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Equilibrium phases and phase transitions in
multicritical magnetic polymers

Alberto Raiola, ab Emanuele Locatelli, ab Davide Marenduzzo *c and
Enzo Orlandini ab

Magnetic polymers are examples of composite soft materials in which the competition between the

large configurational entropy of the soft substrate (polymer) and the magnetic interaction may give rise

to rich equilibrium phase diagrams as well as non-standard critical phenomena. Here, we study a self-

avoiding walk model decorated by Ising spins of value 0 and �1 that interact according to a Blume–

Emery–Griffith-like Hamiltonian. By using mean-field approximations and Monte Carlo simulations, we

report the existence of three distinct equilibrium phases: swollen disordered, compact ordered, and

compact disordered. Notably, these phases are separated by phase boundaries that meet at multicritical

points, whose nature and location are tunable and depend on the strength of the interactions. In our

conclusion, we discuss the relevance of the phase diagrams we have obtained to the physics of

magnetic polymers and their application to chromatin biophysics.

I. Introduction

Models of magnetic polymers, where each monomer carries a
magnetic moment or spin, are an interesting class of interacting
systems that have recently received much attention in polymer
physics, biophysics, and statistical mechanics. There are multiple
reasons for this. First, the flexibility of the polymeric substrate and
its relatively low density are important features to exploit in
organic magnetic materials with technological applications in,
for instance, communication and information.1–3 Second, from
the statistical mechanics perspective, they are examples of inter-
acting systems where the spatial organisation (entropy) of the
polymer chain and the magnetic interactions between spins may
give rise to several conformational phases and phase
transitions.4–8 Finally, in the last few years, models of magnetic
polymers have been successfully exploited to understand how the
interplay between the chromatin folding in 3D and the epigenetic
landscape in 1D, regulated by histone marks, can contribute to
shaping the genome organization in the nucleus.9,10

A precursor of these models, introduced in ref. 4, described
the polymer as a self-avoiding walk (SAW) on a hypercubic
lattice whose monomers are decorated by Ising spin variables
si = �1; the monomers interact via the standard ferromagnetic
Ising Hamiltonian among themselves, when they are nearest

neighbours in 3D space, and with an external magnetic field h.
By performing both a mean-field analysis and Monte Carlo
simulations of the 3D system (the SAW on the cubic lattice) it
was shown that, by increasing the ferromagnetic coupling, this
model displays, at h = 0, a first-order phase transition between a
swollen and paramagnetic (disordered) phase (SD) and a com-
pact ferromagnetic (ordered) phase (CO). The first-order char-
acter is a notable feature of this magnetic model, since in a
standard (i.e., non-magnetic) polymer collapse the (Y) phase
transition is known to be second order.11 Later studies have
either focused on better determining the location and nature of
the transition in two and three dimensions by numerical
simulations and finite-size scaling,5,7 or studied the emergence
of a ferromagnetic phase transition as a function of the fractal
dimension of the polymer substrate.6

Recently, a model of magnetic polymers with 3-state variables
(qi = 1, �1, 0) each representing an epigenetic mark, has been
introduced to describe the interplay between the 3D organisation
of the eukaryotic genome and the 1D epigenetic profile of
biochemical marks on chromatin (the DNA-histone composite
polymer which provides the building block of chromosomes in
eukaryotes).9 Analytical calculations based on mean-field approxi-
mation and molecular dynamics simulations have shown that a
first-order phase transition rules both the spreading of a single
epigenetic mark and the folding of the chromosome into a
compact structure. The first-order nature of the transition is
important, as it endows the system with memory, which allows
a cell to ‘‘remember’’ its state following cell division.10

Note that, similarly to the works cited above, this biophysi-
cal model can display only two equilibrium phases: a swollen
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disordered (SD) phase and a compact (magnetically) ordered
(CO) phase. To observe a third phase corresponding to a
compact chromatin phase where the epigenetic marks (spins)
are incoherently distributed, as in gene deserts regions
observed in Drosophila,12 an extension to a non-equilibrium
system was needed.13

An interesting problem that emerges from the previous
studies is whether there exist spin models embedded in fluc-
tuating filaments that can sustain more than two phases (SD
and CO) and multiple phase transitions at equilibrium. A first
attempt to investigate this issue was made very recently in ref.
14 where, by introducing an energy offset eoff in the interaction
energy of a polymer Potts model, a compact disordered (CD)
phase was obtained above a critical value of eoff.

In this paper, we study how a model of a magnetic system
with a rich phase diagram and multicritical points, once
embedded in a polymer chain, can affect the polymer’s mag-
netic and spatial organisation. This investigation is carried out
analytically, at the mean-field level, and numerically, by simu-
lating the magnetic polymer on a cubic lattice.

