices and properties via a (generalized) expectation
value.35,42–46

Another appealing feature of the ADC/ISR methods is that
the resulting matrices are Hermitian and compact, the latter
meaning that only a minimum number of explicit configu-
ration classes are needed for a consistent n-th order treatment
of transition and final-state properties.34,38 Furthermore, ADC/
ISR schemes are size consistent.47

Another family of methods is based on the equation-of-
motion (EOM) coupled-cluster (CC) approach,46,48–50 which
can be seen as a non-Hermitian representation of the Hamilto-
nian within a basis of biorthogonal CC states.51 The non-
Hermitian eigenvalue problem of EOM-CC is prone to
complex-valued solutions and the calculation of transition
and state properties is complicated by the need to solve for
two sets of left and right eigenvectors. However, they have the
advantage of an iterative reference ground-state description
via the corresponding CC scheme,49,52 in contrast to the non-
iterative Møller–Plesset (MP) ground state in ADC schemes.

The unitary coupled-cluster (UCC) approach39,53–60 com-
bines most of the advantages of the aforementioned ADC/ISR
and EOM-CC methods. Moreover, UCC schemes bear the
advantage over traditional (biorthogonal) CC approaches of
possessing Hermitian symmetry, thus simplifying the calcula-
tion of transition and final-state properties. UCC approaches
possess the same features of compactness and separability as
the ADC schemes, the latter being a sufficient criterion to yield
size-consistent results.37,61 As a matter of fact, it was shown
over a decade ago that a linear response UCC scheme correct
through second order in MP perturbation theory is identical to
ADC(2).62 Recently, a UCC-based third-order formulation of the
self-consistent polarization propagator was proposed63 and
shown to be closely related to the corresponding ADC scheme

as well as to second-order CC-ADC schemes.63–67 Successively,
the UCC polarization propagator approach has been extended
to the calculation of excited-state one-electron properties as
well as core-excited states and X-ray absorption spectra.68,69

In a foregoing article,61 the UCC approach has been applied
to the (N � 1)-electron part of the electron propagator, thus
yielding ionization potentials (or, more generally, electron-
detachment energies) and the corresponding transition ampli-
tudes, and the approach has subsequently been benchmarked
and compared to experimental and high-quality ab initio
results.70 The present article aims at extending this work and
applying the same approach to the (N + 1)-electron part of the
electron propagator. For the formulation of the theory, we use
again the ISR approach36,37 and give explicit working equations
for the secular matrix and effective transition moments of two
schemes termed ‘‘EA-UCC2’’ and ‘‘EA-UCC3,’’ which provide a
description of electron-attached states of primary one-particle
character correct through second and third order in MP per-
turbation theory (PT), respectively.

For a given system size N, the computational scaling asso-
ciated with these schemes is N6 for the iterative solution of the
ground state amplitude equations for both UCC2 and UCC3,
with a larger prefactor in the latter case. The self-consistent
nature of the UCC ground state thus causes increased compu-
tational costs in comparison to the non-iterative MP ground
state underlying the related EA-ADC methods, requiring one-
step evaluations scaling as N4 and N6 in case of EA-ADC(2) and
EA-ADC(3), respectively. It should be noted, though, that both
the EA-UCC and EA-ADC schemes build upon electron repul-
sion integrals in molecular orbital representation, which have
to be transformed from atomic orbitals in a single step scaling
as N5. That is, in case of EA-ADC(2), the computational scaling
associated with the ground state calculation is, in fact, N5. The
ground state calculation is then followed by the iterative

diagonalization of the respective EA-UCC matrix M
�

, which
scales as N4 and N5 in case of EA-UCC2 and EA-UCC3, respec-
tively, if a matrix-free diagonalization procedure is applied. For
the diagonalization step, the computational scaling is thus
identical to that of the EA-ADC(2) and EA-ADC(3) methods,
respectively.

The performance of the novel EA-UCC schemes is assessed
in a benchmark with respect to full configuration interaction
(FCI) data. In addition, we present the working equations for
the evaluation of one-particle properties of electron-attached as
well as electron-detached states correct through second
order in PT.

2 Theoretical methodology

For the development of unitary coupled-cluster (UCC) theory for
electron attachment, we closely follow the methodology and
notation used in ref. 61. In particular, the ‘‘Bernoulli expan-
sion’’ for the similarity-transformed Hamiltonian is adopted.63

The approach to electron-attachment energies is completely
analogous to the one for ionization potentials or electron-
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detachment energies.61 However, it might be useful to go
through the general theory in some detail before giving explicit
working equations for a third-order scheme.

