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Accelerating the identification of the rate
controlling steps by conducting microkinetic
modeling on surrogate networks†

Hongyu Li,a Jia Zhang, *b Zihao Yao c and P. Hu *ade

Identifying the rate-controlling steps in an unknown reaction network can be time-consuming due to its

inherent complexity. Here we present a strategy to simplify this process by focusing expensive barrier

calculations on significant elementary steps. The strategy is constructed by determining significant

elementary steps using the degree of rate control data, which is derived from microkinetic modeling

calculations performed on surrogate networks, which are a series of networks generated by assigning

fictitious values to unknown barriers while all the reaction energies are computed using density functional

theory. The barriers for significant elementary steps are then calculated iteratively to refine the network.

We demonstrate this strategy for the reaction of Fischer–Tropsch synthesis, which has already been

extensively studied in our previous work. Applying the strategy, we identified the most rate-controlling step,

achieving a 77% reduction in the number of transition state calculations compared to traditional methods.

Additionally, a detailed analysis of the strategy reveals the correlation between the parameters in the

strategy and its performance. We validate the practicability of the strategy by applying it onto testing

networks and the potential limitations of the strategy are also discussed.

Introduction

A catalytic reaction network is typically complex; a system
involving hundreds of intermediates can result in a network
with numerous reactions and pathways. To extract useful
information from such a network, a large number of
calculations must be performed. Traditional calculations for
mechanistic studies can be divided into three parts, as
illustrated in Fig. 1: reaction energy calculations (structural
optimizations of initial and final states of each elementary step),
transition state (TS) calculations (TS search using NEB or
constrained optimization or other methods), and microkinetic
modeling (MKM). Conducting high-fidelity calculations for the

entire reaction network is both costly and time-consuming.
Typically, TS calculations are the most time-consuming, often
being several orders of magnitude more computationally
expensive than other calculations. Therefore, reducing the
number of TS calculations is the key to improving the efficiency
of reaction kinetics studies.

This process can be significantly simplified by recognizing that
only a small portion of reactions controls most of the properties
of the entire network. The majority of the network properties,
except for the kinetic parameters of the rate-controlling steps,
have small impacts on the overall reaction network. The rate-
controlling step can be simply interpreted as the slowest step of
the favored pathway and it can strongly influence the overall
reaction rate of the network. In order to identify rate-controlling
steps, one popular method is the degree of rate control (DRC).
This approach for analyzing multistep reaction mechanisms was
introduced by Campbell,1–4 in which the “degree of rate control
for elementary step i”, DRCi, is defined as

DRCi ¼ ki
r

∂r
∂ki

� �
kj≠i;Ki

¼ ∂ lnr
∂ lnki

� �
kj≠i;Ki

(1)

where r is the net reaction rate to the product of interest, ki is the
forward rate constant for step i, kj≠i are the rate constants for
steps other than i, and Ki is the equilibrium constant for step i.
The larger the numeric value of DRCi is for a given step, the
greater the influence of its rate constant is on the overall reaction
rate r. The elementary step with the largest DRC value is
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identified as the most rate-controlling step, which is crucial for
understanding the mechanism of the reaction network and
valuable for designing more effective catalysts. The challenge is
that obtaining the DRC data requires MKM of the network, which
involves extensive calculations of reactions and activation
energies. Therefore, a key question arises: how quickly can the
rate-controlling step of an unknown network be identified with as
little calculation as possible?

To address this, researchers have proposed various
solutions,5–14 primarily relying on approximations like the
BEP relation15–20 or machine learning models to minimize
computational resources and time. As a representative
example, by using the prediction of machine-learning and
approximations, such as scaling relations, Ulissi et al.
developed an approach to determine the significant reactions
on the favored pathway: by focusing only on these reactions
with full density functional theory (DFT) calculations at each
iteration, they achieved remarkable reduction of time and
resource cost on studying the network of syngas.9 Despite all
the progress in this field, two main improvements could still
be made. One is to achieve a more optimal trade-off between
accuracy and efficiency. We need to determine when to use
an approximate method that saves time but is less accurate,
and when to choose a high-fidelity DFT calculation, which is
more precise but also more time-consuming. The second
improvement is to develop a better strategy to identify
significant elementary steps.

