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Under an externally applied load, granular packings form force chains that depend on the contact network

and moduli of the grains. In this work, we investigate packings of variable modulus (VM) particles, where we

can direct force chains by changing the Young’s modulus of individual particles within the packing on

demand. Each VM particle is made of a silicone shell that encapsulates a core made of a low-melting-point

metallic alloy (Field’s metal). By sending an electric current through a co-located copper heater, the Field’s

metal internal to each particle can be melted via Joule heating, which softens the particle. As the particle

cools to room temperature, the alloy solidifies and the particle recovers its original modulus. To optimize the

mechanical response of granular packings containing both soft and stiff particles, we employ an evolutionary

algorithm coupled with discrete element method simulations to predict the patterns of particle moduli that

will yield specific force outputs on the assembly boundaries. The predicted patterns of particle moduli from

the simulations were realized in experiments using quasi-2D assemblies of VM particles and the force outputs

on the assembly boundaries were measured using photoelastic techniques. These studies represent a step

towards making robotic granular metamaterials that can dynamically adapt their mechanical properties in

response to different environmental conditions or perform specific tasks on demand.

1 Introduction

Mechanical metamaterials process mechanical inputs, such as
forces, pressures, or waves, to achieve programmable stiffness,
shape transformations, and force propagation.1–3 Many current
mechanical metamaterial approaches employ continuum solids or
linkages/mechanisms with a fixed structure and therefore demon-
strate only fixed responses. We are interested in mechanical
metamaterials that can exhibit increased dynamic plasticity,
enabling adaptation to different environmental inputs or task
demands by reconfiguring their physical structure. Granular meta-
materials—consisting of discrete, macroscale particles—offer an
advantageous platform for such dynamic programmability, as
individual particle properties can be tuned to achieve different
bulk responses.4 For example, one can imagine a future granular

metamaterial that uses changes in individual particle properties to
route forces around a damaged region of the material thereby
maintaining its function.

Existing granular metamaterials most often incorporate
ordered particle assemblies, as it is difficult to predict the material
properties of disordered granular assemblies. Ordered granular
metamaterials have been used for vibration mitigation,5–9 acoustic
switches,10,11 energy absorption,12 elastic modulus and density
tuning,13,14 and non-reciprocal behaviors.15 Most of these prior
studies have confined their approach to granular systems with
inert, rigid grains and fixed elastic moduli. In this work, we expand
the parameter space by including variable modulus particles,
thereby enabling access to a wider set of possible material
responses.

In previous studies, we developed discrete element method
(DEM) simulations to study the vibrational response of jammed
packings composed of binary mixtures of spherical particles
with different masses. For example, in one recent study,11 we
showed that 2D and 3D mixed-mass granular assemblies can be
used to either transmit or block vibrations with particular
frequencies. Expanding on that result, we coupled evolutionary
algorithms (EA) with DEM simulations to create more complex
logic gates.16–18 Using similar granular systems, in this work we
seek to control the transmission of force chains, in both
simulations and experiments.
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In general, granular packings are collections of macroscopic
particles that are densely packed, forming contact networks
through which interparticle forces are transmitted. It is well-
known that a large fraction of the external load applied to granular
packings is often carried by a small number of particles,19–24

resulting in the emergence of stable force chains.25 Due to the
large number of degrees of freedom, nonlinear response, and out-
of-equilibrium behavior of granular systems, force chain dynamics
are challenging to predict analytically. However, there have been
many computational studies of force chain networks, such as
contact dynamics simulations,26 DEM simulations,27,28 random
matrix theory, and statistical mechanics-based models,29 as well as
experimental studies of force distributions.30–32 Previous studies
have emphasized that individual particle properties, such as the
elastic moduli and density, influence how forces propagate
through granular assemblies.33 We will exploit this relationship
by switching the elastic moduli of individual particles to achieve
specific force outputs from selected particles.

We realize granular metamaterials with adaptable force
chains using an assembly of variable modulus (VM) particles.
While there are many potential approaches to particle modulus
modulation, we adapt the approach previously used by Pashine,
et al.34 to make variable stiffness bonds in an allosteric meta-
material. Our VM particles are fabricated by incorporating a
low-melting-point alloy (Field’s metal) in soft silicone shells. A
VM particle possesses a larger modulus when the Field’s metal
core is solid (at low temperature) and a smaller modulus when
the core is liquid (at high temperature).

Using discrete element method (DEM) simulations com-
bined with evolutionary algorithms, we identify particle config-
urations that optimize specific force outputs on the boundaries
of a granular assembly. These optimized configurations are
then fabricated and tested in experiments, where we demon-
strate that the force chain networks within the packing can be
dynamically reconfigured by modulating the modulus of individual
particles. To explore practical trade-offs, we implement a multi-
objective optimization pipeline that simultaneously maximizes
boundary force outputs and minimizes power consumption, based
on the assumption that power is expended when switching particle
stiffness between soft and stiff states. Across all cases studied, we
find strong agreement between the simulation predictions and
experimental measurements of output forces. The novelty of this
work lies in the integration of three components: experiments with
variable modulus particles, DEM simulations that quantitatively
capture stiffness-dependent interactions, and evolutionary algo-
rithms that discover particle arrangements producing optimal force
networks consistent with experimental results. Taken together,
these results represent a step toward dynamic granular metamater-
ials capable of adapting their mechanical responses to evolving
environmental or task-specific demands.