2.1 UCC approach to electron-attachment processes

An intermediate state representation (ISR) approach based on
UCC has first been considered by Mukherjee and coworkers39,56

and later reviewed by Mertins and Schirmer.37 More recently, it
has been employed for the calculation of neutrally excited and
electron-detached species.61,63–65,68–70 For the calculation of
electron-attachment processes within this approach, (N + 1)-

electron EA-UCC states C
�Nþ1

J

����
�

are defined according to

C
�Nþ1

J

����
�
¼ eŝĈJ F0j i; (1)

where |F0i is the N-electron Hartree–Fock (HF) reference deter-
minant, ŝ = Ŝ � Ŝ† is the cluster operator that parameterizes the
UCC ground-state wave function |CN

0 i = eŝ|F0i,37,57,61 and ĈJ are
electron-attachment operators that can be divided into one-
particle (1p), two-particle-one-hole (2p1h), . . ., classes,

ĈJ A {ĉ†
a;ĉ†

bĉ†
aĉi, a o b; . . .}. (2)

Here and in the following we adopt the common convention
of indices i, j, . . . denoting occupied orbitals in |F0i, a, b, . . .

denote unoccupied (virtual) ones, and p, q, . . . stand for the
general case. The class of an arbitrary excitation J will be
denoted by [J]. The EA-UCC intermediate states of eqn (1) thus
correspond to a unitary transformation of the electron-attached
HF determinants |FN+1

J i = ĈJ|F0i, meaning they form a com-

plete and orthonormal set.37 The EA-UCC representation H
�

of
the Hamiltonian Ĥ is thus given by the matrix elements

H
�

IJ
¼ C

�Nþ1

I

� ����Ĥ C
�Nþ1

J

����
�
¼ FNþ1

I

� �� �H FNþ1
J

�� �
; (3)

which can also be viewed as a representation of the UCC
transformed Hamiltonian %H = e�ŝĤeŝ within the basis of
electron-attached CI configurations, |FN+1

J i A {|Fai,|Fab
i i,. . .},

similar to EA-EOM-CC.71 Correspondingly, the EA-UCC effective

transition moments f
�

are obtained from

f
�

I ;p
¼ C

�Nþ1

I ĉyp

��� ���C0

� �
¼ FNþ1

I e�ŝĉype
ŝ

��� ���F0

D E
: (4)

The representation of the Hamiltonian within the set of EA-

UCC states in eqn (3), or rather its shifted version M
�

defined as

M
�

IJ
¼ H
�

IJ
� EN

0 dIJ ; (5)

gives rise to a Hermitian eigenvalue equation

M
�
Y ¼ YX; YyY ¼ 1; (6)

which yields negative vertical electron-attachment energies as
eigenvalues on = EN+1

n � EN
0 collected in the diagonal matrix X and

the corresponding eigenvectors collected in the columns of Y.

Transition probabilities can be deduced from the spectroscopic
amplitudes x, whose elements are given by

xn,q = hCN+1
n |ĉ†

q|CN
0 i, (7)

where |CN+1
n i are the exact electron-attached states. They

can be obtained from the effective transition moments

f
�
via x ¼ Yy f

�
.34,37

The exact electron-attached states |CN+1
n i can then be written

in terms of the intermediate states as

CNþ1
n

�� �
¼
X
J

YJn C
�Nþ1

J

����
�
; (8)

which means that the elements of the eigenvectors YIn ¼

C
�Nþ1

I

����CNþ1
n

� �
are the expansion coefficients of the exact

electron-attached states in the intermediate state basis.
A different approach to the calculation of electron-

attachment energies and relative spectral intensities is based
on the one particle Green’s function or electron propagator
G(o) = G�(o) + G+(o). Considering only the (N + 1)-electron part
G+(o), corresponding to the non-Dyson approach to the elec-
tron propagator,34 its spectral representation is given as24

Gpq
þðoÞ ¼

X
n

CN
0 ĉp
�� ��CNþ1

n

� �
CNþ1

n ĉyq

��� ���CN
0

D E
oþ EN

0 � ENþ1
n

; (9)

where the elements of the spectroscopic amplitudes x from
eqn (7) appear as factors in the residues. By employing the
definition of the UCC ground state, and a resolution of the
identity in terms of EA-UCC states from eqn (1), the same
secular equation as with the ISR approach is obtained, analo-
gous to the polarization propagator case.37,63