In this work, we aim to address these issues. We
developed a workflow to identify the rate-controlling steps of
a reaction network, significantly reducing computational
effort by performing a limited number of TS calculations.
The strategy used DFT calculations to obtain reaction
energies, and the MKM was conducted using CATKINAS, a
software developed by our group and widely used.21–30 We
saved time and computational resources by reducing barrier
calculations, as shown in Fig. 1. Our workflow uses DRC data
as an indicator to find significant elementary steps and
calculate the corresponding TS energy at each iteration. The
characteristics of the reaction network are refined at each
iteration, and the rate-controlling steps of the network are
determined at the end of the refinement. We demonstrated
this workflow for the Fischer–Tropsch (FT) reaction,31–46 a
process that utilizes synthesis gas to convert into
hydrocarbons and oxygenated hydrocarbons. Using the
strategy, we identified the most rate-controlling step with
reducing the number of TS calculations by 77%.

Result
General workflow

As mentioned before, traditional reaction mechanism
calculations consist of three parts: calculating reaction energies,
determining the TSs, and performing the microkinetic modeling
(MKM). Comparing the computational cost of each calculation, it

Fig. 1 The traditional method (upper) and our strategy (lower) of determining rate-controlling steps. Our strategy efficiently identifies the rate-
controlling steps in the reaction network by minimizing the number of TS calculations. First, surrogate networks with accurate reaction energies
and fictitious energy barriers are constructed. MKM on the surrogate networks provides kinetic analysis to identify significant elementary steps.
The activation energies of the highest-priority steps are calculated iteratively using DFT, with the network being updated to improve accuracy. This
process continues until convergence is achieved.
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is well known that the TS calculations are much more expensive
than the other calculations. This leads to the core of our strategy:
minimizing the number of TS calculations while maintaining a
high level of accuracy. We managed to achieve this goal by
constructing a workflow to find the significant elementary steps
and calculate their TS energies iteratively. As illustrated in Fig. 2a,
the entire workflow is divided into four parts: surrogate network
construction, surrogate network MKM, evaluation and surrogate
network refinement.

In constructing the surrogate networks, the first step is to
define all possible chemical species and elementary steps to
be considered in the network. Then the adsorption energies
of all intermediates are calculated to obtain the reaction
energy for each elementary step. In this way, a raw reaction
network with only the thermodynamic information is built.
Next, a surrogate network is generated by assigning fictitious
values to energy barriers of all the elementary steps in the
network. To construct a series of surrogate networks, as
shown in Fig. 2b, we began with assigning values to Xmax (the
biggest fictitious barrier value), Xmin (the smallest fictitious
barrier value) and A (the interval of fictitious barrier between
surrogate networks) in our strategy. As the fictitious barrier x

changes from Xmax to Xmin, a series of surrogate networks
were constructed. For clarity, when we built the surrogate
networks, the fictitious energy barrier x is only added to the
exothermic forward/backward reactions in each step. For
example, assuming the energies of the initial state and the
final state for a specific elementary step are E1 and E2,
respectively, the energy of TS will be E1 + x when E1 < E2;
otherwise, it will be E2 + x if E2 < E1.

In the MKM phase of surrogate networks, we conducted
MKM on all the surrogate networks to obtain their kinetic
information, which contains DRC data. Since our goal in this
work was to identify the key elementary steps within a highly
complex reaction network, coverage dependence was not
explicitly considered to streamline the calculation process. In
the evaluation phase, we introduced an indicator, DRC(sum),
to assess the significance of each elementary step. For a
specific elementary step i, DRCi

(sum) is defined as the sum of
the absolute value of the corresponding DRC in each
surrogate network as follows:

DRCi
sumð Þ ¼

Xn
z¼1

wz × DRCi
z

�� �� (2)