2 Methods

To controllably modify the force chain network of a packing, we
create a pipeline that takes a set of objectives (e.g., maximize

the force between a specific particle and the boundary) and
hardware constraints as inputs, and outputs the configuration
of large- and small-modulus particles that best achieves the
objectives. Our pipeline has several steps. First, we characterize
the contact mechanics and interparticle force law of the VM
particles. Second, we develop DEM simulations to represent the
physical properties of the granular packings. Finally, we com-
bine DEM simulations and evolutionary algorithms to identify
the grain configurations that achieve the objectives (Fig. 1).

The inverse design problem—designing particle configura-
tions to match a desired force chain output—is an arduous task.
Without a systematic methodology, we would have to evaluate an
exponentially large number of configurations to decide which
configuration gives the desired force output. While it is theore-
tically feasible to find packings for complex objectives analyti-
cally, this task is nontrivial given our nonlinear force model and
inability to control the interparticle contacts that occur in
granular packings. Therefore, we use DEM simulations coupled
with an evolutionary algorithm to identify the optimal grain
configurations. In particular, we implement a multi-objective
optimization algorithm to search for solutions that satisfy the
objectives, subject to experimental constraints. We can then
make the grain configurations obtained from the optimization
pipeline in experiments and evaluate their force networks,
ensuring that the objectives have been met.

We focus on granular packings composed of monodisperse
cylindrical particles (with diameter D) confined between two
flat walls, such that their cylindrical axes are perpendicular to
the walls, and arranged on a 2D triangular lattice. The experi-
mental system is modeled in 2D as collection of monodipserse
disks as shown in Fig. 1A. The packing consists of Nr = 5 rows,
each with either 4 or 5 particles per row, yielding a total number
of particles, N = 23. We index each particle p between 1 and N,
increasing from left to right and from bottom to top in the
packing, as shown in Fig. 1A. For a specific configuration
denoted as C, we assign each grain with an elastic modulus
chosen from one of two values: soft ksoft or stiff kstiff with ksoft o
kstiff. We define the input force Fi as the total force applied
downwards on the top boundary of the system (Fig. 1A) After
applying Fi, we measure the output forces exerted on the
boundary from the pth particle in the bottom row, Fo,p.

In the remainder of this section, we describe in detail the
characterization of the Young’s modulus of the particles and
interparticle contact force law, the experimental setup, the
DEM simulations, and the optimization approaches.

2.1 Experimental design

2.1.1 Variable modulus particles. We make the cores of the
VM particles using Field’s metal, an alloy of bismuth, indium,
and tin with a melting temperature of T0 = 62 1C. We encapsu-
late a solid cylinder of Field’s metal inside a soft silicone shell
made from Smooth-on Dragonskint 10 (Fig. 2A). We place a
small copper heater inside the shell that allows us to melt the
Field’s metal via Joule heating. The high-resistance copper
heater is separated from the Field’s metal by a thin layer
of silicone to avoid shorting the heater. By running a current
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(E1 A) through the resistive heater we induce Joule heating in
the particles. This heating melts the Field’s metal inside at
around 3.5 W, which changes its Young’s modulus. While solid,
Field’s metal has a Young’s modulus of 9.25 GPa,35 which
reduces to near zero at the melting temperature.

Next, we describe measurements of the Young’s modulus of the
VM particles. We compress single VM particles between two steel
walls using a material testing system (Instront 3365). We find that
the relationship between the symmetric displacement d of the walls
(relative to their location at contact with the particle) and the
compressive force F is best fit by assuming a Hertzian contact law:36

F ¼ 4

3
E�R�

1
2d

3
2; (1)

where

1

E�
¼ 1� ns2

Es
þ 1� n2

E
; (2)

Es and E are the Young’s moduli of steel and the VM particle, ns and
n give the Poisson ratios of steel and the VM particle,

1

R�
¼ 1

Rs
þ 1

R
; (3)

and Rs and R are the radii of the steel walls and the VM particle.
We assume that Es/E - N and Rs/R - N. Note that eqn (1)
gives the contact force law between two elastic spheres, not
between two elastic cylinders with parallel cylindrical axes. The

Fig. 2 Variable modulus (VM) particle characterization. (A) Illustration of the components of a VM particle (left) and an image of a fully assembled VM
particle (right). Conductive wires (not shown) are connected to the leads of the copper heater. (B) Force F on VM particle from the two walls in the Instron
plotted versus the symmetric displacement d of the walls (relative to the location of the walls at contact) in the soft (blue solid lines) and stiff (magenta
solid lines) states. The dashed lines indicate fits to eqn (1) for the Hertzian contact law. Data for a particle with the same silicone geometry, but without
Field’s metal inside, is labeled as an ‘‘empty particle.’’ Shaded areas represent �1 standard deviation from six trials. (C) Particle modulus k plotted as a
function of temperature T. The melting temperature of the Field’s metal is highlighted by the vertical dashed line. k for the ‘‘empty particle’’ is also
indicated by the horizontal dashed line.

