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ion of the kinetic sequence of
physicochemical states using generative artificial
intelligence†

Palash Bera* and Jagannath Mondal *

Capturing the time evolution and predicting kinetic sequences of states of physicochemical systems

present significant challenges due to the precision and computational effort required. In this study, we

demonstrate that ‘Generative Pre-trained Transformer (GPT)’, an artificial intelligence model renowned

for machine translation and natural language processing, can be effectively adapted to predict the

dynamical state-to-state transition kinetics of biologically relevant physicochemical systems. Specifically,

by using sequences of time-discretized states from Molecular Dynamics (MD) simulation trajectories akin

to the vocabulary corpus of a language, we show that a GPT-based model can learn the complex

syntactic and semantic relationships within the trajectory. This enables GPT to predict kinetically

accurate sequences of states for a diverse set of biomolecules of varying complexity, at a much quicker

pace than traditional MD simulations and with a better efficiency than other baseline time-series

prediction approaches. More significantly, the approach is found to be equally adept at forecasting the

time evolution of out-of-equilibrium active systems that do not maintain detailed balance. An analysis of

the mechanism inherent in GPT reveals the crucial role of the ‘self-attention mechanism’ in capturing

the long-range correlations necessary for accurate state-to-state transition predictions. Together, our

results highlight generative artificial intelligence's ability to generate kinetic sequences of states of

physicochemical systems with statistical precision.
Introduction

The time evolution of any physical system undergoes various
state-to-state transitions. Understanding the dynamics of these
systems particularly at the molecular level poses a signicant
challenge due to the complexity of their transitions between
various states. Traditional approaches, such as molecular
dynamics simulations (MDs), offer valuable insights into these
transitions. However, MDs are computationally very expensive,
limiting their applicability to large-scale systems or long-term
predictions. Moreover, describing the actual phase space of
a physical system typically involves handling data of very high
dimensions. The lower dimensional representation of this data
along some order parameters can provide information about
various states and transitions between them. Nonetheless,
achieving a comprehensive understanding of these transitions
over a very long time requires performing highly resource-
intensive MD simulations.

To understand the long-timescale behavior from experi-
mental and simulated trajectories, various kinetic models such
erabad, Telangana 500046, India. E-mail:

tion (ESI) available. See DOI:

the Royal Society of Chemistry
as the Markov state model (MSM)1–3 and Hidden Markov model
(HMM)4–6 were employed to predict state transitions and iden-
tify metastable states, thereby providing insights into the
underlying mechanisms of molecular processes. The initial step
in constructing these models involves discretizing trajectories
into a specied number of states along some collective variables
(CVs). To identify effective CVs for state decomposition, a range
of techniques were employed, including linear methods like
Principal Component Analysis (PCA)7–9 and time-lagged inde-
pendent component analysis (tICA),10–12 as well as non-linear
approaches, particularly machine learning (ML) techniques
such as Autoencoders and time-lagged Autoencoders.13–18

Recently, an ML approach known as VAMPnets19 has been
proposed, which combines the principles of Autoencoders and
tICA to learn molecular kinetics. Notably, VAMPnets offer the
potential to streamline the entire, lengthy process of con-
structing the MSM by substituting it with a single deep neural
network. Another approach, known as dynamic graphical
models (DGMs),20 offers an efficient alternative for predicting
molecular kinetics and unobserved congurations, utilizing
fewer parameters than the traditional MSM. As the eld
advances, various deep generative state-less molecular simula-
tion surrogates, including Boltzmann Generators,21 Normal-
izing Flows,22–24 Implicit Transfer Operators (ITO),25 and
Timewarp,26 have emerged as powerful tools for sampling and
Chem. Sci., 2025, 16, 8735–8751 | 8735
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predicting molecular dynamics. These approaches aim to
provide efficient and effective alternatives to conventional MD
simulations by leveraging advanced computational techniques.

In recent years, state-of-the-art recurrent neural networks
(RNNs) and large language models (LLMs) have become
promising tools in addressing various challenges.27–33 However,
recurrent neural networks (RNNs) and their advanced variant,
long short-term memory (LSTM) networks,34 excel at capturing
sequential patterns in time-series data and sequence-to-
sequence tasks, overcoming the vanishing gradient problem.
However, these precedent methods face limitations inmodeling
complex syntactic and semantic relationships in large language
models (LLMs). To overcome these issues, the pioneering work
by Vaswani et al.33 introduced the attention-based model known
as Transformer. The concept of self-attention mechanisms can
encode contextual information from the input text and generate
coherent and contextually relevant responses. Although the
original work of the Transformer was mainly designed for
machine translation, the various parts of the Transformer can
be used for different purposes. For instance, the encoder
component can be applied to classication problems, while the
decoder component can be used for sequence-to-sequence
generation.

In our study, we have utilized the decoder component of the
Transformer architecture to predict the kinetic sequence of
states of diverse physicochemical as well as biologically relevant
systems. Our investigations primarily focus on a set of systems
of hierarchical complexity, ranging from hand-craed three-
state and four-state model potentials to a globular folded
protein namely Trp-cage and an intrinsically disordered protein
(IDP) a-synuclein. We demonstrate that our protocol can
effectively learn the time evolution of different states in MD or
other kinetic simulations along certain low-dimensional order
parameters. As a result, the model can generate a sequence of
states that are kinetically and thermodynamically accurate.
Interestingly, the model is remarkably powerful, as it can
accurately generate the sequence of states even for an active
system that is out of equilibrium, as would be demonstrated for
an active worm-like polymer chain and its passive counterpart.
Moreover, for more complex systems, we have found that the
attention mechanism plays a crucial role in maintaining the
relationships between the states, enabling the model to
generate the sequence of states correctly. Our results show that
the GPT model outperforms traditional MSM and LSTM
networks in predicting the kinetic sequence of states.

Results
Learning molecular dynamics trajectory using the
transformer model

In any language model, the input is a series of characters or
words. During the training process, the weights and biases of
the various layers are optimized, enabling the model to under-
stand the context and relationships between different parts of
the input sequence. Once the model is trained, it can generate
the subsequent sequence for a given input sequence in an auto-
regressive manner. As illustrated in Fig. 1, here we implement
8736 | Chem. Sci., 2025, 16, 8735–8751
a comprehensive scheme to learn the kinetic trajectory via the
transformer and then to generate a sequence of states that
could be segmented into three stages:

� (A) Segmentation of MD trajectories into discrete states.
� (B) Training a decoder-only transformer using MD-derived

states as input.
� (C) Generating a kinetic sequence of states from the pre-

trained transformer.
Below we describe the different stages of our scheme.
A. Discretization of molecular dynamics trajectory into

meaningful state space. The time evolution of a physical system
involves various conformational or state changes and transi-
tions between them. Our study aims to predict the kinetic
sequence of states of physicochemical systems using a large
language model, specically a decoder-only transformer. Inter-
estingly, the state prediction problem can be mapped to the
sequence generation of any language model where each state
corresponds to a distinct vocabulary item within a corpus. For
all of the systems, we have trained the model with molecular
dynamics (MD) simulation trajectories to learn the occurrence
of kinetic states. However, MD trajectories are continuous,
requiring discretization of the trajectory into grid points or
states before inputting it into a language model. For simple
systems, the particle position can be used for discretization.
However, complex systems with high dimensionality or degrees
of freedom require dening some order parameters or collective
variables (CVs) to discretize the trajectory into a certain number
of states. To identify the various states of a physical system, we
performed K-means clustering along CVs. Consequently, the
trajectory is segmented into distinct sequences of states. These
sequences can then be used as inputs for a decoder-only
transformer model. Hereaer, these sequences of states will
be referred to as sequences of tokens. For training the decoder-
only transformer model, we randomly chose ns segments from
the discretized trajectory and trained ns independent models
with the same architecture. From each independently trained
model, we generated the next sequences from where the cor-
responding segment ended by providing a few sequences as
a prompt. All the results presented here are averaged over these
independent runs. The le side of Fig. 1 illustrates a schematic
overview of this process. The specic details regarding the
amounts of data used for training, validation, and testing across
the various systems are provided in Table S1.† Our approach
and model are different from the methodology employed by
Tsai et al.35,36 In their study, they utilized an LSTM-based
architecture to learn the MD simulation trajectory, and the
states were generated from the training data itself.

B. Training a decoder-only transformer with MD-derived
states as input. Now we will delve into the architecture of the
decoder-only transformer model. The neural network-based
decoder-only transformer33 consists of several layers as depic-
ted in the right side of Fig. 1. The rst layer is an input
embedding or token embedding layer that transforms each
token of the input sequence into a dense vector. The dimension
of the vector is a hyperparameter, which is called the embed-
ding dimension. For a sequence of length l and embedding
dimension d, this layer transforms each token into a d-
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 A schematic representation of training data preparation and the architecture of the decoder-only transformer. The left-hand side figure
represents the schematic representation of the discretization of molecular dynamics simulation (MDs) trajectory achieved through the identi-
fication of collective variables (CVs) and K-means clustering. A total of ns = 10 segments are randomly selected from the discretized trajectory to
train an equal number of independent generative pre-trained transformer (GPT) models. Each trained model generates subsequent sequences
starting from where the respective segment ended, using a few sequences as prompts. The right-hand side figure depicts the various layers of
a decoder-only transformer. The model architecture consists of input embedding, positional embeddings, and multiple blocks of masked multi-
head attention, normalization, and feed-forward layers. The model is optimized using cross-entropy as the loss function.
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dimensional vector. Consequently, the embedding layer gener-
ates a (l × d)-dimensional matrix, oen referred to as the
embedding or weight matrix. Throughout the training process,
the elements of this weight matrix undergo optimization and
the model will learn the semantic relationship between
different tokens of the time sequence data.

To enable the GPT model to learn the sequence order of time
series data, the positional information for each token is
required, which can be achieved through positional embed-
dings. For an input sequence of length l, the position of the kth

token can be represented as follows:33

PE(k, 2i) = sin(k/10 0002i/d) (1)
© 2025 The Author(s). Published by the Royal Society of Chemistry
PE(k, 2i + 1) = cos(k/10 0002i/d) (2)

where d is the dimension of the output embedding and, for each
k(0 # k < l), i can take a value from 0 to d/2. Hence, one can
achieve the nal embedding layer by adding these two
embeddings.

The nal embedding layer is followed by multiple blocks of
layers (Nb). Each block typically comprises various components,
including masked multi-head attention with a specied
number of heads, Nh, normalization layers, and feed-forward
layers. Among these, the masked multi-head attention layer is
particularly signicant, serving as a communication mecha-
nism between tokens in the sequence. To calculate the key (K),
Chem. Sci., 2025, 16, 8735–8751 | 8737
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query (Q), and value (V) tensors, the nal embedded vector,
denoted as Xf, is multiplied with three trainable weight matrices
(Wk, Wq, and Wv) as K = Xf$Wk, Q = Xf$Wq, and V = Xf$Wv. The

attention score As is then calculated as As ¼ softmax
�
QKTffiffiffi

d
p

�
,

and the output of the attention layer is given by33

AttentionðQ; K ; VÞ ¼ AsV ¼ softmax

�
QKTffiffiffi

d
p

�
V (3)

where softmaxðxiÞ ¼ expðxiÞP
j
expðxjÞ. This mechanism enables the

model to discern the relative importance of tokens to each
other, providing a clear sense of context and relationships
between them.

Finally, the normalized outputs of the Nb layer are used as
inputs of a fully connected dense linear layer. Given that the
transformer model functions as a probabilistic model, the
output of this dense layer is passed through a somax function
to yield categorical probabilities. We have used cross-entropy as
our loss function to minimize the loss between the nal output
of the model Ô(t) and the actual target output O(t), which is
dened as

L ¼ �
XT�1

t¼0

OðtÞ ln
�
Ô

ðtÞ�
(4)

where T represents the total time of the trajectory, equivalent to
the sequence length (l). The model has been trained over 10 000
epochs, with all hyperparameters across all of the systems
provided in Table S2.† Fig. S1(a–f)† show the training and
validation loss as a function of epochs for six distinct systems
that would be elaborated in the upcoming sections of the
present article. The plots indicate that the loss curves saturate
or uctuate slightly around the mean aer a certain number of
epochs, suggesting robust training of the transformer model
without overtting.

C. Generating kinetic sequence of states from the pre-
trained transformer. Aer training the transformer model, it
can generate any desired number of time series states by
inputting an initial sequence of tokens as a prompt. For a given
sequence, the model will generate a probability distribution
over the entire vocabulary/states. From this probability distri-
bution, the next element of the sequence can be sampled using
a multinomial distribution (see supplemental results SR1 for
details). As we have generated the kinetic sequence of states
across all systems using our trained model, hereaer we will
refer to it as the Generative Pre-Trained Transformer (GPT)
model. The GPT model was built using PyTorch37 and our
implementation is available on GitHub at the following URL:
https://github.com/palash892/gpt_state_generation.
GPT precisely captures inter-state transition kinetics in model
multi-state systems

To begin, we will delve into two hand-craed model systems: 2D
Brownian dynamics (BD) simulations of a single particle in 3-
state and 4-state potentials. The mathematical representations
of the potentials and simulation details are provided in the
8738 | Chem. Sci., 2025, 16, 8735–8751
“Methods” section. We employ the BD trajectories to compute
the 2D free energy of the twomodel systems within their X and Y

coordinate space, dened as
F
kT

¼ �log P, where P is the prob-

ability, calculated by using a 2D histogram of the coordinates.
Fig. 2(a) represents the free energy surface (FES) plot for the 3-
state toy models. The plot exhibits three minima in the FES and
the particle can hop from one minimum to another. The states
are marked in the plots using magenta color, identied through
K-means clustering in coordinate space (Fig. 2(b)). Aer clus-
tering the data, the entire trajectory is discretized into a specic
number of states. Fig. 2(c) shows the trajectory aer spatial
discretization, where each cluster index corresponds to a meta-
stable state. The trajectory demonstrates that the particle can
stay in a particular state for some time and also exhibits tran-
sitions between various states. Now, from both the actual (i.e.
BD-simulated) and GPT-generated time series data, we can
compute the probability of each state by counting the occur-
rences of that particular state and dividing by the total count.
For instance, if the count of state 0 is C0 and the total count of

all states is Ctot, then the probability of state 0 is Pð0Þ ¼ C0

Ctot
.