The paper is organized as follows. In Section II we introduce
the magnetic polymer model and derive the mean-field free
energy density and the relevant order parameters such as
the monomer density and the magnetization. In Section III the
mean-field conformational/magnetic phase diagram and the
nature of the several phase transitions found are determined
as a function of the magnetic coupling parameters. Section IV
presents the Monte Carlo simulations of a self-avoiding walk
model in the cubic lattice and compares the obtained numerical
results with the mean-field findings along some relevant lines of
the phase diagram. Finally, Section V is devoted to discussions
and conclusions.

II. Model and mean-field free energy
density

We consider the ensemble of the N-steps self-avoiding walks
(SAWs) {g} on a lattice of coordination number z. By assigning
the set {Si} of spin variables Si A {0, �1} to the lattice sites
occupied by a SAW, g, the Hamiltonian of the system we wish to
study is given by

H g; Sif gð Þ ¼ � J

2

X
i;j

SiL
g
i;jSj �

K

2

X
i;j

Si
2Lg

i;jSj
2

� D
XN
i¼1

1� Si
2

� �
:

(1)

The first term in eqn (1) is the standard ferromagnetic
interaction with J 4 0 being the exchange energy. The inter-
action is restricted to the pairs (i, j) of nearest neighbor (NN)
sites of the lattice occupied by the SAW g – this is achieved via
the adjacency matrix Lg

i,j, which is defined as Lg
i,j = 1 if i,j are NN

on the lattice and Lg
i,j = 0 otherwise. The second term, char-

acterized by the parameter K, provides an energy gain for any
pair of non-zero NN spins (Si = �1), irrespective of their sign.

Finally, the last term weights the neutral sites on the walk via
the dilution parameter D (Si = 0). This term introduces a
‘‘mitigation’’ of the ferromagnetic interaction whose amount
(i.e., fraction of neutral spins) is ruled by D; thus, we can
interpret D as a chemical potential (Fig. 1). Note that
the Hamiltonian eqn (1) was studied by Blume, Emery, and
Griffiths (BEG) on a lattice, as a spin-1 model of a diluted
uniaxial ferromagnet or of a He3–He4 mixture.15 The key
emergent feature of the BEG model is the presence of a
tricritical point, separating a line of second-order (continuous)
phase transitions from a line of first-order (discontinuous)
transitions. In our model, we shall distinguish tricritical points,
defined in such a way, from multicritical points, where multiple
transition lines (of different order) meet, and triple points,
which mark points at which three different phases are in
equilibrium.

By taking the Boltzmann factor associated to eqn (1) and
summing over the spins and the SAW configurations {{Si}, {g}}
we get the partition function of the model:

Z ¼
X
g2fgg

X
fSg

exp
bJ
2

X
i;j

SiL
g
i;jSj þ

bK
2

X
i;j

Si
2Lg

i;jSj
2

 

þ bD
XN
i¼1

1� Si
2

� �!
:

(2)

A mean-field estimate for the free energy density corres-
ponding to eqn (2) can be obtained by first decoupling the
quadratic and bi-quadratic terms via a double Hubbard–Stra-
tonovich transformation involving two local fields {fi} and {ai},
and then performing the sum over the spin degrees of freedom
and the SAW configurations (see Appendix A). This procedure

Fig. 1 Cartoon of a self-avoiding walk on a two-dimensional square
lattice. The thick black line represents the polymer backbone, and the
thin straight lines represent the underlying lattice. Each node i of the walk
holds a spin variable Si which can be equal to �1 (red circle), 0 (white
circle), or +1 (blue circle). A dotted line is drawn in correspondence with
pairs of spin variables with Si = �1, which are not nearest neighbors on the
walk but in 3D space.
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gives as a result

f ðb;f; a; rÞ ¼ � 1

bN
logðZÞ ¼ �1

b
log

z

e
þ 1� r

br
logð1� rÞ

þ 1

2b2zr
f2

J
þ a2

K

� �

� 1

b
log 1þ 2e�bDþa coshðfÞ
� �

� D;

(3)

where log denotes the natural logarithm. The free energy
density eqn (3) allows to obtain the magnetization per spin
m = hSii and the average concentration of neutral spins x as:

m ¼ Sih i ¼
2e�bDþa sinhf

1þ 2e�bDþa coshf
; (4)

x ¼ 1� Si
2

� �
¼ 1

1þ 2e�bDþa coshf
; (5)

respectively. Minimizing eqn (3) with respect to f, a, and r
we obtain

f
bJzr

� sinhðfÞ
ebD�a

2
þ coshðfÞ

¼ 0 (6)

a
bKzr

� coshðfÞ
ebD�a

2
þ coshðfÞ

¼ 0 (7)

rþ logð1� rÞ þ 1

2bz
f2

J
þ a2

K

� �
¼ 0: (8)

Comparing eqn (4) and (6) we obtain the self-consistent condi-
tion f = bJzrm. Similarly, matching eqn (5) and (7) we get
a = bKzr(1 � x).

