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Generation of structural analogs to “parent” molecule(s) of interest remains one of the important elements

of drug development. Ideally, such analogs should be synthesizable by concise and robust synthetic routes.

The current work illustrates how this process can be facilitated by a computational pipeline spanning (i)

diversification of the parent via substructure replacements aimed at enhancing biological activity, (ii)

retrosynthesis of the thus generated “replicas” to identify substrates, (iii) forward syntheses originating

from these substrates (and synthetically versatile “auxiliaries”) and guided “towards” the parent, and (iv)

evaluation of the candidates for target binding and other medicinal–chemical properties. This pipeline

proposes syntheses of thousands of readily makeable analogs in a matter of minutes, and is deployed

here to validate by experiment seven structural analogs of Ketoprofen and six analogs of Donepezil. The

concise, computer-designed syntheses are confirmed in 12 out of 13 cases, offering access to several

potent inhibitors. While the synthesis-design component is robust, binding affinities are predicted less

accurately although still to the order-of-magnitude, which may be valuable in discerning promising from

inadequate binders.
1. Introduction

Recent years have brought revolutionary advances1–10 in the use
of computers to autonomously plan chemical syntheses of
arbitrary targets, all the way up to complex natural products.8–10

One of the prominent areas of application of these algorithms
has been in drug discovery where the synthesis design is part of
algorithmic pipelines11–15 intended to predict target and off
target binding as well as ADME-Tox properties. While the
premium is, without doubt, on discovering potent candidates
featuring unprecedented scaffolds16 and binding modes, many
drugs are derivatives of the old ones and “the best way to
discover a new drug is to start with an old one”.17 Accordingly,
analogs structurally similar to some desired “parent”molecules
continue to be sought in drug screening and lead-optimization
campaigns18 and efforts to accelerate this process with the help
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hesis (CARS), Institute for Basic Science
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f Science and Technology, UNIST, Ulsan,
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of computers date back to at least the 1990s with many inge-
nious approaches undertaken since then.

There are two general schools of thought about the analog
design problem. In the “classic” approach, a computer program
performs in silico reactions to produce virtual molecules. The
reactions are typically applied in the “forward” direction
(starting from some static collections of starting materials19–25)
and generate molecular spaces which, nowadays, can be quite
enormous25 (e.g., a few billion virtual molecules in Enamine's
REAL space and up to 10 (ref. 20) in Merck KGaA's MASSIV
collection). These spaces are subsequently pruned for target
similarity or other properties of interest. There are also solu-
tions that use retrosynthetic pathways of the parent as input
and generate analogs by replacing the original starting mate-
rials by structurally or functionally similar blocks.26 The second
family of approaches relies on the burgeoning generative AI
models.27–34 These methods oen combine target-similarity
with concurrent predictions of other properties.35 While the
very synthesizability of the generated structures has historically
been a challenge,36–39 there has been signicant recent progress,
as detailed in an excellent recent ref. 40. We observe, however,
that irrespective of the approach taken, studies in this area are
rarely accompanied by experimental validations of computer-
designed syntheses (see ref. 23, 24 and 41) and/or of the pre-
dicted potency of the proposed analogs. Such validations are
urgently needed as, ultimately, they will decide wider adoption
Chem. Sci., 2025, 16, 8383–8393 | 8383
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of these methods (which, one may argue, is not guaranteed
given the widely publicized, recent setbacks of AI in industrial
drug discovery42).

With this in mind, the overriding objective of our current
work is not to argue for the advantages or disadvantages of any
particular approach (they all have some) but to test by experi-
ment the particular analog-design pipeline we have been
developing for several years now. This pipeline is along the
abovementioned “classical” lines of in silico synthesis and
encompasses substructure replacements within the parent (to
diversify the parent scaffold and, hopefully, enhance biological
activity), retrosynthetic generation of substrates retaining
mutual reactivity, “guided” forward synthesis to produce large
numbers of easily synthesizable structural analogs of the
parent, and estimation of these candidates’ binding affinity to
the desired target. Within this scheme, the two key questions we
ask relate to the correctness of the computer-designed analog
syntheses and to the accuracy of predicting their binding
affinities.