Furthermore, it should be mentioned that that same proper-
ties such as compactness and separability apply to the EA-UCC
as for the IP-UCC scheme.61

2.2 The EA-UCC3 scheme

In analogy to the treatment of the (N � 1)-electron part of the
electron propagator within the UCCSD truncation scheme (ŝ =
ŝ1 + ŝ2),61 electron-attachment energies are obtained by diag-
onalizing the %H matrix shifted by the ground-state energy EN

0

within the space comprising 1p and 2p1h configurations. For
electron-attachment energies of states with predominantly 1p
character to be correct through third order in terms of MP
perturbation theory, the 1p/1p block needs to be correct
through third order, the 1p/2p1h and 2p1h/1p coupling blocks
through second order and the 2p1h/2p1h block through first
order. This scheme is then termed EA-UCC3. The somewhat
simpler second-order EA-UCC2 scheme is obtained by dropping
the respective highest-order terms in each block. Using the
definition of the second- and third-order Hamiltonians %HUCC2

and %HUCC3 in eqn (8) and (9) of ref. 61, respectively, yields the
following terms with leading contributions up to third order in
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the 1p/1p block M
�

a;b
,

M
�

a;b
¼ Fa �HUCC3 � EN

0

�� ��Fb
� �

(10a)

¼ Fab �
1

4

X
ijc

ij cakh isijcb þ h:c:

 !

þ
X
ic

ai bckh isic þ h:c:

 !

þ �1
2

X
ijkcd

id bkkh isijacs�jkcd

  

� 1

8

X
ijcde

cd bekh isijaes�ijcd

!
þ h:c:

!

þ 1

2

X
ijcde

ad bekh is�ijcd sijce

� 1

2

X
ijkcd

aj bkkh isijcd s�ikcd ;

(10b)

where the Fpq denote Fock matrix elements, hpq8rsi anti-
symmetrized two-electron integrals in physicists’ (‘‘1212’’)
notation,72 and ‘‘h.c.’’ stands for the Hermitian conjugate.

The 1p/2p1h coupling block M
�

a;ibc
with leading terms up to

second order is given as

M
�

a;ibc
¼ Fa �HUCC2

�� ��Fbc
i

� �
(11a)

¼ � cb aikh i þ 1

2

X
jk

ai jkkh is�jkbc

þ P̂ðbcÞ
X
jd

ad bjkh is�ijcd ;
(11b)

where P̂ðpqÞ ¼ 1� P̂pq anti-symmetrizes the following
expression with respect to indices p and q, and the 2p1h/1p
coupling block is the Hermitian conjugate of this one. Finally,
the 2p1h/2p1h block with leading terms through first order is
given as

M
�

iab;jcd
¼ Fab

i Ĥ � EN
0

�� ��Fcd
j

D E
(12a)

¼ Facdbddij þ Fbddacdij � Fjidacdbd

þ dij ab cdkh i

� P̂ðcdÞ dbd ic jakh i þ dac jb idkh ið Þ:

(12b)

In the second-order EA-UCC2 scheme, only the first two
terms of eqn (10b), the bare two-electron integral of eqn (11b),
and only the Fock matrix elements of eqn (12b) are the
constituting ingredients.

2.3 EA-UCC effective transition moments

The EA-UCC effective transition moments f
�

are obtained
according to eqn (4) and can be divided according to the
excitation class [I] of the intermediate state and then
further into a particle and a hole part depending on the orbital
index p.

Starting with [I] being a 1h excitation, the 1p/h part f
�

a;i
can

be shown to be identical, apart from a sign change due to
the different order of the second-quantized operators, to the
corresponding 1h/p part of the IP-UCC scheme through third
order.61 This means that it can be written through double
commutators or third order as a projection onto singly exicted
determinants,

f
�

a;i
¼ C

�Nþ1

a ĉ
y
i

��� ���C0

� �
¼ Fa e�ŝĉyi e

ŝ
��� ���F0

D E

¼ Fa ĉ
y
i þ ĉ

y
i ; ŝ

h i
þ 1

2
ĉ
y
i ; ŝ

h i
; ŝ

h i
þ � � �

����
����F0

� �

¼ � Fa
i Ŝ þ 1

2
ŜyŜ

����
����F0

� �
þ Oð4Þ;