Fig. 2(d) depicts a comparison between the actual and GPT-
generated state probabilities for the 3-state model. The plot
suggests that there is a closematch between the actual and GPT-
generated state probabilities.

To effectively compare the kinetics between actual and GPT-
generated time series data, one must analyze the transitions
between different states over time. To facilitate this analysis, we
utilized the concept of “commitment time or commit time”.
This metric represents the duration a particle remains in a given
state before transitioning to another.35,36 We calculated the total
transition count for different commit times, considering all
possible state pairs (nC2, n is the total number of states) and
both forward and backward directions. Fig. 2(e–g) represent the
transition count as a function of commit time for a 3-state toy
model. These plots reveal that the decay of transition counts as
a function of commit time is very similar between actual and
GPT-generated data in both directions. Furthermore, the 2D
FES plot (Fig. 2(a)) indicates that states 0 and 2 are spatially
distant. The actual data corroborate this by showing no direct
transitions between these states. On the other hand, the GPT
model predicts a nite number of transitions between them,
although the overall frequency of such transitions remains very
small (approximately three), indicating the rare nature of such
transitions. This might lead one to believe that the GPT model
has perhaps missed to fully capture the spatial disconnection
between these states. Alternatively, it could also reect the
model's attempt to account for the statistical possibility—
however small and rare—of transitions between distant states
within the learned context of the trajectory data.

We assessed the accuracy of this approach for a 4-state toy
model system, as depicted in Fig. S2(a–j).† Barring slight devi-
ations in probabilities and a few transitions (Fig. S2(f) and (i)†),
the results are very similar for both actual and GPT-generated
states. The free energy surface (FES) plot in Fig. S2(a)† indi-
cates that states 1 and 0, as well as states 2 and 3, are spatially
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Kinetics and thermodynamics for the toy model system. (a) Free energy surface (FES) plot for the 3-state toy model in its X and Y
coordinate space. The particle can transition from one minimum to the other. (b) Scatter plots of the X and Y coordinates, with distinct clusters
representing metastable states identified through K-means clustering. (c) The trajectory of the particle in the 3-state potential after state
decomposition. (d) The comparison of state probabilities between the actual and GPT-generated time series data for the 3-state toy model. The
plot highlights the accuracy of the GPT model in predicting the state probabilities. (e-g) Transition counts as a function of commit time for a 3-
state toy model. These plots indicate the ability of the GPTmodel to learn contextual relationships among the states and generate a sequence of
states that are kinetically and thermodynamically significant. Here the error bar represents the standard error and the commit time is in units of
sBD (see the “Methods”).
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distant, with no direct transitions between them in the actual
data. Remarkably, the GPT-generated states capture these
trends very nicely. However, upon closer examination, the FES
(Fig. S2(a)†) suggests that although states 0 and 2, as well as
states 1 and 3, are spatially proximate, the trajectory is not
sampled properly. This discrepancy may contribute to the slight
deviations in transition counting between actual and GPT-
generated data for these pairs of states (0–2, 2–0, 3–1, and 1–
3). Nevertheless, the results collectively indicate that the GPT
model effectively learns the context and relationships between
states, enabling it to generate a sequence of states that are both
kinetically and thermodynamically signicant.
Predicting the ensemble probabilities and state-to-state
transition kinetics in Trp-cage mini protein

Encouraged by the promising results in model potential, we
extended our approach to a globular 20-residue mini-protein
Trp-cage. This biomolecule is known for complex and multi-
state conformational ensembles, despite its small size and
remains an ideal candidate for experimental and computational
studies of protein folding. Towards this end, we utilized a long
(100 ms) unbiased simulation trajectory of Trp-cage provided by
D. E. Shaw Research.38,39 For this system, due to higher degrees
of freedom, it is necessary to dene suitable order parameters
or collective variables (CVs) to discretize the time series data
into a certain number of states. Nonetheless, the identication
of precise CVs is a challenging problem. To address these
© 2025 The Author(s). Published by the Royal Society of Chemistry
challenges, we employ an encoder-decoder-based unsupervised
deep neural network called Autoencoder.16,40,41 An Autoencoder
is a powerful non-linear dimension reduction technique that is
used to transform the high-dimensional input data in a lower-
dimensional space known as the latent space. The encoder
component of the Autoencoder maps the input data to the
latent space, while the decoder reverses this process, recon-
structing the original input from the latent space. During this
process, the model optimizes its weights and biases to preserve
the most important information from the input data in the
lower-dimensional representation. Fig. 3(a) represents a sche-
matic of Autoencoder architecture, where the distances between
Ca atoms serve as input features. During the training of the
Autoencoder, we monitor the fraction of variation explained
(FVE) score to determine the optimal dimension of the latent
space. A detailed description of the Autoencoder architecture
and the various hyperparameters is provided in the “Methods”
section and Table S3.

Fig. 3(b) represents the 2D FES plot along the latent space c1
and c2, obtained from the Autoencoder. The gure clearly
shows three distinct minima in the FES plot, indicating distinct
conformations. To visualize different conformations, we
extracted a few conformations near each minimum in the FES
and overlaid them. The superimposed conformations reveal
mainly three metastable states: folded a-helix (state-0), partially
folded a-helix (state-1), and unfolded random coils (state-2).
Aer clustering in the latent space, the entire trajectory
Chem. Sci., 2025, 16, 8735–8751 | 8739
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Fig. 3 Kinetics and thermodynamics for Trp-cage mini protein. (a) A schematic representation of the Autoencoder. In this setup, d1, d2,., dn
denote the input and output nodes, delineating the dimensions of the input and output data, while h1, h2,., hn represent the hidden nodes.
Furthermore, c1,., c3 represent the latent nodes. (b) 2D FES plot along latent space c1 and c2 for Trp-cage with three distinct minima and
extracted conformations. (c) The state decomposition of the MD trajectory is achieved through K-means clustering on the latent space, which
divides the entire trajectory into distinct sequences of states. (d) The trajectory of Trp-cage after state decomposition. (e) The comparison of state
probabilities between actual and GPT-generated time series data. These plots suggest that the GPT model effectively captures the probabilities
with minor deviations. (f–h) Comparison of transition counts between actual and GPT-generated states, showcasing the GPT model's ability to
accurately capture state transitions. Here, the error bar represents the standard error.
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comprises metastable states and their transitions, as depicted
in Fig. 3(c). Fig. 3(d) illustrates the discretized trajectory, with
the majority of transitions occurring between states 1 and 2.
Fig. 3(e) represents a comparison of the state probabilities
between the actual and GPT-generated time series data for the
Trp-cage protein. These gures demonstrate that the GPT
model has effectively captured the probabilities, with minor
deviations observed for a few states. Importantly, these devia-
tions are within the error bars.