Fig. 1 Description of the pipeline to generate granular packings with specified force outputs. (A) We start with DEM simulations that can generate force
distributions that mimic those of the VM particle packings in experiments. We apply an input force Fi to the top boundary of the packing and measure
output forces exerted on the bottom boundary from particles (blue outlines) in the bottom row. We then define optimization objectives to target specific
force outputs to satisfy possible hardware constraints. (B) Using multi-objective optimization, the evolutionary algorithm identifies a set of particle
configurations that best satisfies the objectives. These solutions represent the Pareto front, where each solution represents tradeoffs between the
objectives. The algorithm starts with a set of randomly generated configurations in the first generation (Gen 0). During the optimization process, particle
configurations that better satisfy the objectives are replaced in the solution set until the stopping criteria are reached (Gen n). (C) An example optimal
particle configuration from the Pareto front. Stiff and soft grains are shaded dark and light green, respectively. Black lines indicate inter-particle contacts
with the line thickness proportional to the force magnitude. Output forces are maximized for the odd-numbered particles with blue outlines. (D) We can
then realize the selected granular packing in experiments and compare the force outputs to those predicted by the DEM simulations. The color scale
indicates the particle temperature T, which in turn determines the particle moduli (particles with T 4 62 1C are soft and particles with T o 62 1C are stiff).
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force law between the cylinders in the experiments can mimic
the force law between contacting spheres when the cylinders
have shape imperfections and the cylindrical axes are not
parallel.37,38 The force F versus displacement d is shown in
Fig. 2B for the silicone shell alone, the VM particle when heated
(soft state), and the VM particle at room temperature (stiff state).
Fitting the force versus the displacement curve yields the VM
particle modulus:

k ¼ E

1� n2: (4)

In Fig. 2C, we plot the dependence of k on the temperature T
of the Field’s metal. The particle modulus decreases rapidly
when T 4 T0. We find ksoft B 0.34 MPa for the soft state (T 4
T0) and kstiff B 1 MPa for the stiff state (T o T0). Thus, the VM
particle design possesses a three-fold change in modulus. ksoft

is roughly 1.5 times the modulus of the empty silicone shell.
For the empty silicone shell, we report k E 0.2 MPa, which is
below that for a solid silicone material (B0.53 MPa). Also note
that since the Field’s metal becomes a liquid when heated
above the melting temperature, an isolated Field’s metal par-
ticle can in principle yield an infinite-fold modulus change
between the liquid and solid states. The three-fold change for
the VM particle modulus highlights the substantial contribu-
tion of the outer silicone shell to the VM particle modulus.
Since the silicone shell encapsulates the metal core, compres-
sive strains predominantly affect the silicone rather than the
metal, reducing the modulus ratio between the stiff and soft
states compared to the case where only the metal is compressed
in the absence of the silicone shell.

2.1.2 Particle assembly. We assemble the VM particles into
a triangular lattice where each particle can be actuated (heated)
individually using a microcontroller (Arduinot). However, heat
from actuated particles eventually dissipates into the neighbor-
ing non-actuated particles, causing thermal crosstalk. To miti-
gate thermal crosstalk, we established limits on the actuation
power of each VS particle (see ESI,† S1).

We apply a uniform load Fi to the top layer of particles using
the same materials testing system employed to characterize the
moduli of the VM particles. The force propagates through the
packing to create a particular force chain network that is a
function of the positions of the particles and their individual
moduli. Based on the locations of the stiff and soft particles,
the load is transmitted differently to the bottom row of parti-
cles, exerting different amounts of force at various locations on
the bottom boundary.

The assembly boundaries are made of a photoelastic mate-
rial (ClearFlext 95) placed between two circular-crossed polar-
izers. We measure the output forces Fo,p on the bottom
boundary by analyzing the stress-induced birefringence
patterns.23,39,40 When the boundary is not under stress, no
light passes through the polarizers. Any stress on the boundary
rotates the direction of the incoming electric field, allowing
light to pass through the polarizer and appear as a fringe
pattern. Because different wavelengths of light will form

different patterns on the photoelastic boundary, we use a filter
to only observe one wavelength of light (l = 530 nm).

To measure Fo,p, we consider the intensity Iout that occurs
through the application of a point force Fo,p on an elastic half-
plane through a polariscope.41,42 The light intensity Iout at any
given point (x, y) within the half-plane is

Iout ¼ I0
2 sin2

ptK
l

s1 � s2ð Þ; (5)

where t is the thickness of the material, I0 is the maximum
intensity, K is the material-dependent stress-optic coefficient,
and s1 � s2 is the principal stress difference, which in our
system corresponds to the normal stress measured radially
outward from the particle–wall contact. Therefore,

s1 � s2 ¼
2

pr
Fo;pðcosf sin yþ sinf cos yÞ

����
����; (6)

where r is the distance from the point force to the point (x, y), y
is the angle of the vector pointing from the point force to (x, y)
relative to the x-axis (parallel to the bottom boundary), and f is
the angle that determines the components of the force in the x–
y plane (Fig. 3A).