Considering two parent molecules (Ketoprofen and Done-
pezil), the outcomes of our studies are nuanced. On the positive
side, experiments validate concise, computer-designed
syntheses of seven analogs of Ketoprofen and ve analogs of
Donepezil (against one failed route). Six Ketoprofen analogs are
mM binders to human cyclooxygenase-2 (COX-2), with one
Fig. 1 Scheme of the algorithmic pipeline for substrate selection and su
(node colored in red), the algorithm first identifies its substructures that c
This creates several (for a typical drug-like parent, ∼10–100) parent repl
find viable synthetic routes to all of these molecules and retains their com
ultimately sought, retrosynthesis is limited to the depth of five steps and
rosynthetic searches stop when reaching commercially available substrat
∼2.5 million chemicals. The set of retrosynthetically-derived substrates (n
useful chemicals (here, additional nodes colored in light violet). (b) All of
forward search in which, after each round of reactions, only someWmol
= 150). In this way, the forward synthesis is gradually “focused” towards p
sizes of the networks do not explode. This also allows the use of larger co
achieve more synthetically diverse outcomes, while limiting the times o

8384 | Chem. Sci., 2025, 16, 8383–8393
offering slightly better binding than the parent drug (0.61 mM
vs. 0.69 mM). For Donepezil, all ve analogs show sub-
micromolar binding to acetylcholinesterase, AChE, with one
having nanomolar affinity close to that of the parent (36 nM vs.
21 nM). At the same time, binding predictions – which had
guided selection of analogs for synthesis validation – by three
different docking programs and a neural-network, match the
experimental values only to within an order-of-magnitude.
These results make us conclude that (i) the synthesis-
planning aspects of computerized analog design are nowadays
robust, and (ii) common affinity-prediction tools may help
select promising binders but cannot discriminate between
moderate (mM) vs. high-affinity (nM) ones.
2. Results
2.1 Components of the computational pipeline (Fig. 1)

2.1.1 Guided reaction networks. Our analog-design algo-
rithm rests on the application of the so-called guided reaction
networks, described in several of our prior works.43–45 Briey,
assuming a given collection of starting materials (“zero-th
synthetic generation,” G0) – whose choice we will discuss in
point 1.2 – the algorithm iteratively applies its knowledge-base
of reaction transforms, {Ri}, in the “forward” direction (these
reaction transforms are encoded as described in detail in ref. 46
bsequent analog generation. (a) For a given target/“parent” of interest
an be altered by replacements likely to result in activity enhancement.49

icas (light red). The algorithm then expands retrosynthetic networks to
mercially available starting materials. Since easily makeable analogs are
using only 180 reaction classes popular in medicinal chemistry. Ret-
es, here, those from Mcule's catalog, https://mcule.com/database/, of
odes colored violet) is further augmented by 23 simple yet synthetically
the said substrates serve as the zero-th generation, G0, for the guided
ecules most similar to the parent are retained (dark-blue nodes, hereW
arent's structural analogs. We note that because of this truncation, the
llections of reaction transforms (here,∼25 000 rules from Allchemy) to
f network propagation, typically to several minutes.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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and 47). Application of {Ri} to G0 gives products in generation
G1. Then, molecules in G0 and G1 are combined and become
available for yet another round of reactions. If this process is
simply repeated without any additional restrictions to create G2,
G3, etc., the numbers of molecules produced in each generation
and the overall size of the network increase very rapidly (as we
showed in ref. 43, stronger than exponentially), and the calcu-
lation times become impractically long. Instead, to allow for
efficient (minutes) exploration of the structural space yet to
“guide” network expansion towards the desired “parent”, the
numbers of products retained aer each generation is restricted
to some predetermined number W (a.k.a. “beam width”48) of
those most similar to the said parent molecule. For instance,
starting from 100 substrates in G0, one typically produces
thousands of molecules already in G1 – however, only a few
hundred most parent-similar ones are retained as G1, and
allowed to further react with each other and with the G0

substrates to generate G2. Regarding this scheme, we note that
aer a few initial generations, the produced molecules may
become already as large as the parent itself. At this point, it
makes little sense to allow them to further react with each other.
Accordingly, aer 1–2 initial generations, we impose an addi-
tional constraint that the molecules retained in a given Gi can
react only with species of “earlier” generations (i.e., up to Gi−1)
but no longer between themselves.