(13)

where O(n) stands for all terms of n-th and higher order.
Accordingly, in a consistent third-order scheme it would be
given by

f
�

a;i
¼ � Fa

i Ŝ1 þ
1

2
Ŝ
y
1Ŝ2 þ

1

2
Ŝ
y
2Ŝ3

����
����F0

� �
þ Oð4Þ

¼ � sia �
1

2

X
jb

s�jbsijab �
1

8

X
jkbc

s�jkbcsijkabc þ Oð4Þ:
(14)

It should be noted that in the present approximate UCCSD
scheme, the last term including the Ŝ3 operator does not occur.
However, neglecting this term does not affect the third-order
consistency, as was shown for the analogous case of IP-UCC in
ref. 61.

Correspondingly, the 1p/p block f
�

a;b
is given by

f
�

a;b
¼ C

�Nþ1

a ĉ
y
b

��� ���C0

� �
¼ Fa e�ŝĉybe

ŝ
��� ���F0

D E

¼ dab �
1

4

X
ijc

s�ijacsijbc þ Oð4Þ:
(15)

Let us proceed to the case where [I] corresponds to a 2h1p
excitation. Analogous to the 1p/h block, the 2p1h/h block can
be written as a projection onto doubly excited determinants,
which in this case is sufficient through fourth order in
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perturbation theory,

f
�

iab;j
¼ C

�Nþ1

iab ĉ
y
j

��� ���C0

� �
¼ Fab

i e�ŝĉyj e
ŝ

��� ���F0

D E

¼ � Fab
ij Ŝ þ 1

2
ŜyŜ

����
����F0

� �
þ Oð5Þ

¼ � Fab
ij Ŝ2 þ

1

2
Ŝ
y
1Ŝ3

����
����F0

� �
þ Oð5Þ

¼ � sijab �
1

2

X
kc

s�kcsijkabc þ Oð5Þ

¼ � sijab þ Oð4Þ:

(16)

Let us note that this finding makes eqn (E4b) of ref. 61
somewhat more stringent. Finally, the 2p1h/p block vanishes
through second order,

f
�

iab;c
¼ C

�Nþ1

iab ĉyc
�� ��C0

� �
¼ Fab

i e�ŝĉyce
ŝ

�� ��F0

� �

¼ 1

2
Fab

i Ŝ
y
1Ŝ2ĉ

y
c � ĉycŜ

y
1Ŝ2

��� ���F0

D E
þ Oð4Þ

¼ 1

2

X
j

s�jcsijab

þ 1

2
P̂ðabÞdbc

X
jd

s�jd sijad þ Oð4Þ

¼ 0þ Oð3Þ;

(17)

as needed for the EA-UCC3 scheme, but has non-vanishing
contributions starting in third order, unlike the corresponding
block of the EA-ADC scheme, which vanishes in all orders of
perturbation theory.34,45,61

2.4 One-electron properties of molecular electron-detached
and -attached states

Physical properties of electron-detached or electron-attached
states other than the energy can be calculated as the expecta-
tion value of the operator D̂ corresponding to the observable
with the wave function,

Dn = hCN�1
n |D̂|CN�1

n i. (18)

In the following, D̂ is a general one-electron operator given
in second quantization as

D̂ ¼
X
pq

dpqĉ
y
pĉq; (19)

where dpq = hfp|d̂|fqi are the one-electron matrix elements
associated with D̂ in the MO basis.

Within the UCC/ISR approach, this expectation value can be
calculated by plugging the respective wave-function expansion
according to that of eqn (8) twice into the general expectation
value (18), Dn (for n 4 0) is obtained from

Dn ¼
X
IJ

Y�n;I D
�

IJ
Yn;J ¼ Yyn D

�
Yn; (20)

from the n-th eigenvector Yn of the UCC secular problem and

the matrix D
�

, which is the representation of D̂ within the basis
of UCC intermediate states,

D
�

IJ
¼ C

�N�1

I D̂
�� ��C�N�1

J

� �
: (21)

Analogously, one may compute transition moments between
two different states (n a m) according to

Tnm ¼ CN�1
n D̂
�� ��CN�1

n

� �
¼ Yyn D

�
Ym: (22)

One may now rewrite the elements of D
�

by inserting the
definition of the N � 1 UCC states analoguous to eqn (1)
to obtain