Using eqn (5) and (6), we can construct an image for a given
force on a half-plane. By comparing this image to the experi-
mentally obtained image, we can fit for 2tKFo,p/l using mini-
mum chi-square estimation.41 This fit yields Fo,p to within a
proportionality factor, 2tK/l. However, we can eliminate the
proportionality constant by summing all of the forces on the

bottom boundary:
P5
p¼1

Fo;p ¼ Fi. See ESI,† S2 for more details.

2.2 DEM simulations

We employ discrete element method (DEM) simulations in two
dimensions that mimic the experimental setup. We assemble a
collection of monodisperse, frictionless disks into a triangular
lattice (see Fig. 1A). We apply a constant downward force
Fi/(ksoftD

2) = 0.01 to the top boundary. Each particle interacts
with its neighbors and the walls, assuming purely repulsive
Hertzian interactions, as in eqn (1). We integrate Newton’s
equations of motion for each disk with damping forces pro-
portional to the particle velocities using a modified velocity-
Verlet integration scheme until the net force on all disks

N�1
P
p

~Fp

�����
�����
,

ksoftD
2

� �
o 10�10. Determining which disks are

in contact allows us to construct the network of interparticle
contacts, as shown in Fig. 1C. In ESI,† S3, we show that Fo,p is
proportional to Fi over a broad range of Fi. Hence, the specific
choice of Fi in the DEM simulations does not impact the
optimal solutions predicted by the evolutionary algorithm, as
long as Fi is sufficiently small.

We note that there are some differences between the DEM
simulations and the experiments. For example, the DEM simu-
lations do not include particle–substrate and inter-particle
friction. We mitigate the effects of friction by applying a thin
layer of cornstarch over the surfaces of each VS particle in the
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experiments, thus decreasing the effective friction in the experi-
ments. In addition, the particle sizes are slightly polydisperse
(o2%) in the experiments, while the simulations assume
monodisperse disks. Despite these differences, we find strong
qualitative agreement between the results of the DEM simula-
tions and the experiments.

2.3 Optimization setup

To solve the inverse design problem of finding particle config-
urations that achieve a desired output force pattern, we employ
evolutionary algorithms (EAs) in our design pipeline (Fig. 1).
EAs are a class of population-based gradient-free global opti-
mization methods inspired by concepts from biology, genetics,
and natural evolution.43 In the general case, the algorithm
starts with a set of randomly generated solutions (called a
population). In each subsequent optimization step (i.e.,
generation), possible solutions are evaluated using a fitness
function. The solutions with the highest fitness are chosen to

survive to the next generation and produce alternate solutions
through a process of mutation and selection that can poten-
tially create solutions with higher fitness. EAs have been useful
in myriad problems in materials science,44 robotics,45 and data
retrieval applications.46

In this study, to find an optimal configuration of soft and
stiff particles to achieve a desired force output, we utilize a
particular EA called age-fitness Pareto optimization (AFPO).47,48

AFPO is a multi-objective evolutionary algorithm that balances
the diversity of solutions with their fitness values, allowing for
an extensive search in configuration space without converging
to local optima in a rugged fitness landscape. When the
objectives are not mutually exclusive and no explicit coupling
is imposed during optimization, AFPO converges to a set of
optimal solutions—commonly referred to as the Pareto front—
rather than a single best solution. Note that AFPO can also be
applied to single-objective optimization, in which case it does
not produce a Pareto front, but instead converges to the single

Fig. 3 Assessment of the optimization of the VM particle assembly. (A) Schematic of the particle assembly. The optimization objective O0 is to maximize
the force output Fo,3 of the middle particle in the bottom row given an input force applied to the top boundary Fi. (B) O0 for the best solution and averaged
over the whole population, plotted as a function of the number of generations. The results are averaged over three independent trials with random
initialization. (C) The probability distribution of O0 for 5000 randomly generated configurations with vertical lines that indicate O0 for the average (blue
dashed line) and best solutions (red solid line) at G = 250. We also show O0 for two random configurations (random 1: cyan dotted line and random 2:
magenta dashed-dotted line) pictured in panel D. (D) The first column shows three configurations with the predicted inter-particle contact networks
from the DEM simulations. The soft and stiff particles are shown in light and dark shades of green, respectively. The best solution found by EA is shown in
the first row, along with two random configurations (random 1 and random 2) on the second and third rows. The second column shows thermal images
of the experimental packings with temperature increasing from dark green to white. The third column illustrates the birefringence patterns on the
photoelastic boundaries. The black cords emanating from the bottom right of the packings provide electrical current to each particle. (E) Fo,3 plotted as a
function of Fi obtained from experiments for the same configurations in (D). Shaded areas represent �1 standard deviation from three independent trials.
In the inset to (E), we plot the objective function from the experiments Oexp

0 versus that in the the DEM simulations Osim
0 , where the dashed line indicates

Oexp
0 = Osim

0 .
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best solution. On the Pareto front, no solution is better than the
others (and each solution optimizes the multiple objectives
differently) unless additional trade-offs are specified.

To select a single best solution from the Pareto front, one
can rank Pareto-front solutions with methods used for multiple
criteria decision-making, such as the technique for order of
preference by similarity to ideal solution (TOPSIS) method.49

TOPSIS implements trade-offs between objectives that oppose
each other by assigning a weight vector W that indicates how
much each given objective should be weighted while traversing
the Pareto front. TOPSIS then chooses the solution with the
shortest distance from the ideal solution and the greatest
distance from the negative ideal (worst) solution. Note that
TOPSIS is applied to the Pareto front only after it has been
identified by the AFPO algorithm.