2.1.2 Retrosynthesis and the choice of substrates. The
second pillar of our approach is the very choice of the G0

commercially available starting materials, which we wish to
select judiciously (to offer the best chance of generating parent's
structural analogs) yet automatically (to avoid subjective and
tedious selection by soware's human operator). This substrate
set cannot be too large (as this might explode the forward
networks) but should also be (i) diverse, capturing not only the
key structural motifs of the parent (e.g., rings or ring systems)
but also motifs similar to them; and (ii) should be synthetically
exible, in the sense that the blocks should be able to engage in
mutual reactions as much as possible and also in other reac-
tions that functionalize these blocks.

Given these requirements, the straightforward method of
disconnecting the parent into the starting materials by retro-
synthesis may be overly simplistic. Retrosynthesis of only the
parent molecule generates substrates that, in the forward
direction, can be reassembled into the parent itself, into some
intermediates en route to this parent, and usually some mole-
cules in which alternative reactions of the starting materials are
performed. However, this approach does not generate diverse
analogs. The set of starting materials can, of course, be diver-
sied by adding molecules similar to those found by retrosyn-
thesis – we tested this approach early on but many of the
“similars” to the starting materials featured functional group
patterns that were unsuitable or problematic for the subsequent
forward synthesis (see ESI, Section S2†). Mindful of this, we
augmented the retrosynthetic protocol in two ways:

First, by performing substructure replacements (intended to
enhance biological activity and digitized, in large part, accord-
ing to Novartis’ tables from ref. 49) within the parent and only
then performing retrosyntheses of these “replica” molecules.
© 2025 The Author(s). Published by the Royal Society of Chemistry
The replacements are performed at either peripheral groups or
internal motifs such as 1,3-disubstituted benzene rings or
piperazines (see ESI, Fig. S2†). They increase structural diversity
of the starting materials while, simultaneously, retaining
functional groups necessary for the “mix-and-match” reactivity
between blocks derived from different replicas. Here, in all
retrosyntheses, we used the Allchemy algorithm50 although
other reliable retrosynthetic engines2–4,51 can be used.

Second, by adding to G0 some simple yet synthetically useful
chemicals withwhich to furthermodify and/or activatemolecules
within the forward networks. While various choices are possible,
we used a static, “minimal” set of 23 popular chemicals (see ESI,
Fig. S4†) chosen for synthetic versatility. For example, N-chlor-
osuccinimide, N-bromosuccinimide and nitric acid enable elec-
trophilic aromatic substitutions, bis(pinacolato)diboron opens
the way to Suzuki couplings, DAST can functionalize molecules
with uoride, mesyl chloride activates alcohols for SN2 reaction,
ethyl magnesium bromide can engage in Kulinkovich cyclo-
propanation while hydrazine, thiourea, azide and trimethyl
orthoformate enable formation of various heterocycles, etc. An
example of a search with and without these additional chemicals
in provided in the ESI, Section Section S3.†

2.1.3 Property evaluation. Aer the retro-forward searches
produce the structural analogs, these candidates can be
inspected by various substructure lters and ranked by property
estimation algorithms, some of which will be discussed in
specic examples below.

Regarding the synthesis components 1.1 and 1.2, we note
that retrosynthesis may be signicantly slower than guided
network expansion. With Allchemy's full reaction database,
retrosynthetic analysis of a typical drug-like molecule takes only
1–5 min, but for the tens of replicas created in the rst stage of
the pipeline, these times are already in hours – that is, much
longer than for the forward synthesis up to 3–4 generations (4–6
min). Consequently, these two elements of the pipeline use
different sets of reaction rules: for retrosynthesis, to reduce the
size of retrosynthetic search networks, only 180 reaction classes
most popular in medicinal chemistry, and for the forward
synthesis, all 25 307 reaction rules available in Allchemy. In this
way, both retrosynthetic and forward searches complete within
minutes which, based on the feedback on the pipeline's external
users appears to be a practically acceptable limit for this type of
application. The entire pipeline, integrated in a form of a user-
friendly WebApp is available for academic testing at https://
analogs.allchemy.net/ with the user manual provided in the
ESI, Section S1.† The source-code for guided network expan-
sion is deposited at https://zenodo.org/records/7371247.
2.3 Application of the pipeline to specic targets

We applied the above approach (1)–(3) to identify readily syn-
thesizable analogs to anti-inammatory Ketoprofen and to
Donepezil, a medication used to treat Alzheimer-type dementia.