Next, to probe the kinetics between various states of the Trp-
cage protein, we calculated the transition counts as a function
of commit time, akin to methodologies employed for 3-state
and 4-state toy models. Fig. 3(f–h) compare the transition
counts between actual and GPT-generated states for the Trp-
cage protein. These gures encompass all possible pairs and
transitions in both forward and reverse directions. The results
indicate that the GPT model accurately captures the transitions
between states. Quite interestingly, the GPT model can also
predict the highest number of transitions between states 1 and
2 accurately, which aligns with our observations from the
trajectory itself (Fig. 3(e)). In summary, together these results
suggest that the GPT model effectively captures the probability
8740 | Chem. Sci., 2025, 16, 8735–8751
and the transition counts between various states of the Trp-cage
protein, providing valuable insights into the kinetics and ther-
modynamics of these systems.
GPT ourishes in kinetic prediction of state sequences of
complex intrinsically disordered protein

Next, we turn our attention to an intricately complex system: a-
synuclein. It is a prototypical intrinsically disordered protein
(IDP) that predominantly resides in the human brain, especially
nerve cells.42 It plays a crucial role in the communication
between these cells by releasing neurotransmitters, which are
messenger chemicals.43 However, the excessive accumulation of
these proteins can lead to several neurodegenerative disorders
such as Parkinson's disease and other synucleinopathies.44–46

For a-synuclein, we utilize the 73 ms trajectory provided by D. E.
Shaw Research (DESRES).38,39

We used the radius of gyration (Rg) as CVs to decompose the
entire trajectory into a specic number of states. Fig. 4(a)
represents the (Rg) (red color) of a-synuclein as a function of
time, showcasing the protein's diverse conformational possi-
bilities. Through K-means clustering in the Rg space,47 we
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 The radius of gyration (Rg) and transition count comparison for a-synuclein. (a) The (Rg) as a function of time for a-synuclein (red plot). The
magenta color plot represents the trajectory after state decomposition via K-means clustering. (b) The diverse conformational states are
identified as intermediated compact (state-0), collapsed (state-1), and extended (state-2). (c–e) Transition count comparison between the actual
and GPT-generated time series data as a function of commit time for a-synuclein. The transition dynamics fairly match with actual and GPT-
generated data, except at a smaller commit time. Here the error bar represents the standard error.
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discretize the total trajectories into distinct states (Fig. 4(a)
magenta color plot). Specically, three states have been identi-
ed: intermediated compact (state-0), collapsed (state-1), and
extended (state-2), with a superimposition of snapshots
revealing signicant conformational heterogeneity within each
state (Fig. 4(b)).

Fig. S3† compares the state probabilities between actual and
GPT-generated time series data for a-synuclein. The gure
clearly shows the deviation in the state probability values. Next,
to analyze the transition dynamics, we have calculated the
transition count of each state. Fig. 4(d–f) depict the comparison
of transition counts as a function of commit time between
actual and GPT-generated time series data for a-synuclein.
While there are some deviations in probability values, the
transition dynamics align fairly well with actual and GPT-
generated data, except for a smaller commit time. Specically,
the GPT model generates a lower count for the transition (2 /

0) compared to actual data. The deviations in state probability
and transition dynamics indicate the intricacies involved in
accurately predicting the dynamical behavior of such a complex
system.
Assessing the transformer's predictive ability in a far-from-
equilibrium system

In the preceding sections, we have mainly focused on capturing
the kinetics and thermodynamics of various models and real
systems that are in thermodynamic equilibrium. Finally, in this
section, we shi our attention to an active system. Most living
organisms are active and their movement is powered by energy
consumption from internal or external sources. The continuous
consumption and dissipation of energy drive these systems far
from equilibrium. Notably, the activity or self-propulsion force
© 2025 The Author(s). Published by the Royal Society of Chemistry
plays a crucial role in the formation of many self-organized
collective phenomena such as pattern formation,48–51 motility-
induced phase separation,52–55 swarming motion,56–59 etc. In
this study, we employ a model system, an active worm-like
polymer chain,60 where the activity or self-propulsion force
acts tangentially along all bonds. We have utilized our in-house
BD simulation trajectory to study the active polymer chain (see
the Methods for details).

Aer training the Autoencoder by using inter-bead distances
as features, we have chosen two-dimensional latent space as

CVs. For active systems, the quantity
F
kT

¼ �log P may not

correspond to the free energy in the same way as in a passive
description. To avoid confusion, we refer to it as the effective
free energy. Fig. 5(a) shows the effective FES plot across the
latent space c1 and c2 for the active polymer chain and the
corresponding metastable states are highlighted in magenta
color. The overlaid plots suggest that there are mainly two
metastable states: a bending state (state-1) and a spiral state
(state-0). Notably, despite the apparent simplicity of the two
states, the visualization of the trajectory (Fig. S4(a)†) suggests
that the system spends a very long time within each state along
with spontaneous spiral formation and breakup occurrences.
Subsequently, we employ K-means clustering on the latent
space derived from the Autoencoder to discretize the trajectory
(Fig. 5(b)).

Fig. S4(b)† compares the state probabilities between actual
and GPT-generated time series data for the active polymer
chain. The comparison reveals the deviations in the state
probability. Fig. 5(c) depicts the comparison of transition
counts as a function of commit time between actual and GPT-
generated time series data. However, interestingly, the GPT
model accurately generates the transition for the active system.
Chem. Sci., 2025, 16, 8735–8751 | 8741
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Fig. 5 The effective free energy surface and transition count comparison for the active worm-like polymer chain. (a) The effective FES plot of the
active polymer chain across the latent space c1 and c2. This plot highlights two metastable states: a bending state (state-1) and a spiral state
(state-0). (b) The latent space has been clustered via K-means clustering to discretize the trajectory. (c) The comparison of transition counts
between actual and GPT-generated data for the active polymer chain, reflecting the system's long stay at particular states before transition and
the violation of detailed balance. The GPT model accurately generates a kinetic sequence of states, maintaining saturation and detailed balance
violation, albeit with some small deviation from actual data. Here the error bar represents the standard error and the commit time is in units of sBD
(see the “Methods”).
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As mentioned earlier, for the active polymer chain, the system
stays at a particular state for a long time before transitioning to
the other state. This behaviour is reected in the plots, where
both curves saturate aer a certain commit time. Moreover, the
forward and backward transition curves suggest a violation of
detailed balance, which is an inherent feature of active systems
that are far from thermodynamic equilibrium. Remarkably, the
GPT model successfully generates a sequence of states that
maintain the saturation nature as well as the violation of
detailed balance, albeit with some deviation from actual data
within the error bar. These ndings indicate that the GPTmodel
is very powerful for future state predictions, even in complex
active systems. In a similar spirit, for comparison purposes, we
have also computed similar metrics for a ‘passive’ polymer
chain for enhanced clarity (Fig. S5†). Here too, we observed
a strong alignment between the kinetics and thermodynamics
captured by the GPT model and the actual BD-generated data.
Deciphering the inner workings of GPT's prediction accuracy
of a kinetic sequence of states

In the previous sections, our focus has been on exploring the
thermodynamics and kinetics of diverse model and real
8742 | Chem. Sci., 2025, 16, 8735–8751
systems, whether in thermodynamic equilibrium or out of
equilibrium. We have observed that despite variations in state
probabilities, the GPTmodel generates a sequence of states that
accurately maintain transition dynamics in a statistical sense.
Now, in this section, we delve into identifying the pivotal factors
that maintain these precise transition dynamics.