D
�

IJ
¼ F0 Ĉ

y
I e
�ŝD̂eŝĈJ

��� ���F0

D E
¼ FN�1

I
�Dj jFN�1

J

� �
; (23)

which can be seen as matrix elements of the transformed
operator %D,68

�D ¼ e�ŝD̂eŝ ¼ D̂þ ½D̂; ŝ� þ 1

2!
D̂; ŝ
� �

; ŝ
� �

þ � � � ; (24)

within the basis of (N � 1)-electron determinants, |FN�1
J i =

ĈJ|F0i. Explicit matrix elements for a consistent second-order

description of D
�

are given in Appendix A. It should be men-
tioned that this formulation of excitation energies, transition
moments and excited-state properties is separable for a system
consisting of two noninteracting fragments and thus yields
size-intensive results.37,42,47

3 Computational details

The EA-UCC calculations presented in this work were per-
formed using development versions of the Q-Chem 5
software.73 Therein, EA-UCC methods were implemented in
the adcman module,74 exploiting the libtensor library75 and
the existing infrastructure to perform ground-state UCC365

calculations.
For the benchmark study of the EA-UCC2 and EA-UCC3

methods presented in Section 4, the benchmark data set
introduced in ref. 45 was employed. A detailed listing of the
molecular geometries and basis sets used is given in Section S1
of the ESI.† Statistical error estimates were computed with
respect to FCI data available in ref. 45. The benchmark data
set consists of 50 electron-attached states in 21 different
electronic systems, comprising both neutral and charged, as
well as closed- and open-shell molecular species.

It shall be noted that, especially in the case of neutral
species, the benchmark data set also includes states which
are electronically unbound. The corresponding computed EAs
are thus highly basis set dependent, as they belong to either
electronic resonances or even wrongly discretized continuum
states. The objective of the present study is, however, an
assessment how well the presented EA-UCC schemes are con-
verged with respect to FCI results for a given basis set. The
computed error characteristics can therefore be expected to
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provide a comprehensive picture of the EA-UCC method
performance.

4 Results and discussion

Here, we present an assessment of the accuracy and precision
of the novel EA-UCC2 and EA-UCC3 methods. For this purpose,
we employ the FCI benchmark data set for electron-attached
states first introduced in ref. 45 in the context of EA-ADC,
covering closed- and open-shell species of different categories.
Among the molecules with closed-shell initial states are neutral
molecules (N) and cations (C). The open-shell species comprise
neutral radicals with doublet ground states (NR), neutral mole-
cules in their lowest triplet-excited states (T1) and radical
cations with doublet ground states (RC).

Among all states available in the FCI benchmark data set,
only those exposing pole strengths P 4 0.6 were considered for
the statistical error evaluation. That is, electron-attached states
mainly described by two-particle-one-hole (2p1h) transitions
were exempted. Such states appear for different reasons. Apart
from actual 2p1h transitions leading to ‘‘satellite states’’, a one-
particle (1p) state may, on a specific level of theory, ‘‘acciden-
tally’’ mix with close-lying 2p1h states, in which case an
unambiguous assignment to FCI states is not possible. Such
states can be found for electron attachment to closed- and
open-shell initial states and are characterized by considerably
decreased pole strengths.

For electron attachment to open-shell systems, another
source of increased 2p1h character has to be considered as
well. The issue may be demonstrated at the example of electron
attachment to doublet reference states characterized by

MS ¼
1

2
. This is done in Fig. 1, which provides a schematical

overview of all three possible 1p processes (denoted A, B and C).
In contrast to processes A and B, which generate well-defined
Ŝ2-adapted final states, transition C leads to an open-shell
species which needs to be linearly combined with a second
configuration in order to form an Ŝ2-adapted electron-attached
state. The missing configuration is indeed accessible by means
of a 2p1h transition (denoted D in Fig. 1). However, this implies
a mixing of different types of configurations which, in EA-UCC
methods, are not described on equal theoretical footing. More
generally, the excitation manifold used for the EA-UCC matrix
representation may even be incomplete for a full recovery of
spin symmetry in electron-attached states, as has been dis-
cussed in ref. 76 in the context of electron number-conserving
excitations. Results computed for this kind of states should
thus be interpreted carefully and will, in the present context,
not be considered further. As in the case of ‘‘accidental’’ mixing
of 1p and 2p1h states, the respective states are easily identified
as states in which strong mixing of 1p and 2p1h configurations
occurs, which, in turn, is reflected in considerably decreased
pole strengths.