2.3.1 Ketoprofen analogs. In this example, the algorithm
commenced by generating 61 Ketoprofen's substructure-
replacement replicas (Fig. 2a). The retrosynthetic searches to
all these targets were allowed to terminate at relatively large,
Chem. Sci., 2025, 16, 8383–8393 | 8385
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Fig. 2 Search for Ketoprofen's analogs. The panels illustrate the key steps along the analog design pipeline: (a) Ketoprofen and some of its
replicas featuring substructure replacements aimed at enhancing biological activity;49 (b) some of the substrates derived by retrosynthesis of
molecules from (a) as well as, on the right, examples of the simple reagents with which to functionalize or activate the substrates (for all 23, see
ESI, Fig. S4†); (c) Allchemy screenshot of some of the top-ranking analogs generated by guided expansion of a reaction network starting from
molecules in (b). The analogs shown here are sorted by similarity to the Donepezil parent and are centered around the 2-(3-benzoylphenyl)acetic
acid with modifications introduced mostly in the a-position of carboxylic acid and as substituents on the aromatic ring. Clicking on any of the
“tiles” provides synthesis details (these and other options to visualize the synthetic networks are detailed in the ESI, Section S1†). Some of the
analogs ultimately committed to synthesis are shown on pink backgrounds. Visible on the left is the panel with medicinal–chemical func-
tionalities by which the analogs can be filtered (e.g., general drug-likeness,79 binding to specific proteins, various ADME-Tox models, PAINS and
substructure-based filters, see user manual in the ESI†).

8386 | Chem. Sci., 2025, 16, 8383–8393 © 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Ketoprofen's analogs committed to synthesis. (a) A small network of algorithm-planned syntheses of analogs 1 through 7 starting from 2-
(3-benzoylphenyl)acetic acid and/or ester derivatives (R = H or R =Me). Experimental pathways (tracked by black arrows) follow the algorithm's
original suggestions (blue arrows). Conditions and isolated yields are given next to reaction arrows. IC50 values are given next to the analogs. (b)
and (c) All analogs were docked into COX-2 protein. The alignment of docking poses from AutoDock 4 for (b) (S)-Ketoprofen and its analog (S)-6,
and (c) (R)-Ketoprofen and its analog (R)-6. Key, protein-ligand hydrogen bonds are depicted as yellow dotted lines. The carboxylic acid moiety
of (S)-Ketoprofen (colored in magenta) forms two hydrogen bonds with Arg120 and one with Tyr355. Its analog (S)-6 (b, colored in green) is
predicted to be similarly positioned inside the active site and to form three hydrogen bonds: with Arg120, with Tyr355 and, for the second
carboxylic acid moiety, with Ala527. For (R)-Ketoprofen (colored in magenta in panel (c)) and its analog (R)-6 (colored in green), the carboxylic
acid moieties in both compounds form two hydrogen bonds (with Arg120 and with Tyr355). Raw files with these and all other docking
experiments using AutoDock 4, AutoDock Vina, and Dock 6 (ref. 54–57) are deposited at https://zenodo.org/records/14571461.
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commercially available starting materials such as (3-benzoyl-
phenyl)acetic acid marked by pink asterisk in Fig. 2b; other
notable substrates included allyl bromide derived by retrosyn-
thesis of replicas containing cyclopropylmethoxy substituent.
© 2025 The Author(s). Published by the Royal Society of Chemistry
The 62 retrosynthetic searches took 4 min 20 s (on a server with
Intel Xeon Gold 5412U processor) and identied 151 starting
materials. Then, the forward search from these substrates and
additional set of 23 useful chemicals (four molecules
Chem. Sci., 2025, 16, 8383–8393 | 8387
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overlapped between these two sets) was propagated to G3 and
produced, within 4 min 3 s, a guided reaction network
encompassing 3692 products of which 781 (21%) had similarity
to parent above 0.7 (ECFP6 (ref. 52) – based on Tversky's simi-
larity with parameters (0.2, 0.8); see examples in Fig. 2c and
results deposited under the “saved results” tab of the WebApp
at https://analogs.allchemy.net/).

Within this set, we focused on molecules 1–7 that form
a small synthetic cluster summarized in Fig. 3a. These analogs
are all derivatives of the commercially available 2-(3-benzoyl-
phenyl)acetic acid and were not reported or tested for
cyclooxygenase-2, COX-2, binding before (only compound 1 was
synthesized in ref. 53 but in the context of hydrocarboxylation
methodology with no biological studies). Moreover, the
proposed syntheses all appear concise and straightforward, and
were successfully carried out in yields indicated next to the
arrows (under conditions identical or very similar to those
suggested by the soware and without thorough optimization).