In the eld of natural language processing (NLP), the
seminal work by Vaswani et al. titled “Attention Is All You
Need”33 introduces the paradigm-shiing concept of self-
attention. The state-of-the-art transformer model, based on
attention mechanisms, has demonstrated superior perfor-
mance compared to traditional recurrent neural networks
(RNNs). To understand the role of attention, we computed the
attention score from the multi-head attention layer, which is

dened as As ¼ softmax
�
QKTffiffiffi

d
p

�
(see eqn (3) for details), where

Q, K, and d are the query, the key, and the dimension of the
embedding layer, respectively. In our study, we randomly
selected 20 chunks of sequence length 128 from GPT-generated
time series data and fed them as inputs for the trained GPT
model. Subsequently, we computed the attention scores from
each head, averaging them across all heads and the 20 random
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Attention score for all the systems analyzed. The heat map of the attention score computed from the multi-head attention layer of
a trained GPT model, for six distinct systems under consideration. These scores reveal that there is finite attention among various tokens and
highlight the evidence of long-range attention.
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chunks. Physically, these attention scores unveil correlations
among different tokens within a sequence of time series data.
Fig. 6 show the heat map of the masked attention score for all
the systems. These plots highlight the presence of signicant
nite, non-zero attention among various tokens within
sequences. Notably, some tokens exhibit clear evidence of long-
range attention, underscoring the model's ability to understand
the relationships between events that are far apart.

Based on our examination of attention scores, we now pose
the following question: how does attention impact the transi-
tion dynamics between different states? To address this, we
trained the GPT model on all six systems by removing the multi-
head attention layer, while maintaining other hyperparameters
Fig. 7 Impact of attention on transition dynamics in the GPT model. (a–
actual and GPT-generated time series data for all of the systems in the abs
generated transition dynamics compared to the actual data. While the GP
it frequently mispredicts transitions in another direction.

© 2025 The Author(s). Published by the Royal Society of Chemistry
consistent with our previous model architecture. This approach
ensures that the model can no longer capture any short- or long-
range correlations between tokens. Our ndings indicate that
for simple systems, such as a 3-state toy model, the transition
dynamics captured by the GPT model remain similar regardless
of the presence or absence of the attention layer (see Fig. S6†).
This suggests that attention may not play a signicant role in
these simple systems. However, for other systems, there are
substantial deviations in GPT-generated transition dynamics
compared to actual data. Fig. 7(a–j) show the comparison of
transition counts as a function of commit time between the
actual and GPT-generated time series data for all of the systems
under consideration as highlighted in the text of each plot.
j) The comparison of transition counts over commit time between the
ence of attentionmechanisms. There are significant deviations in GPT-
T model can sometimes accurately predict transitions in one direction,

Chem. Sci., 2025, 16, 8735–8751 | 8743
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These plots suggest that while in many cases the GPTmodel can
recover the transition counts in one direction, it completely
predicts the wrong transitions in other directions in the absence
of attention. Here, we have only shown the plots where the
deviations are prominent. The comprehensive plots for all the
systems with all possible transitions are given in the ESI (Fig.
S7–S10†). Together these analyses identify the power of the
attention layer. Even in physicochemical systems, attention is
crucial for learning the context and relationships or correlations
among various tokens of time series data, enabling the model to
generate a physically meaningful kinetic sequence of states.

Performance comparison: MD simulation vs. GPT state
generation

Aer training the GPT model, the generation of the sequence of
states is extremely fast compared to conventional MD simula-
tions of equivalent systems. For example, the model can
generate 20 000 subsequent sequences for a-synuclein within
∼60 minutes, corresponding to a 20 ms simulation of this
systemwith a data saving frequency of 1 ns. Similarly, themodel
can generate 100 000 sequences for the Trp-cage mini protein
within ∼32 minutes, equivalent to 20 ms simulation with a data
dumping frequency of 200 ps. As mentioned earlier, we have
analyzed six systems; among them the Trp-cage mini protein
and a-synuclein are particularly relevant in biophysical
contexts, and their simulations were conducted in real-time
units. Thus, our primary focus here is to compare the perfor-
mance of these two systems. To compare this generation's
efficiency against actual MD simulation times, we conducted 10
ns simulations for these systems, maintaining all parameters
such as box size, salt concentration, temperature, and time step
as per the study by Robustelli et al.38 As the data saving
frequency for these two systems is different, we dene a quan-

tity PN
MD=GPT ¼ PMD=GPT

fdump
, where PMD/GPT is the performance of the

MD or GPT model and fdump is the saving frequency of the data.
This metric can normalize the performance of each system by
its respective data saving frequency. All the MD simulations and
training of the GPT models were performed on an Intel(R)
Xeon(R) Platinum 8352Y CPU at 2.20 GHz, along with an NVI-
DIA RTX A6000 GPU. Tables 1 and S4† show all of the details of
the performance and memory usage of the MD simulations as
well as GPT state generation. Table 1 suggests that the perfor-
mance and normalized performance of the GPT model surpass
those of traditional MD simulations, demonstrating its effi-
ciency in generating the kinetic sequence of states of the
systems.

What should be the typical size of training data? To evaluate
the impact of training data size on our model's ability to predict
Table 1 The comparison of the performance between MD simulation a

System fdump

PMD

(ns per day)
P N
MD

(per day)
Training t
(minutes)

a-Synuclein 1.0 ns ∼35.0 ∼35.0 ∼127.0
Trp-cage 200 ps ∼832.0 ∼4160.0 ∼35.0

8744 | Chem. Sci., 2025, 16, 8735–8751
a kinetic sequence of states in a biophysical system, we trained
our GPT model using varying amounts of data. We selected the
Trp-cage mini protein, which provides 500 000 frames, in
contrast to the 73 124 frames available for a-synuclein (see
Table S1†). We generated the same number of states as depicted
in Fig. 3 but varied the training data size. Initially, the model
was trained with 60% of the total data. We have now conducted
additional training with 10%, 40%, and 50% of the data.
Fig. S11(a–i) and (j–l)† show the transition counts over time and
state probabilities for these different training data percentages.
These gures indicate a signicant alignment between the
actual and GPT-generated data aer utilizing 40% of the
training data. This suggests that a sufficient amount of training
data is crucial for the model to predict a kinetic sequence of
states accurately. However, the transition count plots demon-
strate that even with just 10% of the training data, the model
can still capture complex relationships between various states,
generating a kinetic sequence of states that are not entirely
erroneous.