Fig. 2 Workflow used to generate surrogate networks to iteratively determine significant elementary steps. (a) Network refinement methodology.
In each iteration, the significant elementary step is determined based on kinetic information obtained from MKM of surrogate networks and TS
calculation will be conducted on the significant elementary step using DFT to refine surrogate networks. (b) Flow chart of surrogate network
generator in the surrogate networks construction phase. (c) Flow chart of the significant step finder in the evaluation phase.
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where n is the total number of surrogate networks, DRCi
z is

the DRC value of elementary step i for the z-th surrogate
network, and wz is the weight of DRCi for the z-th surrogate
network. To prevent positive and negative values of DRCs
cancelling each other, the DRC(sum) is calculated as the sum
of the absolute values of the DRCs across all the surrogate
networks. We then assessed the significance of each
elementary step by referring to the value of its DRC(sum). This
information is later used as a reference to identify the most
significant elementary step and to determine which energy
barrier needs to be calculated during the evaluation phase.
To identify the most significant step, it is first necessary to
assess whether the calculation has reached convergence.
Convergence is deemed achieved when the top N elementary
steps, characterized by the highest DRC(sum) values in the
current iteration, remain consistent with those from the
previous iteration, where N is a predefined parameter. If
convergence is not attained, further evaluations are
conducted to determine which elementary step's TS should
be calculated using DFT in the subsequent phase.

In the refinement phase of surrogate networks, we used
DFT calculations to obtain the barrier of the chosen
elementary step and updated all the surrogate networks by
replacing the fictitious barrier of the selected step with its
actual barrier. This process is repeated until the convergence
criterion is met.

Identification of rate-controlling steps

In this work, we demonstrated this workflow for the FT
reaction network on Co(0001), which has been thoroughly
studied in our previous work.47 Since the structure of the
reaction network and the reaction energies and activation
energies have already been calculated,47 we skipped the
network determination, reaction energy and barrier
calculations in our current workflow, and focused on
demonstrating how our workflow determines the significant
elementary step iteratively and refines the network. We set
parameters Xmax, Xmin and A to 1.5 eV, 0.0 eV and 0.1 eV,
respectively, for the construction of surrogate networks.
Detailed explanation about parameters setting will be
included in the next section. For simplicity, the weight wz in
the definition formula of DRC(sum) (eqn (1)) was uniformly
set to 1 for every surrogate network.

The refinement procedure is illustrated in Fig. 3a, which
shows the entire reaction network with nodes as reaction
species and lines as elementary steps. For visual simplicity,
hydrogen is omitted. Refinements were performed under
various settings of parameter N. As N increased, a greater
number of TSs were required to be calculated for the
iteration to terminate. The additional elementary steps that
needed to be calculated by DFT, as N was increased to N + 1,
are indicated by colored lines in Fig. 3a. Since parameter N
defines the convergence criterion in the evaluation phase,
increasing N requires more rate-controlling steps to converge
before the iteration stops. This would result in more TS

calculations and potentially more accurate outcomes. The
accuracy of the final result and the number of iterations
before convergence are both plotted against the value of N in
Fig. 3b. In this work, ‘accuracy’ is defined as the ratio of the
sum of DRC values of the calculated M elementary steps to
the total DRC sum across all elementary steps, with all DRC
values derived from a reference set based on the full reaction
network from prior work,47 which conducted calculations of
all the TS energies through DFT calculations. This metric is
designed specifically for internal assessment of the strategy's
predictive accuracy within this study and is not intended for
direct application in real-world determinations of rate-
controlling steps.

Accuracy ¼
X
i∈M

DRCi
�� ��=X

i∈Q

DRCi
�� �� (3)

where M is a collection of all the elementary steps that have
been studied using DFT in our workflow, and Q is a
collection of all the elementary steps in the network. As N
increases, the accuracy of the final result and the number of
iterations before convergence also increases (Fig. 3b). In
addition, there are three significant increases on the accuracy
curve, each representing the identification of one of the three
most rate-controlling steps for the FT reaction network on
Co(0001). In Fig. 3c, we show the top 3 most rate-controlling
steps and their corresponding pathways determined by our
strategy under different convergence criterion, in which the
rate-controlling steps were highlighted in red. Only the top 3
rate-controlling steps are illustrated, because the DRC values
of the top 3 rate-controlling steps, for the current studied
network, were at least one magnitude higher than those of
the rest elementary steps according to the reference set.