The results of our benchmark calculations are presented in
Table 1. Starting with the closed-shell systems, the overall
accuracy computed for 35 EA-UCC2 states is characterized by

a mean absolute error (MAE) of 0.12 eV, while the mean signed
error (MSE) and its standard deviation (SDE) are MSE � SDE =
�0.02 � 0.18 eV. Here, the maximum absolute deviation is
found for the 22S+ state of the HCN anion, Dmax = 0.60 eV (see
ESI† for a detailed listing of the individual states underlying the
statistical evaluation). For EA-UCC3 (34 states), the respective
error characteristics are MAE = 0.05 eV and MSE � SDE = 0.00 �
0.10 eV. The maximum absolute deviation from FCI reference
data is again found for the 22S+ state of the HCN anion,
however, compared to EA-UCC2 this value is reduced to now
only Dmax = 0.41 eV. The individual error estimates, in parti-
cular the MAE and SDE, computed for neutral (25/24 EA-UCC2/
EA-UCC3 states) and cationic (10/10 states) initial systems are
in line with the respective values computed for the complete
closed-shell set. However, the EA-UCC2 and EA-UCC3 mean
signed errors of �0.11 and �0.04 eV found for cationic initial
states indicate that for this kind of systems EAs are consistently
underestimated by EA-UCC methods. In contrast, such a beha-
vior is not observed for neutral initial states, where an MSE of
0.02 eV is found for both EA-UCC2 and EA-UCC3.

Turning now to open-shell systems, the accuracy and preci-
sion is generally reduced compared to closed-shell initial states.
For EA-UCC2, the mean absolute error computed for 16
electron-attached states is MAE = 0.22 eV, and thus close to

Fig. 1 Schematic representation of possible final electronic configura-
tions accessible through 1p-type electron attachment transitions from an
open-shell doublet reference. The open-shell singlet and triplet states
characterized by MS = 0 (orange box) require a combination of 1p and 2p1h
configurations in order to be Ŝ2 eigenfunctions. Electrons of the reference
determinant are shown in black, those added during the attachment
process in red, and electrons excited from the reference determinant
during the attachment process in blue.
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the MAE of 0.20 eV found for EA-UCC3 (16 states). EA-UCC2
shows an underestimation of EAs characterized by an MSE of
�0.11 eV. This trend is even more pronounced for EA-UCC3
(MSE = �0.16 eV). However, the error spread slightly reduces from
EA-UCC2 (SDE = 0.36 eV) to EA-UCC3 (SDE = 0.32 eV). The reduced
precision of EAs computed with open-shell references is also
reflected in the maximum absolute deviations from FCI results.
For EA-UCC2, the respective value of Dmax = 0.99 eV is observed for
the 12S+ state of the LiH anion when a triplet-excited (T1) LiH*
reference state is employed. For EA-UCC3, it is Dmax = 0.79 eV in
case of the 12A state of the NH3 anion when, again, a triplet-excited
NH3* reference state is employed. However, it should be noted that
the error characteristics computed for the different categories of
open-shell initial states are less meaningful than those computed
for their closed-shell counterparts due to the relatively small
number of states considered in our benchmark set (NR: 4 states,
T1: 6 states, and RC: 6 states for both EA-UCC2 and EA-UCC3).

Taking together the closed- and open-shell systems, EA-
UCC3 slightly outperforms EA-UCC2 in terms of accuracy as
well as precision: for 50 EA-UCC3 states, the error character-
istics are given by MAE = 0.10 eV and MSE � SDE = �0.05 �
0.20 eV; for EA-UCC2, they are MAE = 0.15 eV and MSE � SDE =
�0.05 � 0.25 eV. Also, the maximum absolute deviation is
smaller in case of EA-UCC3 (Dmax = 0.79 eV) than in case of EA-
UCC2 (Dmax = 0.99 eV).

5 Summary and conclusions

Two computational schemes for the calculation of molecular
electron attachment energies based on a unitary coupled cluster
approach have been derived and implemented in the Q-Chem
quantum-chemical software package.73 These EA-UCC2 and EA-
UCC3 methods yield results which are consistent through second
and third order of Møller–Plesset perturbation theory, respectively,
for electronic states accessible in one-particle processes. In addi-
tion, second-order schemes for the calculation of molecular one-
electron properties of electron-attached and electron-detached
states have been derived and are presented in Appendix A.