The AFPO algorithm has several components including a
genome representation, a variation operator, and a fitness
function. In this study, we used a direct encoding scheme for
the genome, where the genotype is a binary string (0 for ksoft

and 1 for kstiff) that represents the modulus values for all of the
particles. The initial genotype is a string of N random bits,
U(0,1). The variation operator is a bit-flip mutation with a given
mutation probability. The bit-flip mutation changes the mod-
ulus of a particle from ksoft to kstiff or vice versa. We consider
both single- and multi-objective fitness functions. Additional
details concerning the implementation of the AFPO algorithm
are provided in Table 1.

We explore five optimization objectives as outlined in Table 1.
In the feasibility check, we consider a single-objective optimiza-
tion problem to maximize the force output from a single particle
on the bottom row (Section 3.1). We then consider two other
single-objective optimization problems to further test the efficacy
of our optimization pipeline (cases I and II). In these two cases,
the objective function is defined so that the force output from the
odd- or even-numbered particles on the bottom boundary is
maximized and has units of force before normalization (Section
3.2). In Secttion 3.3, we consider a multi-objective optimization

problem (cases III and IV) where we can change from the optimal
configuration in case I to that in case II (or vice versa) with an
additional hardware constraint that limits the number of
changes in the particle modulus as the second objective. The
formulation of the objective functions and optimization results
for each case are presented in the next section.

3 Results
3.1 Feasibility check: maximizing the output force from a
single particle on the bottom row

To verify that the DEM simulations are sufficiently accurate and
that the EA generates optimal solutions, we first study a simple
case of maximizing the output force exerted by the middle
particle in the bottom row on the boundary (Fo,3 in Fig. 3A). For
this case, we define the objective function,

O0 ¼
Fo;3

Fi
; (7)

and the goal is to find a configuration C* that maximizes O0. As
shown in Fig. 3B, using EA, the optimal configuration emerges
after B100 generations and has higher O0 than that generated
using a random search with over 5000 configurations (Fig. 3C).

In Fig. 3D, we show that C* contains two lines of stiff
particles stretching from the top corners to the central particle
in the bottom row. This solution is intuitive, as larger forces
will be carried by the stiffer particles. Thus, arranging stiff
particles such that they form a connected path from the top to
the bottom boundary without splitting will result in the largest
force carried by the central bottom particle.

To validate the results obtained by the EA, we first construct
the three configurations (best solution, random 1, and random 2)
in the experiments (Fig. 3D) and measure Fo,3 as a function of Fi

for each configuration. In Fig. 3E, we show that the output force
Fo,3 is approximately linear with Fi for Fi 4 4 N, which is
consistent with the results from the DEM simulations in ESI,†
S3. For Fi o 4 N, Fo,3 is nearly constant, which is caused by the

Table 1 Details of the AFPO algorithm for the single- and multi-objective optimizations carried out in this study

Parameter Value

Genome representation (C) Binary string C = [x1, x2, . . ., xp, . . ., x23], xp A {0,1}
Phenotype (K) K = [k1, k2, . . ., kp, . . ., k23],

kp = xpksoft + (1 � xp)kstiff,
kstiff/ksoft = 3.0

Variation operator Bit-flip mutation
Mutation probability 0.05
Objective functions Feasibility check O0 = Fo,3/Fi

Case I O1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fo;1Fo;3Fo;5

3
p �

Fi

Case II O2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fo;2Fo;4

p �
Fi

Case III O2 and O3 ¼ NC�
1
!C2

Case IV O1 and O4 ¼ NC�
2
!C1

Population size (P) Feasibility check P = 50
Cases I–IV P = 100

Number of generations (G) Feasibility check G = 250
Cases I–IV G = 500

Initialization {Cn}, n = 1. . .P
For each n, [xp] = U(0,1)
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low signal-to-noise values for the photoelastic material at small
forces. We also note that the top plate provides comparable forces
to each particle in the top row (e.g., B10 N/5 yields B2 N per
particle) and these force magnitudes are similar to those used to
measure the stiffness of the VM particles (B1.5 N, Fig. 2B).

To de-emphasize the uncertainties of the photoelastic stress
measurements at small Fo,3, we determine the objective func-
tion in the experiments, Oexp

3 , as the slope of Fo,3 versus Fi

(namely qFo,3/qFi) for Fi 4 4 N, instead of evaluating Fo,3/Fi at a
given Fi. Note that qFo,3/qFi can be different from Fo,3/Fi, and
Fo,3/Fi can vary with Fi in the linear regime of the experimental
curve. This is because Fo,3(Fi) has a non-zero intercept at Fi = 0,
presumably due to errors in the photoelastic measurements.

As shown in Fig. 3E, the best solution (Oexp
0 E 0.5) substan-

tially outperforms the two random configurations (Oexp
0 E 0.32

and 0.13 for random 1 and random 2, respectively).
We observe quantitative agreement for O0 between the experi-

ments and DEM simulations for the best solution and random 1
configurations: Osim

0 E Oexp
0 E 0.46 for the best solution and

Osim
0 E Oexp

0 E 0.28 for random 1. However, Osim
0 E 0.27 for

random 2 is approximately twice that measured in experiments.