III. Mean-field phase diagrams

To analyse the mean-field free energy eqn (3) in the (D,T) plane
we first divided eqn (7) by eqn (6), obtaining

aðfÞ ¼ K

J
f cothf: (9)

Following the steps reported in Section B.3 of the Appendix, we
next obtain a virial expansion of eqn (3), up to order f6. We
then numerically estimate the signs of a(b, D), b(b, D), and c(b, D)
as functions of T = 1/b (kB = 1) and D (see Fig. 11 of the
Appendix). Since we are interested in the competition between
the ferromagnetic strength, J, and the self-attraction strength, K,
we fix J = 1 and consider four cases: K = 0.8, 1.8, 2.3, 3.0. For each
case, we discuss the phase diagram and the nature of the critical
points and transition lines by looking at the free energy as a
function of r as well as m and r as a function of T.

A. The K/J o 1 case

We start from the mean-field phase diagram in the (D,T) plane,
reported in Fig. 2a, for the case K/J = 0.8, which is representative
of the mean-field phase behaviour when K/J o 1.

The first significant feature of note is the presence of three
equilibrium phases: (i) a magnetically disordered phase, where
the polymer chain is extended (swollen disordered or SD
phase); (ii) a compact ordered or CO phase where the polymeric
substrate is globular and magnetically ordered (i.e. with most of
the spins either up or down); (iii) a magnetically disordered but
compact phase (compact disordered or CD phase) where the
polymer density is non-zero but the spins are in the paramag-
netic phase. The CD phase is especially notable here because it
is generally difficult to be observed at equilibrium in simpler
models of magnetic polymers.13,14

The phase diagram shows the presence of three phase boundary
curves: (i) two first-order phase transition lines, one between the
CO and SD phases and the other between the CO and CD phases,
and (ii) a second-order (continuous) phase transition between the

Fig. 2 Mean-field results at K/J = 0.8. (a) Equilibrium phase diagram in the (D,T) plane: note the emergence of three phases – SD, CO and CD – for D o
D* C �2.04. Dashed (first order) and solid (continuous) lines show the corresponding phase boundaries. The location of the multicritical point (here
coinciding with the triple point) (D*,T*) C (�2.04,3.05) is highlighted with a red circle. (b) r dependence of the free energy density at D = D*. The thickest
red curve marks the case T = T*. (c) and (d) Temperature dependence of the polymer density r (c) and the average magnetization per spin m (d) at three
different values of D.
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CD and the SD phase. The three boundaries meet at a multicritical
point, at (D,T) = (D*,T*) (the red circle in Fig. 2a): in the present case
of K/J = 0.8, this is also a triple point as the CO, CD and SD phases
are all coexisting there.

The nature of the multicritical point is elucidated by the r
dependence of the free energy density, estimated at D = D* (see
Fig. 2b). For T 4 T* the absolute minimum of the free energy is
at r = 0 (swollen phase, SD), while in the region T o T* the global
minimum is located at r E 0.9 (corresponding to the compact
ordered phase, CO); at T = T* (the thickest red curve) two equal
height minima are observed, one at r = 0 and one at r C 0.85.
Additionally, as we cross the multicritical point by varying T at
fixed D = D* C�2.04 (see solid lines in Fig. 2c and d), both the m
vs. T and the r vs. T curves display a finite jump.

Examining the behavior of the curve r(T) at different values
of D clarifies the nature of the transition lines. At D = �6 (see

the dotted curve in Fig. 2c), upon increasing T, we encounter a
discontinuity near the CO/CD boundary; after this jump, the
curve gradually decreases, approaching zero as it approaches
the CD/SD phase boundary. This suggests a first-order transi-
tion at the CO/CD boundary (confirmed by the finite disconti-
nuity in the m vs. T curve, Fig. 2d), followed by a continuous
phase transition at the CD/SD boundary.

Finally, the finite discontinuities observed in the m vs. T and
r vs. T curves at D = 4 (see dashed curves in Fig. 2c and d)
confirm the first-order nature of the CO/SD phase transition.

B. The K/J 4 1 case

When the self-attraction strength exceeds the ferromagnetic
interaction, the phenomenology becomes more complex.

We start from K/J = 1.8, where the analysis of the corres-
ponding virial coefficients (as shown in Fig. 11c) reveals two key

Fig. 3 Mean-field results at K/J = 1.8. (a) Equilibrium phase diagram in the (D,T). The SD/CD phase boundary is partitioned into a continuous (solid) and a
first-order transition curve (dashed curve). The corresponding tricritical point, located at (D*,T*) E (�2.46,6.08) is highlighted by a red circle, while the
blue circle marks the triple point (Dtr,Ttr) E (1.95,3.95). (b) Free energy density landscapes at D = Dtr = 1.95 as a function of the polymer density r. The
coexistence of the three phases at the triple point is marked by the three equal height minima at Ttr = 3.95 (thickest line). (c) and (d) Density r (c) and
magnetization m (d) as functions of T at D = �4 (dotted line), D = Dtr (solid line) and D = 4 (dot-dashed line).