Inmanymachine learning tasks, performance improves with
training data size up to a saturation point. A similar approach
can be applied to a new system by incrementally increasing the
dataset size and monitoring the convergence of performance
metrics. More complex systems, particularly those with
numerous metastable states or intricate free energy landscapes,
may require larger datasets to capture transition dynamics
effectively. One practical approach is to test whether kinetic
properties, such as state transition probabilities, are stable
across different dataset sizes.

GPT outperforms precedent baseline approaches in kinetic
sequence generation

In the previous sections, we explored the capabilities of the GPT
model in capturing the state-to-state transition dynamics of
various systems. In this section, we focus on a detailed
comparison between the GPT model and two established
approaches: Long Short-Term Memory (LSTM)34 networks and
MSM.1–3 Both models were trained using the same clustered
trajectories as the GPT model. The MSM was originally devel-
oped for equilibrium systems, relying on the assumption of the
Markovian properties of the system. This means that the tran-
sition probabilities in the MSM are calculated under the
conditions that the system satises detailed balance, which is
a key requirement for equilibrium systems. However, for active
systems, this assumption is not valid, as such systems inher-
ently violate detailed balance due to their non-equilibrium
nature. As a result, using the MSM to analyze an active system
will lead to incorrect kinetic information. In our study, we used
theMSM to compare its results with those of the GPTmodel. We
nd GPT state generation

ime Gen.
sequence

Gen. time
(minutes)

PGPT
(ms per day)

P N
GPT

(103 per day)

20 000 ∼6.0 ∼4800.0 ∼4800.0
100 000 ∼32.0 ∼900.0 ∼4500.0

© 2025 The Author(s). Published by the Royal Society of Chemistry
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also observed that the MSM provides incorrect results for the
active system, as expected.

We rst examine the LSTM networks, which are known for
their ability to model sequential data by capturing long-range
dependencies. To ensure consistency, we used the same
embedding dimension for the input data as with the GPT
model, while all other hyperparameters are detailed in Table S5.
We observed that in most of the cases, the LSTM captures the
state-to-state transition accurately for various systems under
consideration. However, in a few cases, there are signicant
deviations in the state-to-state transition from the actual data.
Fig. 8(a–d) show the transition count as a function of commit
time for various systems as highlighted in the title of each plot.
Here, we have highlighted only the plots where the deviations
are most signicant. For a comprehensive overview, all other
plots for each system, including all possible transitions, can be
found in the ESI (Fig. S12–S14†). Since the GPT model uses the
self-attention mechanism, it likely enhances its ability to
capture long-range dependencies more effectively, enabling it to
generate a more accurate kinetic sequence of states compared
to the LSTM model.

Next, we constructed Markov State Models (MSMs),
a powerful framework for analyzing the kinetics of molecular
systems by discretizing the state space into metastable states.
The rst step in building anMSM is selecting an appropriate lag
Fig. 8 Comparison of state-to-state transition dynamics in LSTM and
commit time between actual data and LSTM-generated time series data f
actual data and MSM-generated time series data for various systems. The
the correct sequence of state transitions. (i–l) Comparison of state prob
Although the MSM struggles with dynamic predictions, it aligns well with

© 2025 The Author(s). Published by the Royal Society of Chemistry
time for calculating the transition probability matrix, ensuring
that the model behaves in a Markovian manner. For all systems,
the lag time was chosen based on the implied time scales (ITSs)
or relaxation time scale plots as a function of lag time (Fig. S15
(a–d)†). We selected the lag time where the ITS plots approxi-
mately level off, denoted by a vertical magenta line. Subse-
quently, a Chapman–Kolmogorov test was performed to further
verify the Markovianity of the model (Fig. S16–S19†). Aer
constructing the MSM at the chosen lag time, we generated
a kinetic sequence of states using the transition probabilities of
the previous states. Fig. 8(e–h) represent the state-to-state
transition counts as a function of commit time across various
systems. These plots suggest signicant deviations between the
actual data and the MSM-generated kinetic sequence of states
for all systems. While we have highlighted a few transitions
here, all other possible transitions are presented in the ESI
(Fig. S20–S22†), where similar deviations are observed.
However, quite interestingly, the MSM-generated state proba-
bilities align well with the actual data (Fig. 8(i–l)). Together,
these observations suggest that while the MSM accurately
predicts the thermodynamics of the systems, it fails to correctly
capture the temporal sequence of states (dynamics). To gain
deeper insights, we built the MSM with a lag time of one step
(the data dumping frequency), regardless of whether the ITS
curve had plateaued for all systems. Fig. S23–S26† depict the
MSM models. (a–d) State-to-state transition counts as a function of
or various systems. (e–h) Transition counts over commit time between
MSM shows consistent deviations across all systems, failing to capture
abilities between actual and MSM-generated data for various systems.
actual data in terms of state probabilities.

Chem. Sci., 2025, 16, 8735–8751 | 8745

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc00108k


Fig. 9 Comparison of state-to-state transition dynamics for Trp-cage mini protein and a-synuclein using GPT and MSM models. (a)–(d) State-
to-state transition counts as a function of commit time for the Trp-cagemini protein, derived from the GPTmodel andMSM, respectively. (e)–(h)
State-to-state transition counts as a function of commit time for a-synuclein, obtained from the GPTmodel andMSM, respectively. These results
demonstrate that the GPT model more accurately predicts the kinetic sequence of states compared to the traditional MSM for both systems.
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transition counts as a function of commit time for the systems
under consideration. While the MSM accurately generates
a kinetic sequence of states for simpler systems, such as a 3-
state model, it fails to match the state-to-state transition counts
with the actual data for more complex systems, particularly the
Trp-cage mini protein and active systems.

Based on these observations, we conclude that our GPT
model outperforms traditional methods like the MSM in
generating future states in the correct sequential order. The
MSM requires the assumption of detailed balance for transition
matrix calculation and the selection of an appropriate lag time
to ensure Markovian behavior. In contrast, the GPT model does
not rely on the Markov properties of the system and can
generate a kinetic sequence of states with the same temporal
precision as its training data, regardless of any intrinsic time
scale (such as the lag time required by the MSM) it learns from
the system.

In our previous analyses, we discretized the trajectory into
a few states based on the minima in the free energy surface
(FES). Now, we have discretized the trajectory into a larger set of
states, effectively ne-graining the FES. Our focus is on two
systems: the Trp-cage mini protein and a-synuclein. We clus-
tered the data into 20 clusters along their collective variables
(CVs). Using the same protocol as before, we trained both the
GPT model and MSM on this clustered data. Aer training, we
generated a kinetic sequence of states using both models and
compared the results. The lag time selection for the MSM was
determined based on the approximate plateau observed in the
ITS plots (Fig. S27†).