(Note that this discrepancy will not affect our results since the
Osim

0 value for random 2 is much less than that for the best
solution.) These results demonstrate our ability to experimen-
tally construct configurations with maximal O0 that have been
predicted by EA.

3.2 Maximizing force outputs from multiple particles

We next consider objective functions that yield configurations
with maximal output forces from mutliple particles in the
bottom row, instead of just one particle as described in Section
3.1. Specifically, we will consider the following two cases:
� In case I, we seek a configuration C�1 that maximizes the

force outputs from the odd-numbered particles on the bottom
row (Fig. 4A).
� In case II, we seek a configuration C�2 that maximizes the

force outputs from the even-numbered particles on the bottom
row (Fig. 4E).

For case I, we define the objective function,

O1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fo;1Fo;3Fo;5

3
p

Fi
; (8)

Fig. 4 Assessment of the optimization for cases I and II. (A) For case I, we seek the optimal solution C�1 that maximizes the output forces from the odd-
numbered particles on the bottom row using the objective function O1 in eqn (8). (B) O1 for the best solution and averaged over the whole population
plotted versus the number of generations. The results are averaged over three independent trials with random initialization. (C) The probability
distribution of O1 for 5000 randomly generated configurations with vertical lines that indicate O1 for the average (blue dashed line) and best solution (red
solid line) at G = 500. (D) We show one of the two optimal asymmetric solutions for O1, C�1a. The other optimal solution C�1b is a mirror image of C�1a. We

plot Fo,p versus the location p of the particles on the bottom row from the DEM simulations and experiments. The blue shading indicates the odd-
numbered particles. (E) For case II, we seek the optimal solution C�2 that maximizes the output forces from the even-numbered particles on the bottom

row using the objective function O2 in eqn (9). (F) O2 for the best solution and averaged over the whole population, plotted versus the number of
generations. The results are averaged over three independent trials with random initialization. (G) The probability distribution of O2 for 5000 randomly
generated configurations with vertical lines that indicate O2 for the average (blue dashed line) and best solution (red solid line) at G = 500. (H) C�2 is the

optimal solution for O2. We plot Fo,p versus p from the DEM simulations and experiments. The blue shading indicates the even-numbered particles. Fo,p/Fi

is determined in experiments by measuring the slope of Fo,p versus Fi curve (namely, qFo,p/qFi) in panels (D) and (H).
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which is the geometric mean of the force outputs of the odd-
numbered particles on the bottom row. Similarly, for case II,
we define

O2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fo;2Fo;4

p
Fi

; (9)

which is the geometric mean of the force outputs of the even-
numbered particles on the bottom row. Both O1 and O2 are
normalized by the input force Fi. We defined O1 and O2 so that
they have the same units—force—before normalizing by the
input force Fi. For both cases I and II, we use the optimization
pipeline described in Table 1. When calculating O1 and O2 for
the experiments, we assume that Oexp

1 = ((qFo,1/qFi)(qFo,3/
qFi)(qFo,5/qFi))

1/3 and Oexp
2 = ((qFo,2/qFi)(qFo,4/qFi))

1/2.
Similar to the case of the feasibility check, the optimal

configuration C�1 that maximizes O1 for case I emerges after
B80 generations (Fig. 4B) and has a much larger O1 than that
generated using a random search with over 5000 configurations
(Fig. 4C). C�1 possesses lines of stiff particles that extend from
the force input on the top row of particles to the odd-numbered
particles in the bottom row (Fig. 4D), similar to the stiffness
pattern in C*. Note that the stiffness pattern in C�1 is not
symmetric about the y-axis, hence there are two solutions: C�1a
shown in Fig. 4D, and a mirror image of C�1a about the y-axis
with different genome representations (Table 1), but the same
O1. In addition, in Fig. 4D we show that the Fo,p/Fi values in the
experiments, which are determined by qFo,p/qFi, are close to
those predicted by the DEM simulations for all particles p. In
addition, all odd-numbered particles have higher output forces
than those for the even-numbered particles on the bottom row,
which is consistent with maximizing O1.

We observe similar results for cases I and II. We obtain the
optimal configuration C�2 that maximizes O2 after B80 genera-
tions (Fig. 4F). It has a much larger O2 than that generated
using a random search (Fig. 4G). C�2 is symmetric about the y-
axis and the lines of stiff particles are reflected at the side walls,
which directs forces from the top plate to the even-numbered
particles and avoids the propagation of large forces to the odd-
numbered particles (Fig. 4H). We again find that Fo,p/Fi in the
experiments are very close to those predicted by the DEM
simulations for all p, as shown in Fig. 4H. In C�2 , all even-
numbered particles have higher output forces than those for
the odd-numbered particles on the bottom row, which is
consistent with maximizing O2.