Fig. 4 Mean-field results at K/J = 2.3 (a) equilibrium phase diagram in the (D,T) plane. The two red circles highlight the two multicritical points located at
(D*,T*) = (�3.15,7.76) and (D**,T**) = (0.63,4.65). The blue circle locates the triple point (Dtr,Ttr) = (3.98,4.23) (b) free energy profiles for D = D** = 0.63.
The extended flatness of the thicker red line suggests the tricritical nature of the (D**,T**) point. (c) and (d) Temperature dependence of the polymer
density r (c) and magnetization m (d) for D = D* (i.e. crossing the leftmost multicritical point), D = D** (crossing the second multicritical point) and D = Dtr

(crossing the triple point).
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properties of the system: (i) the compact disordered (CD) phase
region expands towards higher D values, indicating stability at
greater dilutions; (ii) as we progress from lower dilution
regimes (i.e., from negative D values), the nature of the CD/
SD phase boundary changes from continuous to first-order.
This latter switch coincides with a sign change in the third
virial coefficient along this curve, revealing the presence of a
tricritical point at D* = �2.46 and T* = 6.08. Simultaneously, the
triple point shifts to Dtr = 1.95, Ttr = 3.95. In other words, the
topology of the phase diagram has fundamentally changed, as
the multicritical point at K/J = 0.8 has split into a tricritical and
a triple point (see Fig. 3a).

The three-phase coexistence at the triple point can be
understood by looking at the r dependence of the free energy
density computed at Dtr and for some values of T above, below
and at Ttr (see Fig. 3b). There are three key points to note. First,
for T o Ttr there is a unique absolute minimum located at r C
0.88, that corresponds to the CO phase. Second, for T 4 Ttr the
absolute minimum is at r = 0, as expected in the swollen phase.
Third, at the triple point temperature T = Ttr, the system
exhibits three minima of equal depth in its free energy land-
scape. One of these minima occurs at r = 0, while the other two
occur at r = 0.71 and r = 0.88 respectively. This free energy
profile describes the coexistence of three distinct phases: two
compact (ordered and disordered) and one swollen (disor-
dered). The triple minimum was absent in the lower K/J case,
as the transitions between the phases were not all first-order.

This scenario is confirmed in Fig. 3c and d where we report
the temperature behavior of r and m for D = �4.0 and Dtr.

For yet larger values of K/J, the CD phase expands further
into the D 4 0 region and, notably, for K/J C 1.805, the nature
of the CO/CD phase boundary splits into a second-order and
first-order transition curves that are governed by a novel critical
point. Such a phenomenon is evidenced by the analysis of the
virial coefficients reported in Fig. 11c and d, which also shows
that this crossover is indeed a new, second, tricritical point
(D**,T**). For K/J C 1.805, such a point is located at D** = �N

and moves to larger values of D with increasing K/J. As
showcased in the phase diagram of Fig. 4a, for K/J = 2.3 the
point is located at D** = 0.63, T** = 4.65. The corresponding
free energy profile is illustrated by the thickest curve of Fig. 4b
and also by the m vs. T and r vs. T curves in Fig. 4c and d.

A consequence of the phenomenology discussed above is
that, when K/J c 1, the entire CO/CD phase boundary becomes
continuous. Consequently, the original triple point (indicated
by a blue circle in Fig. 4a) is superseded by the multicritical
point at (D**,T**) as in the phase diagram of Fig. 5a, obtained
for K/J = 3. At this point, two first-order phase boundaries
converge with a continuous one. The corresponding free energy
profile is reported as the thicker line in Fig. 5b: one can notice
the concomitant presence of one minimum at r = 0 (swollen)
and one higher-order minimum located at r = 0.86. The T
dependence of m and r are reported in Fig. 5c and d for three
special cases, as we cross (i) the two continuous phase bound-
aries (D = �6), (ii) the continuous and first-order phase bound-
aries (D = 0) and (iii) the multicritical point.

This concludes our mean-field analysis. In the next section,
we ask whether the rich scenario obtained within the mean-field
theory is confirmed by the numerical results of a 3D lattice
model magnetic polymer simulated using Monte Carlo methods.

IV. Numerical results

To simulate the model defined by eqn (2) in 3D space, we
consider the set of self-avoiding walks on a cubic lattice where
each node is decorated by a spin variable Si, which can take on
the values 0, �1. The set of configurations {g,{S}} is sampled by
a Monte Carlo (MC) algorithm based on a collection of elemen-
tary moves. These are: (i) pivot moves, essential for the ergodi-
city of the algorithm;16 (ii) a set of local Verdier–Stockmayer-
style moves17 that are known to increase the mobility of the
Markov chain in proximity of compact phase;18 (iii) a spin flip
or Glauber dynamics to update the spin configurations along