The first accuracy significant increase occurs when N was set
to 1; with 11 iterations in total, the calculation converged. The
most rate-controlling step was determined as CH3O ⇋ CH3 + O,
which is the third most rate-controlling step according to the
reference set. The second significant accuracy increase occurs
when N was set to 2, with the convergence achieved after 16
iterations. In this case, the elementary step of CHO ⇋ CH + O
was identified as the most rate-controlling step, which aligns
with the result from the reference set. This means that using
the method developed in this work, we only conducted 15 TS
calculations to correctly predict the most rate-controlling step
for the FT reaction network on Co(0001), reducing 77% of TS
calculations. The third accuracy significant increase occurs
when N was set to 5, with the convergence achieved after 29
iterations. This time we correctly identified the top 3 most rate-
controlling steps and reached a value of accuracy of 0.97.

Surrogate network assessment

We investigated the most important and innovative aspects
of our workflow. Namely, we quantitatively assessed the
construction and utilization of the surrogate networks. It is
worth mentioning that the general benefit for incorporating
surrogate networks into our workflow is that it prevents the

Catalysis Science & Technology Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

7/
07

/2
5 

01
:4

2:
53

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cy01336k


2770 | Catal. Sci. Technol., 2025, 15, 2766–2775 This journal is © The Royal Society of Chemistry 2025

refining process of the reaction network from stopping
prematurely. For simplicity, we assume that the network
consists of three pathways, shown in Fig. 4a, illustrating how
the rate-controlling steps can vary as the fictitious barrier
levels change. The three schematic diagrams represent the
reaction pathways created solely for explanatory purposes
and do not carry any intrinsic chemical significance. In these
diagrams, solid lines represent elementary steps with barriers
previously calculated in the network refining process using

our strategy, while dashed lines denote elementary steps with
unknown barriers, which are assigned to various fictitious
barriers across different surrogate networks. According to the
energetic-span model,48 the elementary step that contains the
TS with the highest energy on the favored pathway is
considered as the rate-controlling step when intermediate
energies are all larger than the initial state. As illustrated in
Fig. 4a, which represents one iteration of determining the
rate-controlling step using our strategy, the unknown barriers

Fig. 3 Rate-controlling step determination under different convergence criteria. (a) The FT reaction network on Co(0001) calculated in our
previous work.47 In this work, the reaction network with the barriers we previously calculated is used as the reference set. The nodes represent
reaction intermediates and each line represents an elementary step between the two nodes. (b) Illustration of accuracy of rate-controlling step
determination (solid line) and iterations before convergence (dashed line) as functions of the criterion of convergency N. As N increases, the
accuracy of the final result and number of iterations increase. There are three significant increases on the accuracy curve when N is set to 1, 2 and
5. (c) The top 3 most rate-controlling steps and the corresponding pathways determined by traditional calculations and our strategy. To identify
the favored pathways using our strategy, the surrogate network in which a specific rate-controlling step reaches its highest DRC was determined
firstly, and then the favored pathway for the corresponding rate-controlling step was identified based on MKM data of this surrogate network.
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in different surrogate networks are assigned to different
fictitious values. For example, in a surrogate network with
high fictitious barriers, all undetermined barriers are
assigned to high values. In this case, pathway 3 becomes the
favored pathway because the TS with the highest energy level
in pathway 3 is still lower than the TSs with highest energy
levels in the other two pathways. As a result, the elementary
step containing this TS on pathway 3 is considered the rate-
controlling step for the network. A similar process occurs in
the networks with low and median fictitious barriers, leading
to variations in the rate-controlling steps across different
surrogate networks. This variation may result in additional

TS calculations for potentially important steps, thereby
increasing the likelihood of identifying the actual rate-
controlling step.

To investigate how the choice of surrogate networks
influences the efficiency and accuracy of our strategy, we
applied our workflow on the FT reaction network on
Co(0001) with different range of fictitious barriers. We
constructed 5 calculation groups, which sets Xmax to 0.0 eV,
0.5 eV, 1.0 eV, 1.5 eV and 2.0 eV, respectively, while Xmin, A
and N were set to 0.0 eV, 0.1 eV and 5 uniformly. As shown in
Fig. 2b, as Xmax increases, the range of fictitious barriers
become wider and more surrogate networks with higher