The accurracy and precision of the EA-UCC2 and EA-UCC3
schemes for the calculation of electron attachment energies
was assessed in a benchmark study with respect to FCI results
for 50 electron-attached states in 21 different molecular open-
and closed-shell species. As already observed for the EA-ADC
methods,45 the improvement of the third-order scheme over the
second-order scheme is not as pronounced as in the case of IP-
UCC.70 For closed-shell systems, the EA-UCC2 and EA-UCC3
schemes are characterized by mean absolute errors of 0.12 and
0.05 eV, respectively. For open-shell systems, generally larger
errors are observed, being 0.22 and 0.20 eV for EA-UCC2 and EA-
UCC3, respectively. One possible reason for the lower accurracy
observed for open-shell systems is spin contamination, as has
been pointed out recently in the context of IP- and EA-ADC77 as
well as ADC for electron number-conserving excitations.76
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Table 1 Mean absolute error (MAE), mean signed error (MSE) and its
standard deviation (SDE), as well as the maximum absolute error (Dmax) of
vertical EAs of closed- and open-shell systems computed for EA-UCC2
and EA-UCC3 with respect to FCI reference data from ref. 45. The closed-
shell systems comprise neutral molecules (N) and cations (C), and the
open-shell systems comprise neutral radicals (NR), molecules in the
lowest-triplet excited state (T1), and radical cations (RC). Only 1p-type
electron attachment transitions with pole strengths P 4 0.6 have been
taken into account. The number k of states considered for each set of
states is given in parantheses in the first column as (kUCC2/kUCC3). A
compiled listing of all individual EAs is available in the ESI

Initial system Error EA-UCC2 EA-UCC3

Closed-shell
N (25/24) MAE 0.12 0.06

MSE 0.02 0.02
SDE 0.19 0.12
Dmax 0.60 0.41

C (10/10) MAE 0.11 0.04
MSE �0.11 �0.04
SDE 0.16 0.05
Dmax 0.39 0.13

Overall closed-shell (35/34) MAE 0.12 0.05
MSE �0.02 0.00
SDE 0.18 0.10
Dmax 0.60 0.41

Open-shell
NR (4/4) MAE 0.25 0.20

MSE 0.09 �0.02
SDE 0.36 0.27
Dmax 0.68 0.40

T1 (6/6) MAE 0.28 0.29
MSE �0.27 �0.28
SDE 0.43 0.43
Dmax 0.99 0.79

RC (6/6) MAE 0.16 0.12
MSE �0.09 �0.12
SDE 0.26 0.19
Dmax 0.60 0.35

Overall open-shell (16/16) MAE 0.22 0.20
MSE �0.11 �0.16
SDE 0.36 0.32
Dmax 0.99 0.79

Overall (51/50) MAE 0.15 0.10
MSE �0.05 �0.05
SDE 0.25 0.20
Dmax 0.99 0.79
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Appendix
A Second-order (N � 1)-electron UCC expressions of one-
particle operators

In the following, explicit expressions for the matrix elements of
a general one-particle operator

D̂ ¼
X
pq

dpqĉ
y
pĉq (25)

for a consistent second-order description are presented. The
general form of the matrix elements is given by

D
�

IJ
¼ C

�N�1

I D̂
�� ��C� N�1

J

� �
¼ FN�1

I
�Dj jFN�1

J

� �
; (26)

where the similarity-transformed operator %D is defined in
eqn (24). As before, the indices i, j, k, . . . and a, b, c, . . . refer
to unoccupied (virtual) and occupied orbitals, respectively,
while p, q, r, . . . are used for the general case. The ground-
state contribution D0 is implicitly subtracted in the following.

A.1 (N � 1)-electron case
A.1.1 h/h block. The zeroth-order part is given by

hFi|D̂|Fji = �dij, (27)

while for a valid HF reference there is no first-order contribu-
tion. The second-order contribution from the single commu-
tator involving ŝ1 is given by

Fi D̂; ŝ1
� ��� ��Fj

� �
¼ �

X
c

dicsjc þ dcjs
�
ic

	 

: (28)

The different contributions stemming from the double
commutator involving ŝ2 are given by

Fi D̂; ŝ2
� �

; ŝ2
� ��� ��Fj

� �
¼ � 1

4

X
klcd

djks
�
klcd silcd

� 1

4

X
klcd

dkis
�
jlcd sklcd

�
X
kcde

dcds
�
kjceskide

þ 1

2

X
klcd

dlks
�
kjcd slicd :

(29)

A.1.2 h/2h1p block. For the coupling block, the zeroth-order
contribution is given by

hFi|D̂|Fb
jki = dikdjc � dijdkc, (30)

while the first-order contributions are given by

Fa
i D̂; ŝ2
� ��� ��Fbc

jk

D E
¼ dij

X
ld

ddls
�
lkdb � dik

X
ld

djbs
�
ljdb

þ
X
d

ddis
�
jkdb: (31)

The other coupling block is the Hermitian conjugate of
this one.