Fig. 5 Mean-field results at K/J = 3.0 (a) equilibrium phase diagram in the (D,T) plane. The two red circles highlight the location of the two multicritical
points, (D*,T*) = (�4.10,10.13) and (D**,T**) = (6.00,4.83) (b) density dependence of the free energy at D = D**. The two equal-height minima displayed by
the red thickest curve signal the coexistence of a swollen r = 0 and a compact r = 0.87 phase. (c) and (d) Temperature dependence of the polymer’s
density r (c) and magnetization m (d) for D = �8 (i.e. crossing the two continuous phase boundaries), D = 0 (crossing the continuous CO/CD boundary
and the first-order CD/SD boundary) and D = D* (crossing the multicritical point).
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the walk. For an N-steps walk, an MC step (sometimes called
sweep) consists of attempting 1 pivot moves intercalated by N/4
local moves and N spin updates. By using a Metropolis heat
bath sampling with b � kBT, the resulting Markov chain at
temperature T is expected to converge to the equilibrium
distribution

pðbÞ ¼ 1

ZðbÞ exp �bHðg; fSgÞð Þ; (10)

where Z(b) and Hðg; fSgÞ are given by eqn (1) and (2)
respectively.

To enhance the sampling efficiency, we implement a multi-
ple Markov chain algorithm. This approach, also known as
replica exchange or parallel tempering algorithm, involves
running Np parallel Markov chains, each at a distinct, fixed
temperature T. A coupling between the Markov chains is
established by trying to swap the configurations between
chains that are contiguous in temperature space. By using a
suitable swap protocol (here we have attempted a swap each 5�
103 MC steps, a number sufficiently high to avoid significant
correlations between pairs of replicas) one can show that the
collection of parallel Markov chains is itself a Markov chain
whose stationary distribution is the product of the Boltzmann
distribution along each chain (see ref. 18–21).

For each value of the parameter K considered (at fixed J = 1),
we sample every M = 50 MC steps and along Np E 30 parallel
chains for systems of size N A {50, 100, 200, 300, 400}. This
amounts to a total of at least 2 � 107 sampled configurations
for each value of the set of parameters (N,K,J).

For each multiple Markov chain run we measure observables
describing the state of the system. To characterise the polymer
conformation, we compute the average number of contacts hci –
i.e., the number of pairs of nearest-neighbor lattice nodes
occupied by the polymer that are not contiguous along the
polymer backbone –, its variance per monomer Var(c)� (hnc

2i �
hnci2)/N, and the mean squared radius of gyration

RG
2 ¼ 1

N

XN
i¼1

Ri � RCMk k2; (11)

where RCM ¼
1

N

PN
i¼1

Ri is the position of the centre of mass and

Ri is the position of the i-th monomer. To monitor the magnetic
properties of the system, we estimate the degree of dilution, i.e.,
the concentration of neutral spins x = 1 � hS2i, the magnetiza-

tion per spin hmi ¼ 1

N

P
i

Sih i, and the magnetic susceptibility

per spin wM ¼
m2
� �

� hmi2
kBT

. Finally, we also computed the

average total energy hEi and the specific heat C ¼
E2
� �

� hEi2
kBT2

.

To locate the phase boundaries, we look at the T dependence
of the specific heat, the magnetic susceptibility, and the var-
iance of the number of contacts. We further perform a finite-
size scaling (FSS) analysis on the specific heat, the magnetic
susceptibility, the variance of the contacts, and the radius of

gyration. FSS theory predicts, for instance, that the location of
the peaks of the specific heat, T*(N), shifts towards the critical
temperature Tc as N - N, as

T�ðNÞ � Tc þ AN�
1

2�a: (12)

For a continuous phase transition, such as, for instance, the
polymer Y-point transition,22 we know that a = 0. Hence,

by plotting T�ðNÞ vs: 1
� ffiffiffiffi

N
p

, a linear convergence toward the
critical temperature is expected. On the contrary, a first-order
transition corresponds to the value a = 1, which implies that
T*(N) vs. 1/N should display a linear behaviour.

Similarly, we plot the value of the peaks of C, wM, and Var(c)/
N. FSS predicts that these peaks behave in the proximity of the
critical region (i.e., for N large enough) as

Hmax � N
a

2�a; (13)

where again a = 1 for a discontinuous phase transition and a = 0
for a continuous one. In the latter case, a logarithmic term
should dominate, and thus, by plotting the values of these
peaks as a function of log N, a linear growth is expected.

In addition, we estimate the order of the transitions by comput-
ing the fourth-order Binder cumulant of the distribution function
of a given observable O: Bn(O) = 1 � hO4i/3hO2i2. According to FSS
theory, the location of the minimum of Bn(O) may be extrapolated
to estimate the transition point. Importantly, if the phase transition
is continuous, the values of Bn(O) at the minimum should asymp-
totically approach 2/3 with increasing N. In contrast, it should go to
another limit if the transition is first-order.23

We estimate the errors associated with each observable O by
using the corresponding integrated autocorrelation times tO.
Some estimates of tO (given in units of the sampling, i.e., each
M = 50 attempted pivot moves for O = E,m,RG) are reported in
Appendix B for D = �5, 0 and 6, respectively (see Tables 1–3): as
expected, sampled configurations are increasingly more corre-
lated as T is decreased. At the lowest values of T, the simula-
tions performed yield only a few hundred fully uncorrelated
configurations. This impacts on the size of the error bars that
increase rapidly as T decreases, as exemplified in Fig. 13 of the
Appendix. To show the trends of the various observables more
clearly, the error bars have been omitted from the other figures.