Fig. 4 The construction of surrogate networks plays an important role in the identification of rate-controlling steps. (a) Schematic representation of
rate-controlling step variations across different surrogate networks, assuming that the reaction network consists of three pathways. Solid lines indicate
elementary steps with a calculated barrier, while dashed lines represent elementary steps with undetermined barriers. Different surrogate networks assign
various fictitious barriers to these undetermined steps, leading to shifts in the rate-controlling step across networks. The figure demonstrates how varying
fictitious barrier levels can shift the rate-controlling step within the reaction network, leading to calculations of more potentially significant elementary
steps. (b) Illustration of accuracy and number of iterations before convergence as functions of Xmax. As Xmax increases, the number of iterations required
for the calculation to converge increases. The highest accuracy was reached when Xmax was set to 1.5 eV.
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fictitious barriers will be generated for the corresponding
group, leading to different results of refining processes. The
accuracy of the final result and the number of iterations
needed before convergence for each calculation are shown in
Fig. 4b. It can be seen that as Xmax increases, the number of
iterations increases. The calculation group with Xmax set to
1.5 eV reached the highest accuracy. The reason for this is
that most of the barriers in the reaction network we studied
lies in the range of 0.0–1.5 eV. Hence, the calculation group
with Xmin and Xmax set to 0.0 eV and 1.5 eV is suitable for
probing the rate-controlling steps of the network because its
range of fictitious barriers matches the range of real barriers,
ensuring that there are enough surrogate networks to
investigate potentially significant elementary steps. In
contrast, the groups with the range of fictitious barriers too
narrow will not have enough surrogate networks to detect
some rate-controlling steps and might miss some significant
elementary steps. In addition, for the groups where the range
of fictitious barriers is too wide, such as the calculation
group with Xmax set to 2.0 eV, the surrogate networks with
unusually high fictitious barriers will disproportionately
influence the identification of the rate-controlling steps,
thereby reducing the accuracy of the results.

Examination with testing networks

We generated testing networks to demonstrate the generality
of our rate-controlling step identification strategy and to
assess its potential limitations. As shown in Fig. 5a, these
testing networks were constructed based on the FT reaction
network on Co(0001) previously studied.47 By assigning
random values to the barriers of all elementary steps while
keeping the network structure and reaction energies
unchanged, the testing networks were generated. Then we
used the same strategy demonstrated above to determine the
rate-controlling steps of those new testing networks. The
parameters Xmax, Xmin, A and N were set to 1.5 eV, 0 eV, 0.1
eV and 5, respectively, as they achieved relatively high
accuracy and efficiency for the original network, as shown in
Fig. 4b.

Four testing networks were generated in total as the testing
reference sets, and our strategy successfully predicted the most
rate-controlling step for 3 of them as shown in Table 1. After
analyzing the failed case, we find that there are mainly two types
of scenarios where our strategy may encounter difficulties on
the task of identifying the rate-controlling steps. As shown in
Fig. 5b, the first scenario is that the rate-controlling step exists

Fig. 5 Constructing new testing networks to further examine our current strategy. (a) Workflow of generating the testing networks. The testing
network are generated by assigning random values to the barriers of all elementary steps while keeping the network structure and reaction
energies of previously studied FT reaction network unchanged. All the random barriers we generated were between 0.0 eV and 1.5 eV. (b) Two
types of scenarios where our strategy may encounter difficulties discussed in the main text. (c) Favored pathways determined by the reference set
and our strategy with rate-controlling steps highlighted in red. The reason for the disaccord is that there was an elementary step with an extremely
low barrier in the favored pathway according to our generated reference set, which is highlighted in blue.
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on a thermodynamically unfavorable but kinetic favorable
pathway, which means that the energies of intermediates are
relatively high but energies of TSs are relatively low on this
pathway. There is a possibility that our strategy would identify
this pathway as an unfavored pathway and start searching for a
possible rate-controlling step elsewhere. In the second scenario,
if there is a pathway that is thermodynamically favorable but
kinetically unfavorable and does not include the rate-
controlling step, our strategy might mistakenly identify this
pathway as favored and converge on an incorrect rate-
controlling step. Thus, our strategy may encounter difficulties
when certain types of elementary steps have unexpected high or
low barriers.