3.3 Optimal solutions with two objectives

Given that there are different force outputs from the particles on
the bottom row in C�1, and C�2 , one can envision an application
where the system needs to switch from C�1 (large force outputs
from odd-numbered particles) to C�2 (large force outputs from
even-numbered particles) or vice versa. The VM particles provide
the capability to switch the packing from one configuration to
another, i.e., by local heating, one can change k for each particle
from soft to stiff and vice versa. In contrast, to switch from C�1 to
C�2 with inert particles, one would need to create C�1 , disassemble

it, and then build C�2 . In the movie in the ESI,† we show that
using VM particles we can change the stiffness network from C�1
to C�2 without disassembling the packing by changing the tem-
peratures of the appropriate particles.

To change from C�1 to C�2 (and vice versa) requires Ns = 19
particle modulus changes. However, what if there is a hardware
constraint for the VM particles where significant power is
consumed to change the modulus, but not to maintain the
particle modulus as soft or stiff? In this case, minimization of
the power consumption corresponds to minimizing the num-
ber of switches in modulus between the two configurations and
a multi-objective EA is required to identify the optimal solution.

For case III, we consider the following multi-objective opti-
mization problem. Starting from C�1 , we seek to maximize O2

and minimize

O3 ¼ NC�
1
!C2
¼
XN
p¼1

1� d kC
�
1
;p; kC2;p

� �� �
; (10)

where NC�
1
!C2

is the number of particle modulus changes from

C�1 to C2, d(x,y) = 1 when x = y and d(x,y) = 0 when x a y, and kC,p

is the modulus of the pth particle in configuration C.
We ran the multi-objective optimization using AFPO with

parameters outlined in Table 1. The algorithm converged to a
Pareto front with Ns + 1 = 20 optimal solutions at G = 500, as
shown in Fig. 5A. There is no ‘‘best’’ solution among the 20
solutions on the Pareto front if we do not consider trade-offs
between maximizing O2 and minimizing O3. To implement
trade-offs, we include a TOPSIS weight vector: W = [w,1 � w]
with 0 r w r 1. The first and second components of W
correspond to the weight for O3 and O2, respectively. We find
that the best solution given by TOPSIS traverses the Pareto front
from top-right to bottom-left in the O3–O2 plane. Namely, O3

and O2 decrease monotonically with increasing w, as shown in
Fig. 5B. We also observe that the dependence of both O3 and O2

on w on the Pareto front is non-linear.
Next, we present several examples of the best solutions

selected by TOPSIS for different values of w. For instance, if
we set w = 1, the best solution is C�1 with no particle modulus
changes (Fig. 5C). Similarly, if we set w = 0, only objective O2 is
considered, and the best solution is C�2 (Fig. 5E). These two
TOPSIS weight vectors have obvious solutions, and confirm that
C�1 and C�2 are on the Pareto front. However, if we set 0 o w o 1
(e.g., w = 0.5), the best solution is not C�1 or C�2 , and is instead a
compromise between maximizing O3 and minimizing O2, as
shown in Fig. 5D.

For case IV, we consider the following multi-objective opti-
mization problem. Starting from C�2 , we seek to maximize O1

and minimize

O4 ¼ NC�
2
!C1
¼
XN
p¼1

1� d kC
�
2
;p; kC1;p

� �� �
: (11)

We again observe a Pareto front with Ns + 1 = 20 optimal
solutions at G = 500, as shown in Fig. 6A. We implement a
similar TOPSIS weight vector: W = [w,1 � w], with the first and
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Fig. 5 Multi-objective optimization to find a configuration that maximizes the output forces on the even-numbered particles while minimizing the
number of particle modulus changes starting from C�1 . (A) Solutions in the O3–O2 plane at G = 500 (yellow circles). We also highlight the Pareto front
(black squares). The orange diamond, magenta star, and purple triangle indicate the best solutions based on the TOPSIS method for weight vectors W =
[w,1 � w], where the first and second elements indicate the weights for O3 and O2, respectively. (B) O2 (left axis, solid blue line) and O3 (right axis, dashed
red line) for the best solution selected from the Pareto front using TOPSIS plotted versus w. Black squares connected by dotted lines indicate solutions
from the Pareto front in panel (A). (C)–(E) Starting from C�1 (left), we show the best solution (right) from the Pareto front with a given TOPSIS weight vector

W: (C) W = [1,0], C[1,0]
2 , (D) W = [0.5,0.5], C[0.5,0.5]

2 , and (E) W = [0,1], C[0,1]
2 .

Fig. 6 Multi-objective optimization to find a configuration that maximizes the output forces on the odd-numbered particles while minimizing the
number of particle modulus changes starting from C�2 . (A) Solutions in the O4–O1 plane at G = 500 (yellow circles). We also highlight the Pareto front
(black squares). The orange diamond, magenta star, and purple triangle indicate the best solutions based on the TOPSIS method for weight vectors W =
[w,1 � w], where the first and second elements indicate the weights for O4 and O1, respectively. (B) O1 (left axis, solid blue line) and O4 (right axis, dashed
red line) for the best solution selected from the Pareto front using TOPSIS plotted versus w. Black squares connected by dotted lines indicate solutions
from the Pareto front in panel (A). (C) and (D) Starting from C�2 (left), we show the best solution (right) from the Pareto front with a given TOPSIS weight

vector W: (C) W = [1,0], C[1,0]
1 , (D) W = [0.5,0.5], C[0.5,0.5]