Although simulating polymers on the lattice is more effi-
cient computationally compared to off-lattice models, a full
numerical exploration of the (D,T) plane, even for a single
specific K/J value, is still virtually impossible. We therefore
restrict ourselves to the case K/J = 3, where the mean-field
approximation suggests the emergence of a rich phase diagram
with multiple phase transitions and critical points.

In particular, we focus on the CO/CD and CD/SD phase
transitions at different values of D (D = �5, 0, 6).

A. Simulations for K/J = 3, D = �5

For negative values of D, neutral spins are not favourable and the
dilution is weak; here, mean-field theory predicts the presence of
two continuous phase transitions (see Fig. 5a). In Fig. 6 we report
snapshots of typical configurations at T = 2.2, T = 4.5, and T = 10,
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where we expect the system to be, at equilibrium, in the CO, CD,
and SD phases, respectively. The snapshots confirm the presence of
all three phases, and importantly of the CD phase for the inter-
mediate T = 4.5 temperature. More quantitatively, we looked at the
T dependence of the specific heat (see Fig. 7a): the presence of two
consecutive phase transitions is suggested by two sets of peaks
whose heights increase with N. The fact that the set of peaks at low
values of T refers to the CO/CD transition is confirmed by the
concomitant formation of peaks in the magnetic susceptibility (see

Fig. 12a in the Appendix). Instead, the set of peaks at high values of
T corresponds to the CD/SD phase transition, since the variance of
the number of contacts shows similar behavior in the same range
of temperatures (see Fig. 12b in the Appendix).

An observable that better describes the conformational
properties of the polymer, but is not easily accessible through
the mean-field calculations, is the statistical size of the chain,
which we measured in terms of its mean-squared radius of
gyration hRG

2i. Since in the two compact phases hRG
2i B N2/d, in

Fig. 6 Snapshots of typical MC configurations of a magnetic self-avoiding walk with N = 400, K/J = 3 and D = �5. The three panels were sampled
respectively in the CO (left, T = 2.2), CD (middle, T = 4.5), and SD (right, T = 10) equilibrium phases. Red, white, and blue monomers correspond to spin
values S = �1, 0 and 1, respectively. Note that in the CO phase, the polymer is greatly packed and almost all the monomers carry the same spin value;
because of the Z2 symmetry, the two values of the magnetization m = �1 can occur with equal probability.

Fig. 7 Monte Carlo results for K/J = 3, D = �5. In panels (a)–(c), different curves refer to different values of N (see legend in (b)). (a) Variance of the total
energy C/b as a function of T. The estimated locations of the maxima are highlighted by larger coloured circles. (b) RG

2/N2/3 as a function of T. Crossings
with the N = 400 curve are highlighted by blue squares. (c) Binder cumulant of the energy Bn(E) as a function of T. Minima are marked with green (CO/CD
transition) and violet (CD/SD transition) squares. (d) Values of T at which Bn(E) has a minimum as a function of N�1/2. (e) Values of T at which different
quantities (reported in the legend) display a maximum as a function of 1

� ffiffiffiffi
N
p

; they converge linearly to an asymptotic (N - N) value. We extrapolate
estimates for the transition temperatures and highlight the mean-field predictions T1 and T2 on the y-axis. (f) Height of the maxima of different quantities
(reported in the legend; note that, for C/b, we plot H 0max ¼ Hmax=10) as a function of log N.
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Fig. 7b we report hRG
2i/N2/3 as a function of T. It can be seen that,

at large values of T, the scaled curves increase with N. This is
expected since hRG

2i B N2nSAW for polymers in the swollen phase,
with nSAW E 0.5889 4 1/2.24 On the other hand, at low values of T,
where the polymer is in a compact (either disordered or ordered)
phase, data for large polymers collapse onto a master curve. The
finite N crossover between the SD and the CD phase is revealed by
the crossings of these curves, whose location can be used as a
further estimate of the location of the SD/CD phase transition.

In addition, we determine the nature of the transitions by
looking at the Binder cumulant of the energy Bn(E) as a function
of T (see Fig. 7c).23 The onset of two sets of minima further
confirms the presence of two phase transitions. Moreover, as N
increases, both sets seem to converge to the limiting value 2/3, a
clear indication that both transitions are continuous (see Fig. 7d).