A.1.3 2h1p/2h1p block. This block is only needed in zeroth
order, where the corresponding terms are given by

Fa
ij D̂
�� ��Fc

kl

D E
¼ dikdjldac � dacdikdlj þ dacdildkj

� dacdjldki þ dacdjkdli:
(32)

A.2 (N + 1)-electron case
A.2.1 p/p block. The zeroth-order part is given by

hFa|D̂|Fbi = dab, (33)

while for a valid HF reference there is again no first-order
contribution. The second-order contribution from the single
commutator involving ŝ1 is given by

Fa D̂; ŝ1
� ��� ��Fb

� �
¼ �

X
k

dkaskb þ dbks
�
ka

	 

: (34)

The different contributions stemming from the double
commutator involving ŝ2 are given by

Fa D̂; ŝ2
� �

; ŝ2
� ��� ��Fb

� �
¼ � 1

4

X
klcd

dcbs
�
klcd sklad

� 1

4

X
klcd

dacs
�
klbdsklcd

þ 1

2

X
klcd

dcds
�
klcbsklda

þ
X
klmc

dlks
�
kmcbslmca:

(35)

A.2.2 p/2p1h block. For the coupling block, the zeroth-order
contribution is given by

hFa|D̂|Fbc
j i = dabdjc � dacdjb, (36)

while the first-order contributions are given by

Fa D̂; ŝ2
� ��� ��Fbc

j

D E
¼ dab

X
ld

ddls
�
ljdc

� dac
X
ld

djbs
�
ljdb þ

X
l

dals
�
ljbc:

(37)

Again, the other coupling block is the Hermitian conjugate
of this one.

A.2.3 2p1h/2p1h block. This block is again only needed in
zeroth order, where the corresponding terms are given by

Fab
i D̂
�� ��Fcd

j

D E
¼ dbddijdac � dbcdijdad þ dacdijdbd

� daddijdbc � dacdbddji:
(38)

It should be noted that all these terms are in fact equivalent
to the ones obtained in the intermediate state representation of
a general one-particle operator within the perturbative
algebraic-diagrammatic construction scheme.42 This means, if
the converged ŝ1 and ŝ2 cluster amplitudes are replaced by
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their second- and first-order analogues, ŝ(2)
1 and ŝ(1)

2 , respec-
tively, the resulting matrix elements are identical, analogous to

the secular matrix M
�

itself.63,64
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N. Martı́n, Chem. Commun., 2010, 46, 4853–4865.
6 N. M. O’Boyle, C. M. Campbell and G. R. Hutchison, J. Phys.

Chem. C, 2011, 115, 16200–16210.
7 K. D. Jordan and P. D. Burrow, Chem. Rev., 1987, 87,

557–588.
8 J. Simons, Annu. Rev. Phys. Chem., 2011, 62, 107–128.
9 D. Davis, V. P. Vysotskiy, Y. Sajeev and L. S. Cederbaum,

Angew. Chem., Int. Ed., 2011, 50, 4119–4122.
10 T. Sommerfeld, B. Bhattarai, V. P. Vysotskiy and

L. S. Cederbaum, J. Chem. Phys., 2010, 133, 114301.
11 V. K. Voora and K. D. Jordan, J. Phys. Chem. Lett., 2015, 6,

3994–3997.
12 V. K. Voora, A. Kairalapova, T. Sommerfeld and K. D. Jordan,

J. Chem. Phys., 2017, 147, 214114.
13 A. L. Fetter and J. D. Walecka, Quantum Theory of Many-

Particle Systems, McGraw-Hill Book Company, New York,
1971.

14 L. S. Cederbaum and W. Domcke, Adv. Chem. Phys., 1977,
36, 205–344.

15 J. Simons, Annu. Rev. Phys. Chem., 1977, 28, 15–45.
16 J. Oddershede, Adv. Quantum Chem., 1978, 11, 275–352.
17 M. F. Herman, K. F. Freed and D. L. Yeager, Adv. Chem.

Phys., 1981, 48, 1–69.
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