Fig. 9(a)–(d) depict the state-to-state transition count as
a function of commit time for the Trp-cage mini protein,
derived from the GPT model and MSM, respectively. Similarly,
Fig. 9(e)–(h) represent the state-to-state transition count as
a function of commit time for a-synuclein, obtained from the
GPT model and MSM, respectively. These plots suggest that,
8746 | Chem. Sci., 2025, 16, 8735–8751
even with a larger number of clusters, the GPT model does
a better job than the traditional MSM in accurately predicting
the kinetic sequence of states for both systems. It is important
to note that with 20 states, there are now 190 (20C2 = 190)
possible transitions. In this representation, we have only shown
the two transitions with the highest transition counts. The
complete set of all possible transitions is provided in the ESI
(Fig. S28–S47†).

We now aim to reconstruct the one-dimensional free energy
plots using the GPT model. For a-synuclein, we used the radius
of gyration (Rg) as the one-dimensional CV to discretize the
trajectory into specic states. For this free energy calculation,
we focused solely on a-synuclein, discretizing the trajectory by
binning along the CV as proposed by Tsai et al.35 Fig. S48†
compares the GPT-generated one-dimensional free energy plot
with the actual data along Rg. The comparison reveals a strong
agreement between the actual and GPT-generated free energy
plots.
Discussions

The time evolution of biophysical systems undergoes various
conformation changes, depending on environmental condi-
tions. Understanding these dynamics typically requires experi-
ments or Molecular Dynamics (MD) simulations. However,
comprehending the long-term behaviour of these systems
requires running computationally expensive simulations. In
this study, we present a comprehensive approach, employing
state-of-the-art machine learning models, particularly decoder-
only transformers, to predict the kinetic sequence of states of
physicochemical systems. Through an extensive analysis of the
MD trajectory of various models and real systems, we have
demonstrated the efficacy of the GPT model in capturing both
the kinetics and thermodynamics of these systems.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Our study began with simplied model systems, namely 3-
state and 4-state toy models. We employed K-means clustering
on coordinate space for this simple system to discretize the
trajectory. Subsequently, we delved into more complex systems
such as the Trp-cage mini protein, 32-bead passive polymer
chain, and intrinsically disordered protein a-synuclein.
However, for these systems, we utilized another ML-based
technique, Autoencoder, to identify the relevant collective
variables for discretization. Our results highlight the ability of
the GPT model to accurately predict the probabilities of
different states and capture the transition dynamics between
them. Furthermore, we extended our analysis to include an
active system, a 32-bead active worm-like polymer chain, where
the system is far from thermodynamic equilibrium. Remark-
ably, the GPT model successfully predicted the kinetics and
thermodynamics of the active system.

A key aspect of our study is the ability of the GPT model to
capture and reconstruct complex transition dynamics in
molecular systems, offering valuable chemical and physical
insights beyond traditional kinetic modeling approaches. One
of the most striking ndings is the role of the attention mech-
anism in preserving long-range dependencies within kinetic
sequences. Through attention score analysis, we observed
signicant correlations between distant states, highlighting the
model's ability to recognize intricate transition patterns that
may be obscured in traditional MSMs. Furthermore, by
removing the attention layer from the model, we observed
substantial deviations in transition dynamics for complex
systems. Therefore, these ndings strongly suggest that the
attention mechanism plays a pivotal role in maintaining accu-
rate predictions.

While our model does not predict entirely new states beyond
the training data, its ability to generate statistically precise
kinetic sequences provides valuable insight into transition
dynamics, helping to reconstruct long-timescale behavior from
limited MD trajectories. By leveraging learned transition
patterns through the attention mechanism, the model can
rapidly generate statistically robust kinetic pathways, enabling
accurate estimations of state-to-state transition probabilities,
especially for complex systems and active systems, where the
traditional MSM-based model failed to accurately predict the
kinetic sequence of future states. The attention maps highlight
how the model internally focuses on long-range temporal rela-
tionships in the trajectory. This “mechanistic introspection”
offers a data-driven window into how conformational history
affects future evolution—a level of mechanistic interpretability
not directly accessible from traditional MD or even MSMs.

Although the transformer-based large language models
(LLMs) were specially developed for tasks like machine trans-
lation and natural language processing, our study demonstrates
their effectiveness in predicting the kinetics and thermody-
namics of a diverse array of biophysical systems. One notable
limitation of our GPTmodel is that it never generates new states
beyond its training data. In terms of language, the transformer-
based model is always unable to generate new vocabulary.
Nonetheless, the model can learn the complex syntactic and
semantic relationships present in the sequence of tokens,
© 2025 The Author(s). Published by the Royal Society of Chemistry
which help them to generate a kinetic sequence of states of the
system very correctly. If some system shows a completely new
state at a very long time that is not present in the training
sequence, the model cannot generate that particular state. This
suggests that one needs very good MD sampling data for
a physical system to predict the kinetic sequence of states of the
system. Another concern is the large amount of MD simulation
data required to effectively train the GPT model. While we have
demonstrated fairly accurate state probabilities using only 10%
of the simulation data for Trp-Cage, this training data included
multiple back-and-forth transitions between metastable states.
However, recent advances in ML have introduced innovative
techniques such as variational autoencoders (VAEs),61–63 gener-
ative adversarial networks (GANs),64,65 diffusion models,66–68 etc.,
which can be utilized for generating new conformations and
improving sampling in biophysical systems.69–71 While these
techniques enhance sampling quality, they may lack the
temporal information crucial for understanding the dynamics
of the system. In conclusion, our ndings highlight the poten-
tial of LLMs as powerful tools for advancing our understanding
of biophysical systems, offering new avenues for further explo-
ration and improvement in this eld. In all our analyses, we
have relied on unbiasedMD data to predict the kinetic sequence
of states of various physicochemical systems. In the future, it
would be logical and interesting to extend our model to incor-
porate biased enhanced sampling simulations for learning the
long-timescale behavior in molecular dynamics.72

Methods
3-state and 4-state toy models

To simulate a particle in a 2D 3-state and 4-state potential well,
we adopted the same functional form for the potential as Tsai
et al.35 The potential for the 3-state model is given by

V3(x, y) = W3(x
6 + y6) − G(x, x1)G(y, y1)

− G(x, x2)G(y, y2) − G(x, x3)G(y, y3) (5)

Similarly, the potential for the 4-state model is given by

V4(x, y) = W4(x
4 + y4) − G(x, x1)G(y, y1)

− G(x, x2)G(y, y2) − G(x, x3)G(y, y3)

− G(x, x4)G(y, y4) − G(x, x5)G(y, y5) (6)

where G is a Gaussian function as Gðx; x0Þ ¼ exp
�
� ðx� x0Þ2

2s2

�
.