Finally, we provide estimates for the location of the phase
boundaries via finite-size scaling (FSS). The plots reported in
Fig. 7e and f corroborate the continuous nature of the transition,
not only for the location of the maxima of C, wM and Var(c), but
also for the value of the peaks for the same quantities, as well as
the crossings of the RG curves. By averaging the set of extrapolated
values over the different observables, we obtained Tc(SD/CD) =
8.2 � 0.1 and Tc(CD/CO) = 4.08 � 0.08. Note that both estimates
are significantly smaller than the mean-field ones.

In summary, the MC findings for K/J = 3 and D =�5 corroborate
the mean-field picture, namely the presence of three equilibrium
phases with the SD/CD and CD/CO phase boundaries, both of
which are continuous. Note that the presence of the CD phase in
the 3D system occurs at values of K/J that are larger than those for
which this phase is expected in MF (see Appendix C).

B. Simulations for K/J = 3, D = 0

Increasing D favors neutral spins, or in other words, dilution
increases. At D = 0 the mean field theory predicts that there
should once again be two phase transitions, an SD/CD and a
CD/CO transition. Whilst the CD/CO transition remains con-
tinuous, the SD/CD transition is predicted to be discontinuous
in this case (see Fig. 5).

The corresponding MC results indeed show two sets of
peaks in the specific heat, corresponding to two transitions.
The height of both sets of peaks increases with N (see Fig. 8a).
As for D = �5, the set of peaks at low values of T colocalises with
the one observed in wM (see Fig. 12c) and hence refers to the CO/
CD phase transition. The second set, occurring at higher values of
T, originates from the corresponding non-monotonic behaviour of
Var(c) (see Fig. 12d) and signals the SD/CD phase transition. This
is confirmed by the crossings of the RG

2/N2/3 curves (see Fig. 8b).
Notably, both sets of minima observed in the Binder parameter of

Fig. 8 Monte Carlo results for K/J = 3, D = 0. In panels (a)–(c), different curves and points are as in Fig. 7. (a) Variance of the total energy C/b as a function
of T. (b) RG

2/N2/3 as a function of T. (c) Binder cumulant of the energy Bn(E) as a function of T. (d) Values of T at which Bn(E) has a minimum as a function
of 1

� ffiffiffiffi
N
p

. (e) Values of T at which different quantities (reported in the legend) display a maximum as a function of 1
� ffiffiffiffi

N
p

. We extrapolate estimates for the
transition temperatures and highlight the mean-field estimates T1 and T2 on the y-axis. (f) Height of the maxima of different quantities (reported in the
legend; for C/b, we plot H 0max ¼ Hmax=10) as a function of log N.
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the energy (see Fig. 8c) converge (as N - N) to 2/3, as expected
for a continuous phase transition (see Fig. 8d).

Finally, the linear trends of the location of the peaks of C,
wM, Var(c), and the crossings of the scaled Rg curves, once

plotted as a function of 1
� ffiffiffiffi

N
p

as well as the
ffiffiffiffi
N
p

growth of
the peaks’ heights (see Fig. 8e and f) corroborates this finding.

By averaging the extrapolated values of T*(N) on the differ-
ent observables (see Fig. 8), we estimate Tc(SD/CD) = 7.3 � 0.1
and Tc(CD/CO) = 4.106 � 0.006. Note that, again, the estimated
values are lower than the mean-field ones.

Therefore, the Monte Carlo results at D = 0 confirm the
mean-field prediction for the CO/CD phase boundary. However,
there is a discrepancy regarding the nature of the SD/CD phase
transition: while the mean field theory predicts a first-order
transition, the magnetic polymer model in 3D is suggestive of a
second-order transition.

To understand more in-depth the relation between the mean
field prediction and the behaviour of the system in 3D, we
extended the MC investigation to D = 6.

C. Simulations for K/J = 3, D = 6

The mean-field theory predicts that, at D E 6.00 and T E 4.83,
the system is at the multicritical point where the two first-order

phase boundaries SD/CD and SD/CO meet the continuous
phase transition line between CD and CO. According to what
was observed at D = 0, we expect the 3D system to be in the
region where the SD/CD and CD/CO boundaries are still well
separated. We aim to verify whether the SD/CD boundary has
become first-order as predicted by MF (see Fig. 5a).

The onset of two distinct, although close, sets of peaks in the
variance of the energy (see Fig. 9a) confirms the presence of two
phase boundaries that, according to the concomitant develop-
ments of the peaks in wM/b and Var(c)/N, we can identify as the
SD/CD and the CD/CO phase transitions, respectively (see
Fig. 12e and f). The presence of the SD/CD transition at large
values of T is corroborated by the crossings of the radius of
gyration curves when scaled by N2/3, and by the minima of Bn(E)
(see Fig. 9b and c).

We highlight that the set of minima of Bn(E) at high values
of T, which were already rather shallow at D = 0, are not
observed in this case since all curves rapidly approach the
value 2/3 in that range of T. This suggests that the CD/CO phase
boundary remains continuous.