1 , and (E) W = [0,1], C[0,1]
1 .
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second components corresponding to the weight for O4 and O1,
respectively. Similar to case III, we find that O4 and O1 decrease
monotonically with increasing w for the best solution given by
TOPSIS, as shown in Fig. 6B. We again observe that the depen-
dence of both O4 and O1 on w on the Pareto front is non-linear. We
also present several examples of the best solutions selected by
TOPSIS for values of w. For instance, if we set w = 1, the best
solution is C�2 with no particle modulus changes (Fig. 6C). Simi-
larly, if we set w = 0, the best solution is C�1 , where only objective O1

is considered (Fig. 6E). If we set 0 o w o 1 (e.g., w = 0.5), the best
solution is not C�1 or C�2 , and is instead a compromise between
maximizing O3 and minimizing O2, as shown in Fig. 6D.

4 Conclusions

In this article, we developed a pipeline that combines experi-
ments using variable modulus (VM) particles, discrete element
method (DEM) simulations, and evolutionary algorithms (EAs) to
design granular packings with adaptive mechanical responses.
Specifically, we use the pipeline to design granular packings
composed of N = 23 same-sized VM particles arranged in a
triangular lattice with different patterns of particle moduli that
maximize the output forces from particles on the bottom row of
the system. We realized VM particles in experiments by embed-
ding a Field’s metal core within a silicone shell. By running
current through a resistive heater co-located with the Field’s
metal, we achieved a modulus ratio of kstiff/ksoft B 3 when the
Field’s metal is heated above the melting temperature. The
system boundaries were made of photoelastic material to enable
measurements of the output forces. We characterized the inter-
particle contact forces as a function of compressive strain in
experiments to calibrate the inter-particle forces in the DEM
simulations. We carried out evolutionary algorithms (EA) to
identify the optimal configurations of soft and stiff particles
for specific force outputs on the bottom boundary without
enumerating all possible particle modulus combinations.

We considered five optimization cases in this study. For the
feasibility check, we found the configuration C* of particle
moduli that maximizes the output force from the middle particle
in the bottom row. In case I (case II), we identified the configu-
ration C�1 C�2

� �
that maximizes the output forces from the odd-

numbered (even-numbered) particles in the bottom row. In case
III (case IV), we found the configuration C2 (C1) that maximizes
the output forces from the even-numbered (odd-numbered)
particles in the bottom row, while minimizing the number of
particle modulus changes starting from C�1 C�2

� �
. The first three

cases involve single-objective optimization, and the remaining
two involve multi-objective optimization. We have shown that EA
converges to the optimal solution for the cases involving single-
objective optimization and a set of solutions on the Pareto front
for the cases involving multi-objective optimization. We verify
that the force outputs for the best solutions match in experiments
and DEM simulations for the cases of single-objective optimiza-
tion. We further show that we can identify the best solution in the
cases of multi-objective optimization when trade-offs between the

objectives are implemented using a TOPSIS weight vector. This
study has demonstrated the ability to search efficiently through a
large ensemble of granular packings for those that satisfy specific
objectives concerning the mechanical response. Although there
have been several numerical studies aimed at identifying optimal
properties in granular packings using EA,11 few have validated
the EA methods using experiments.44

We envision several interesting directions for future studies.
First, we can examine all of the solutions on the Pareto front in
cases III and IV, implement the optimal solutions in experi-
ments, and determine the power consumption when generat-
ing them. Second, our results can serve as a proof-of-concept
for mechanical logic gates in granular materials, where con-
tinuous force values are discretized into binary inputs (‘‘0’’ or
‘‘1’’) and routed through different logic gate architectures.
Previous work has shown logic capabilities within granular
materials,50 but these studies relied on the embedded capabil-
ities of the granular material rather than optimizing for a
desired logic gate. Although no traditional form of logic has
been investigated in the current study, we believe that the
proposed pipeline can serve as a tool to optimize a material
to perform logical operations. Third, the present study can be
readily extended to bulk granular materials in three dimen-
sions (3D). We anticipate that the greater number of contacts
per particle in 3D packings will increase the complexity of the
configurational search space for identifying optimal force
networks.

The heterogeneity of force chain networks in granular pack-
ings is often controlled by positional disorder. Previous studies of
force chain networks in granular materials have analyzed force
propagation in disordered networks using methods from statis-
tical physics and mathematics.29,51–54 In this work, we tuned the
force chain networks through particle modulus variations (kstiff/
ksoft B 3) on a fixed triangular lattice, rather than through
positional disorder. Although this modulus ratio is substantial
and has allowed us to significantly vary the morphology of force
chain networks, an optimized particle design can induce a more
dramatic particle modulus ratio and thus more dramatic changes
in the force chain networks in VM particle packings. To efficiently
sample and quantify force chain networks, we implemented DEM
simulations with a simplified contact model for VM particles and
the system boundaries. However, the experimental system and
the DEM simulations can have differing force outputs for some of
the sub-optimal configurations. Increasing the complexity of the
inter-particle contact model in the DEM simulations, e.g., using
deformable particle simulations in 3D,55 can improve the agree-
ment between the predicted and experimentally measured force
outputs.
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