In selecting these particular structures, we were also guided
by predictions of their binding affinities to COX-2. To this end,
we used three popular docking programs, AutoDock 4, Auto-
Dock Vina, Dock 6.54–57 These programs used the 5IKR PDB
structure and predicted the binding scores of the analogs 1–7
(averaged over possible stereoisomers of a given racemic
analog) to be comparable or more favorable than those of
Ketoprofen, which we also docked for reference (top portion of
Table 1). Inspection of the docking poses (see examples in
Table 1 Predicted binding affinities (or docking scores) and selected
analogs. Top part of the Table is for Ketoprofen and its analogs 1–7; botto
specify, respectively, Ki values predicted by AutoDock Vina and by AutoDo
shown are averages over all stereoisomers (files with the docked ind
14571461). The remaining four columns give the Allchemy-predicted v
predictions of Allchemy's machine-learning models for hERG cardiotoxi
related to drug absorption and efficacy (0–100%), and degree of blood
used Ketoprofen or Donepezil molecules for training/testing, the key
correctly predicts Donepezil to be cardiotoxic (values close to 1), which
to hERG81 with IC50 = 1.3 mm and can cause QTc prolongation.82

Ketoprofen (and its analogs), which agrees with experiments confirming
bound fractions for both Ketoprofen and Donepezil and their analogs
these predicted values agree with experimental measurements for Ke
barrier, BBB, penetration model predicts high values for Donepezil, w
Ketoprofen also crosses the BBB87 but we note that some of the analog

Compound Ki AutoDock Vina (mM) Ki AutoDock (mM) Dock

Ketoprofen 0.613 0.284 −33.0
1 0.413 0.202 −34.8
2 0.814 0.268 −34.6
3 0.579 0.161 −33.4
4 1.138 0.224 −34.8
5 0.538 0.348 −36.7
6 0.451 0.154 −33.1
7 0.534 0.264 −39.1

Donepezil 0.046 0.037 −43.7
11 0.086 0.061 −41.7
12 0.064 0.069 −42.5
13 0.204 0.097 −43.0
14 0.037 0.053 −42.5
16 0.027 0.011 −46.9

8388 | Chem. Sci., 2025, 16, 8383–8393
Fig. 3b and c and remaining analogs deposited at https://
zenodo.org/records/14571461) revealed that these molecules
should, indeed, be able to engage in numerous favorable
interactions with the COX-2 active site. In parallel, we sought
binding strength estimates using Allchemy's neural network,
NN, trained on 1 752 921 protein assays from the ChEMBL 29
database58 and spanning activity values for 3843 one-hot-
encoded targets and 863 471 ligands represented as concate-
nation of Morgan ngerprints with radius 3 (using AllChem.-
GetMorganFingerprint function in RDKit59), Xfp
pharmacophore ngeprints60 and selection of MACCS keys.61

The architecture of this feedforward multitasking NN is similar
to the one used in ref. 62 and 63, where it was shown to provide
the best performance for ChEMBL activity prediction. The main
difference is that we used batch normalization, and assigned
different activity thresholds to different protein families
(according to the values dened in ref. 64). These alterations
slightly improved performance to ROC AUC = 0.87. Here, this
network predicted that the affinities of the analogs we synthe-
sized should be on-the-order-of micromolar.

To verify these predictions, we ran spectrouorometric COX-
2 human inhibition assay65,66 and quantied the IC50 values.
These values are marked in green next to the specic analogs in
Fig. 3a. As seen, one analog, 1, is binding poorly, >10 mm, but
the remaining six are micromolar binders with one, 6, exhibit-
ing slightly better affinity than the parent Ketoprofen, 0.61 mM
vs. 0.69 mM.
medicinal–chemical properties for the parent compounds and their
m part is for Donepezil and its analogs 11, 14, 16. The first two columns
ck 4. The third column has the docking score from Dock 6. The values
ividual stereoisomers are deposited at https://zenodo.org/records/
alues of log P calculated by group contribution method80 as well as
city (on a 0–1 scale), degree of human plasma protein binding, hPPB,
–brain barrier, BBB, penetration (0–1). Although none of the models
predictions match experimental data. For instance, the hERG model
is in line with experimental studies evidencing that Donepezil binds