In the failed case of testing network T2, when the iteration
stopped, our strategy identified the most rate-controlling step
as C + C ⇋ CC as shown in Fig. 5c. However, the actual most
rate-controlling step, according to the testing reference set, is
C + O ⇋ CO. After thorough inspection, we found that the
reason network T2 converged to an incorrect elementary step
is that the actual favored pathway, according to the reference
set, is a thermodynamically unfavorable pathway. This means
that the energies of the species involved in this pathway are
relatively high. However, the barrier of an elementary step
(CH2CH3 ⇋ CH2 + CH3) on this pathway, highlighted in blue
in Fig. 5c, is unrealistically low (0.037 eV), which
unexpectedly makes this pathway favorable. To identify the
most rate-controlling step for the testing network T2, we
increased the value of N to calculate more potential
significant steps. After we increased N to 22, our strategy
converged at the correct rate-controlling steps after 47
iterations.

Discussion

The strategy presented in this paper could efficiently reduce
the amount of TS calculations; it successfully identified the
most rate-controlling step of the FT reaction network on
Co(0001), which was calculated in our previous work,47 with
only 23% of TS calculations compared to the traditional
method. The challenging aspect of this strategy lies in
determining its parameters, including those for
constructing surrogate networks and setting the
convergence criterion. Based on our findings, for an

unknown reaction network, we recommend setting the
fictitious barrier range to 0.0–2.0 eV and N to above 5% of
the total number of the elementary steps of the reaction
network. This setting achieved a great trade-off between
accuracy and efficiency as shown in Fig. 3b and 4b.

For the reaction network tested in this work, which
includes 26 species and 67 reactions, the good parameters
Xmax, Xmin, A, and N were found to be 1.5 eV, 0.0 eV, 0.1 eV,
and 5, respectively. This set choice has accurately predicted
the top 3 rate-controlling steps while reducing the number of
TS calculations by 55%, as shown in Fig. 4b. Compared to
traditional calculations, our strategy focuses on identifying
the rate-controlling steps as quickly as possible and
performing barrier calculations only on those steps identified
as significant. This approach saves substantial time and
computational resources. Additionally, unlike methods that
rely on machine learning or other approximations, the
strategy developed in this work has greater generality.
However, it is important to note that our strategy does not
guarantee 100% accuracy in predicting rate-controlling steps
if the parameters are not properly selected.

Conclusion

In the current work, we developed a strategy to efficiently
identify the rate-controlling steps of a given reaction network
by leveraging DRC data to highlight significant elementary
steps and allocate computational resources accordingly. By
applying our strategy to the FT reaction network on Co(0001),
we achieved a 77% reduction on TS calculations compared to
the traditional method. This approach allows for significant
reductions in time and computational costs when exploring
unknown reaction networks.

The advancements of our method compared to previous
approaches are summarized as follows:

1. Efficient rate-control predictions: by conducting MKM
calculations on surrogate networks, our method enables the
prediction of rate-controlling steps using DRC without the
extensive barrier calculations.

2. Balanced accuracy and efficiency: by reducing the
number of TS calculations while using high accuracy
methods to conduct the calculations of reaction energies and
MKM, our strategy reached excellent balance between
accuracy and efficiency.

3. General applicability: unlike methods that rely on
approximations such as BEP relations, our strategy does not
depend on specific approximations, making it applicable to
the study of any reaction network.

Finally, our method could be further advanced by
integrating experimental data or machine learning models
to predict transition state energies or adsorption energies.
Combining these approaches has the potential to reduce
computational costs and improve accuracy when exploring
new reaction networks. Future work may focus on refining
strategies to efficiently identify critical elementary steps and
incorporating additional catalytic effects, such as coverage

Table 1 Results of applying our strategy to our generated networks to
further testing our approach. The testing network, in which the barriers
have been previously assigned, serves as the reference set

Testing
networks

Amount of
iterations

Top 3 reactions with biggest
DRC(sum)

Our strategy
(reaction #)

Reference set
(reaction #)

T1 21 59, 3, 58 59, 3, 58
T2 15 43, 4, 6 3, 25, 58
T3 20 59, 58, 6 59, 6, 30
T4 20 3, 58, 59 3, 58, 59
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effects, to enhance the practicality and effectiveness of the
current method.

Methods

All microkinetic modeling calculations are carried out via the
CATKINAS package, which is a microkinetic simulation
package developed by our group and widely used.21–30
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