Here, x0 and s are the mean and standard deviation of the
distribution. In our simulation, we keptW3=W4= 0.0001 and s

= 0.8. The mean values of Gaussian distribution for the 3-state
model are given by x1= 0.0, y1= 0.0, x2=−1.5, y2=−1.5, and x3
= 1.5, y3 = 1.5. Similarly, for the 4-state model, these values are
x1 = 0.0, y1 = 0.0, x2 = 2.0, y2 = −1.0, x3 = 0.5, y3 = 2.0, x4 =

−0.5, y4 = −2.0, and x5 = −2.0, y5 = 1.0. We performed Brow-
nian dynamics simulations for these two systems by integrating
the equation of motion:

d~r

dt
¼ �1

g
V
!
V þ h!ðtÞ (7)
Chem. Sci., 2025, 16, 8735–8751 | 8747
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where g is the friction coefficient, V is the potential energy, and
h⃑(t) is a random noise, satisfying the uctuation–dissipation
theorem, i.e. hh⃑(t)$h⃑(t0)i = 4kTg−1d(t − t0). Here, all simula-

tion times are in units of sBD ¼ s2g

kT
, where s= 1 is the diameter

of the particle. Integration of eqn (7) was performed using the
Euler method with a time step dt = 0.01sBD by setting

b ¼ 1
kT

¼ 9:5:

Passive polymer chain

We performed a very long molecular dynamics simulation (5.74
ms) for a passive polymer chain, with the model and simulation
parameters of the polymer system detailed in a previous study
by our group.73

Trp-cage mini protein and a-synuclein

For Trp-cage and a-synuclein, we utilized very long molecular
dynamics simulation trajectories from D. E. Shaw Research.38

The Trp-cage trajectory spanned 100 ms, while the a-synuclein
trajectory was 73 ms long. These simulations were performed
using the a99SB-disp force eld on Anton specialized hard-
ware.39 The detailed simulation protocols can be found in the
original paper by Robustelli et al.38 However, in the original
paper, the trajectory of a-synuclein was 30 ms long. Due to some
periodic image issues in the original trajectory, the authors
provided the extended 73 ms trajectory for a-synuclein, main-
taining the same simulation setup as before but increasing the
box size.

Active worm-like polymer chain

The two-dimensional worm-like polymer chain consists of N =

32 beads connected by a stiff spring with spring constant k0.
Each bead has a diameter of s and an equilibrium bond length
of d0. The dynamics of the polymer chain are governed by
overdamped motion, described by the equation

d~ri
dt

¼ �1

g
V
!
Vtot þ

~f
ðiÞ
m

g
þ hi
!ðtÞ (8)

where g is the friction coefficient and Vtot is the total potential
energy of the system, which includes bonding potential Vbond,
bending potential Vbend, and non-bonded potential Vnb. The
bonding potential Vbond is given by

Vbond ¼ k0

2

XN�1

i¼1

ð��~ri;iþ1

��� d0Þ2 (9)

The bending potential Vbend is given by

Vbend ¼ kang

2

XN�2

i¼1

ðqi � q0Þ2 (10)

where kang is the bending rigidity and q0 is the equilibrium bond
angle. The non-bonded potential Vnb is taken as the Hertzian
potential:

Vnb ¼ 2

5
Es1=2ðs� rÞ5=2 (11)
8748 | Chem. Sci., 2025, 16, 8735–8751
These potentials are very generic for the simulation of any
passive polymer chain. However, the most important force for
an active polymer chain is the motility or self-propulsion force.
Here, ~fm represents the self-propulsion force, which acts
tangentially along all bonds. The random noise h⃑i(t0) satises
the uctuation–dissipation theorem, i.e. hh⃑i(t)$h⃑j(t0)i =

4kTg−1di,jd(t − t0). All lengths and energies are in units of s and
kT, respectively, and the simulation time is in units of

sBD ¼ s2g

kT
. The Brownian dynamics simulation for an active

polymer chain was performed using a time step of dt =

0.001sBD. The other simulation parameters are kT= 1.0, s= 1.0,

d0 = 0.5s, k0 ¼ 5000:0
kT
s2

, kang = 45.0 kT, g = 200 kTsBD/s
2, fm =

5.0 kT/s, q0 = p, and E = 10 000.0 kT/s3.
Training details of the Autoencoder

The Autoencoder architecture and training hyperparameters are
presented in Table S3.† For the Trp-cage mini protein, we
utilized the distance between all Ca atoms as input features,
resulting in 190 (20C2 = 190) features for its 20 residues.
Conversely, for active and passive polymer chains, we employed
inter-bead distances, selecting 8 effective beads in an arithmetic
progression with a step of 4, providing 28 (8C2 = 28) input
features.13 Throughout the Autoencoder training process, we
monitored two metrics: training loss and the fraction of varia-
tion explained (FVE) score. The FVE is dened by the equation

FVE ¼ 1�
PN
i¼1

kXðiÞ � YðiÞk2

PN
i¼1

kXðiÞ � Xk2
(12)

where X(i), Y(i), and �X represent the input, output, and mean
input, respectively, and N corresponds to the total number of
features. The FVE score indicates the proportion of input data
variance explained by the Autoencoder's reconstruction.
Fig. S49(a–f)† depict the plots of these two metrics for all systems
as described within the gure text. For active and passive polymer
chains, a 2D latent dimension was chosen, whereas for the Trp-
cage mini protein, a 4D latent dimension was utilized. Across
all these latent dimensions, the FVE scores exceed 0.80, indicating
that the Autoencoder's reconstruction explains at least 80% of the
original data variance. Furthermore, the gradual decrease fol-
lowed by saturation of the training loss curve suggests no over-
tting during the Autoencoder's training process. However, in the
case of the IDP a-synuclein, even with a high latent dimension of
Ld = 7, we have observed a relatively low FVE score (∼0.60) (Fig.-
S50(a)†). Additionally, we have plotted the FES using the rst two
components of the latent space (Fig. S50(b)†). This plot indicates
a lack of distinct minima in the free energy surface. Consequently,
clustering the data for a proper state decomposition within this
latent space is not feasible. Therefore, for a-synuclein, we have
opted to use the radius of gyration (Rg) as the reaction coordinate
to discretize the trajectory into a specic number of states.

We conducted simulations for 3-state, 4-state, and active
worm-like polymer chains using our in-house scripts written in
© 2025 The Author(s). Published by the Royal Society of Chemistry
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C++. To simulate passive polymer chains, we utilized the open-
source Soware GROMACS-2022.74,75 Our Autoencoder model
was trained using Python implementation of Tensorow76 and
Keras77 and the GPT model was built using PyTorch.37 The
Markov State Model (MSM) analyses were performed using
PyEMMA78 (v2.5.12), a Python library designed for efficient
estimation and analysis of MSMs from molecular dynamics
simulations.
Data and code availability

The manuscript contains all the data. The code and detailed
documentation for training the Autoencoder and GPT model
are available on GitHub at the following URL: https://
github.com/palash892/gpt_state_generation.
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