By contrast, the model predicts low values of hERG inhibition for
its low cardiotoxicity.83 In turn, the hPPB model predicts high, >90%
– while lower hPPB values are, in principle, desired in drug design,
toprofen (99%84) and Donepezil (95.6%85). In turn, the blood–brain
hich is expected for a CNS drug and experimentally confirmed.86

s, more polar ones, are predicted to have significantly lower values

6 (score) log P hERG (0–1) hPPB (0–100%) BBB (0–1)

3 3.106 0.04 98.40 � 1.20 0.91
5 3.015 0.03 98.50 � 1.00 0.84
2 4.052 0.1 98.80 � 1.30 0.64
0 3.065 0.01 97.00 � 1.30 0.42
2 3.662 0.09 98.60 � 1.20 0.69
4 2.857 0.01 94.30 � 1.20 0.46
9 2.561 0 96.50 � 2.70 0.37
5 2.728 0 95.80 � 3.60 0.29

8 4.361 0.96 91.70 � 1.30 0.92
6 4.357 0.98 90.80 � 1.10 0.9
4 4.671 0.95 95.80 � 1.20 0.75
6 3.722 0.92 88.90 � 1.10 0.66
5 3.930 0.92 93.90 � 4.70 0.77
8 3.833 0.97 89.60 � 1.20 0.75

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Donepezil's analogs committed to synthesis. (a) A small network of algorithm-planned syntheses of analogs 11 through 16. Blue arrows
highlight Allchemy's suggestions, black arrows highlight the experimentally executed pathways. Conditions and isolated yields are given above
reaction arrows. IC50 values are given next to the analogs. Note: As synthesis of 9 and 10 from simpler startingmaterials was previously described,
we followed the literature procedure (10wasmade in two steps and aldehyde 9 from ester 10 in another 2 steps with Allchemy-proposed alcohol
as an intermediate; ester 10 and alcohol are commercially available but relatively expensive). All analogs were docked into acetylcholinesterase
from Electrophorus electricus. Docking poses from AutoDock Vina are aligned for (b) (R)-donepezil and its analog (S)-14, and (c) (R)-donepezil
and its analog (1R,2S)-13. Key, protein-ligand hydrogen bond interactions are traced by yellow dotted lines. The carbonyl oxygen of (R)-
Donepezil's (colored in magenta) indanone ring forms a hydrogen bond with Phe295 –NH whereas nitrogen from piperidine ring hydrogen-
bonds with Tyr124 –OH. Its analog (S)-14 (b, colored in green) forms hydrogen bonds with Phe295 –NH, but instead of carbonyl oxygen from
indanone ring, carbonyl oxygen from 2-(1-benzylpiperidin-4-yl)acetyl side chain is involved. Analog (1R,2S)-13 (c, colored in green) forms two
hydrogen bonds between Phe295 –NH and carbonyl oxygen of indanone ring and hydroxyl oxygen of analog's side chain as well as and one
hydrogen bond between carbonyl oxygen of indanone ring and Arg296 –NH2. Raw files with these and all other docking experiments using
(AutoDock 4, AutoDock Vina, Dock 6)54–57 are deposited at https://zenodo.org/records/14571461.
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2.3.2 Donepezil analogs. We followed a similar protocol as
for Ketoprofen. The algorithm generated 18 substructure-
replacement replicas of the Donepezil parent. To reach
commercially available substrates, the algorithm used
© 2025 The Author(s). Published by the Royal Society of Chemistry
disconnections more central than in Ketoprofen example and
reached, e.g., 5,6-dimethoxy-2,3-dihydro-1H-inden-1-one, 17, as
well as, 2-(1-benzylpiperidin-4-yl)ethanol and (1-
benzylpiperidin-4-yl)acetic acid, that can be easily transformed
Chem. Sci., 2025, 16, 8383–8393 | 8389
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Fig. 5 The relationship between the experimental IC50 (mM) and Ki
(mM) values (from AutoDock 4, blue, and AutoDock Vina, green) or the
docking scores (from Dock 6, orange). Insets zoom on the regions
which, in the full plots, are shaded in gray and do not include the poorly
binding analog.
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into aldehyde 9 – the core substrate, used in most syntheses –

and ester 10, respectively.
Retrosyntheses of the parent and all 18 replicas took only

3 min and generated 44 substrates which were combined with
23 synthetically useful, simple chemicals. Three molecules
overlapped between these two sets so that the number of unique
starting materials in G0 was 64. The forward search up to G3

generated, within 5 min, a network of 3619 products of which
2222 (∼61%) had similarity to parent above 0.7.

Fig. 4a shows six molecules that were committed to synthesis:
the replica 11 of the parent drug and analogs 12–15 forming
a small cluster entailing only six reactions based on the afore-
mentioned aldehyde 9, ester 10 as well as ketone 17. Additionally,
we included the synthesis of analog 16 that had been found by an
earlier version of the algorithm, and used 8 and 18 as starting
materials. All these reactions were executed under computer-
suggested conditions, save for the Swern rather than Dess–
Martin oxidation of 13 to 14. In ve out of six cases, the reactions
gave the expected products although in poor to moderate yields
(no condition optimization was attempted). In one case, the
uorinated derivative 15 was not obtained because of elimina-
tion to 12. While there are literature examples of uorination
proceeding on b-hydroxy ketones, Allchemy's pKa model67

predicts that the cH position within our cyclic aryl ketone ismore
acidic, hence promoting elimination vs. substitution.

As in the case of Ketoprofen, these analogs were chosen
because most were not reported before (compound 11 is known
as an intermediate in the synthesis of acetylcholinesterase,
AChE, inhibitors but its activity was not evaluated68) and
because their predicted binding scores (by AutoDock 4, Auto-
Dock Vina, Dock 6)54–57 were comparable or better than those of
the Donepezil parent, which we also docked for reference (see
bottom portion of Table 1). Allchemy's neural network also
predicted micromolar-level binding.

These predictions were veried in spectrophotometric AChE
inhibition assay,65,69which quantied the IC50 values given next to
the specic analogs in Fig. 4a. The replica 11 had IC50 = 144 nM
and two analogs were submicromolar, 991 nM for 16 and 362 nM
for 13. However, the two remaining analogs were signicantly
more potent, 88 nM for 14 and 36 nM for 12. This last value rivals
the potency measured for Donepezil itself, 21 nM.

3. Discussion and conclusions

The above results substantiate three major conclusions. First,
the quality of synthetic predictions appears satisfactory with 12
out of 13 analogs made according to the computer-designed
routes. This is perhaps not unexpected given that predictions
of programs such as Allchemy or Chematica/Synthia had
previously been validated on targets more challenging than our
analogs.3,8,10,44 In this light, one can argue that all these simple
syntheses could have been designed without much effort by
a human expert – while this is true, the computer may be viewed
as a useful “calculator” accelerating the straightforward but
otherwise tedious steps of the design process, from the creation
of replicas via substructure replacements, through the selection
of commercially available substrates, to forward synthesis.
8390 | Chem. Sci., 2025, 16, 8383–8393
Second, whereas the synthesis part is robust, the prediction
of analog's properties remains challenging. This is illustrated in
Fig. 5 which plots the experimentally measured IC50's against
the predictions of the docking programs – as seen, the corre-
lations are quite poor and even discounting the outlier 1, are
limited to ∼0.45 for AutoDock Vina (green markers in the inset
to the upper plot). We observe that such values are in line with
comparative studies of docking methods70 where similar, low
correlations were reported. In parallel, Allchemy's internal
neural network trained on 1.75 million of protein assays from
ChEMBL estimated the potency of our analogs to be micro-
molar, which is true for most but not all of them (e.g., not for 1
which is >10 mM and not for 12 and 14 for which IC50 values are
in tens of nM). Taken together, these results reinforce the view
that neither the docking nor NN models can currently predict
the affinity accurately – though they can perhaps be accurate to
the order-of-magnitude, which can still be useful in dis-
tinguishing very poor from decent binders.

Third and last, it should be remembered that in developing
potential drugs, binding affinity is but one of the important
© 2025 The Author(s). Published by the Royal Society of Chemistry
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metrics and one should also evaluate ADME-Tox properties.
There are nowadays multiple machine-learning models to
evaluate these properties (e.g., ref. 71–73 for hERG models, ref.
74 for plasma protein binding, PPB, or ref. 75–78 for blood–
brain barrier, BBB, penetration) and some have also been
implemented in Allchemy's pipeline (see user manual in ESI,
Section S1†), offering respectable accuracies ∼0.8–0.9 and
realistic predictions (see Table 1 and its caption). Thus, one
could also think of using these metrics as part of a multi-
objective scoring function35 to guide the synthesis of molecules
that, ultimately, meet several desirable criteria at once. The
multiobjective approach is, arguably, more conceptually elegant
than the synthesize-and-then-evaluate pipeline we pursued
here. On the other hand, it should be noted that ADME-Tox
models suffer from the scarcity of publically available data
(typically, few thousand molecules per model) and are largely
untested (and likely less reliable) in out-of-box predictions.
Using such metrics to make decisions about which molecules to
synthesize can eliminate some interesting candidates from
consideration. Our thinking when developing the “synthesis-
rst” pipeline was that synthesis planning – being the most
robust component – should be unhindered by additional
constraints, especially that it yields large collections of candi-
date molecules in very short times. These molecules can then be
evaluated by other models/lters, with a human expert making
choices which metrics to prioritize (or trust). This said, we
recognize that if much larger synthetic spaces are to be explored
(with much bigger substrate sets or higher beam width, W, see
ref. 44 and 45), then multiobjective scoring should be consid-
ered to narrow down and accelerate this exploration.

Data availability

All docking poses are deposited at https://zenodo.org/records/
14571461. The source-code for guided network expansion is
deposited at https://zenodo.org/records/7371247. Sample of the
database of reaction templates is deposited at https://
zenodo.org/records/15001486. All synthesis results are
deposited under the “saved results” tab of the WebApp at
https://analogs.allchemy.net/(see user manual in the ESI†). To
test the WebApp under two-week, free academic access, please
send an email from an academic address to
admin@allchemy.net for access credentials.
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1 S. Szymkuć, E. P. Gajewska, T. Klucznik, K. Molga,
P. Dittwald, M. Startek, M. Bajczyk and B. A. Grzybowski,
Angew. Chem., Int. Ed., 2016, 55, 5904–5937.

2 C. W. Coley, L. Rogers, W. H. Green and K. F. Jensen, ACS
Cent. Sci., 2017, 3, 1237–1245.

3 T. Klucznik, B. Mikulak-Klucznik, M. P. McCormack,
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32 T. Blaschke, J. Arús-Pous, H. Chen, C. Margreitter,
C. Tyrchan, O. Engkvist, K. Papadopoulos and A. Patronov,
J. Chem. Inf. Model., 2020, 60, 5918–5922.
8392 | Chem. Sci., 2025, 16, 8383–8393
33 J. Bradshaw, B. Paige, M. J. Kusner, M. H. S. Segler and
J. M. Hernández-Lobato, arXiv, 2020, preprint,
arXiv:2012.11522, DOI: 10.48550/arXiv.2012.11522.

34 S. K. Gottipati, B. Sattarov, S. Niu, Y. Pathak, H. Wei, S. Liu,
K. M. J. Thomas, S. Blackburn, C. W. Coley, J. Tang,
S. Chandar and Y. Bengio, arXiv, 2020, preprint,
arXiv:2004.12485, DOI: 10.48550/arXiv.2004.12485.

35 J. C. Fromer, D. E. Graff and C. W. Coley, Digital Discovery,
2024, 3, 467–481.

36 W. Gao and C. W. Coley, J. Chem. Inf. Model., 2020, 60, 5714–
5723.

37 P. Renz, D. Van Rompaey, J. K. Wegner, S. Hochreiter and
G. Klambauer, Drug Discovery Today: Technol., 2019, 32, 55–
63.

38 W. P. Walters, R. Barzilay and E. Opin, Drug. Discovery, 2021,
16, 937–947.

39 M. Stanley and M. Segler, Curr. Opin. Struct. Biol., 2023, 82,
102658.

40 W. Gao, S. Luo and C. W. Coley, arXiv, 2024, preprint,
arXiv:2410.03494, DOI: 10.48550/arXiv.2410.03494.

41 S. K. Singh, K. King, C. Gannett, C. Chuong, S. Y. Joshi,
C. Plate, P. Farzeen, E. M. Webb, L. Kumar-Kunche,
J. Weger-Lucarelli, A. N. Lowell, A. M. Brown and
S. A. Deshmukh, J. Phys. Chem. Lett., 2023, 14, 9490–9499.

42 D. Lowe, AI Does Not Make It Easy (In the pipeline), Science,
2024, https://www.science.org/content/blog-post/ai-does-
not-make-it-easy.

43 A. Wołos, R. Roszak, A. Żądło-Dobrowolska, W. Beker,
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B. A. Grzybowski, Science, 2020, 369, eaaw1955.

44 A. Wołos, D. Koszelewski, R. Roszak, S. Szymkuć, M. Moskal,
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