Instead, at low values of T, the set of minima converges as N
increases to a value that is far from 2/3 (see Fig. 9c and d): this
is a clear signal that the CO/CD phase transition has now
become first order. We remark that the mean-field calculations

Fig. 9 Monte Carlo results for K/J = 3, D = 6. In panels (a)–(c), different curves and points are as in Fig. 7. (a) Variance of the total energy as a function of
T. (b) RG

2/N2/3 as a function of T. (c) Binder cumulant of the energy Bn(E) as a function of T. (d) Values of T at which Bn(E) has a minimum as a function of
1/N. (e) Values of T at which different quantities (reported in the legend) display a maximum as a function of 1/N. We extrapolate an estimate for the
temperature corresponding to the CD/CO transition, highlighting the mean-field prediction Tc on the y-axis. (f) Height of the maxima of different
quantities (reported in the legend; for C/b, we plot H 0max ¼ Hmax=10) as a function of N.
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predicted a qualitatively different scenario, with a continuous CO/
CD transition and a first-order CD/SD transition. The discontin-
uous nature of the CO/CD transition is confirmed by the trends of
the location of the peaks of C/b, and wM, once plotted as a
function of 1/N, as well as the linear dependence in N of the
height of the peaks (see Fig. 9e and f). Thus, at D = 6 the 3D system
shows a change of the nature of a phase boundary from contin-
uous to first-order; however, we observe it for the CO/CD bound-
ary, rather than for the CD/SD one. This suggests that thermal
fluctuations have a strong effect on the phase behaviour of the
system and qualitatively modify the mean-field picture at high
values of the dilution parameter D, altering not only the location
of the phase boundaries in the (D,T) plane but also their nature.

V. Conclusions

In this work, we have studied the equilibrium properties of a
magnetic polymer endowed with a spin model (the Blume–
Emery–Griffiths). There are three terms in the Hamiltonian,
which respectively describe: (i) exchange interactions between
�1 spins, favouring alignment (i.e., ferromagnetic interac-
tions), (ii) self-attraction between monomers and (iii) relative
balance between neutral and �1 spins, which we refer to as
dilution (as increasing dilution increases the average portion of
neutral spins on the chain).

We first studied this problem using a mean-field (MF) approxi-
mation. The resulting MF phase diagram is very rich, and features
phase boundaries whose nature and location depend on the

degree of dilution D and the relative strength of the self-
attraction parameter over the ferromagnetic one K/J. In addition
to the previously reported swollen-disordered (SD) and compact-
ordered (CO) phases,4,6,7 the MF results reveal the presence of an
equilibrium phase characterized by a globular polymer conforma-
tion with zero magnetization. This compact-disordered (CD)
phase was not observed at equilibrium in previously studied
models of magnetic polymers where the conformational transi-
tions were triggered exclusively by the ferromagnetic coupling J.

To validate these findings and to test the validity of the MF
phase diagram against thermal fluctuations, we performed Monte
Carlo simulations of the corresponding model on the cubic lattice.
We considered a fixed value of the K/J ratio (K/J = 3), at which the
MF analysis displays a rich phase diagram as a function of the
dilution parameter D (see Fig. 5). Our results show that upon
increasing D, the MC picture fundamentally deviates from the
mean-field one. At D = �5, where dilution is weak, we confirm the
presence and continuous nature of both phase transitions (CO/CD
and CD/SD) predicted by the mean-field (MF) theory. At D = 0, the
nature of the CO/CD transition is confirmed, and the transition
temperature appears to be independent of D (as in mean-field).
However, the CD/SD transition retains its continuous nature, at
variance with the mean-field prediction (see Fig. 5). Upon increas-
ing the dilution further (D = 6), we find that the scenario predicted
by the MC simulations deviates even more from the mean-field, as
the CO/CD transition becomes first-order, whereas the CD/SD
remains second order – this is the opposite of what MF predicts.
Results and comparison are summarized in Fig. 10.

Our results show that fluctuations are important in 3D, as they
modify the nature of the transitions as predicted by the MF
theory, most notably for the CO/CD transition. The traditional
BEG model on the lattice (i.e., not on a polymer) also yields
qualitative differences between mean-field calculations and
Monte Carlo simulations have also been found on the lattice:
for example, it has been shown that tricritical points may
disappear, upon varying K/J, when moving from the microcano-
nical to the canonical ensemble.25 As such, the discrepancies
between MC and MF reported here may align with what has been
found for the traditional BEG model. An additional important
element that is not present in the original BEG problem is the
entropy of the polymer configurations that is encoded in the
term

P
i;j

Lg
i;j (see Appendix A after eqn (18)). In our MF approach,

this term is approximated by restricting the sum to the subset of
the Hamiltonian walks (see Appendix A). The Hamiltonian walk
approximation is quite appropriate in the case of polymers in
compact phases, but underestimates the configurational entropy
of the polymer in extended phases. We believe that a possible
improvement of the MF approximation should require a more
precise estimate of this entropic term.

It is also of interest to discuss the results found here in the
context of biophysics, where magnetic polymer models have
previously been used to study the spreading of epigenetic marks
on chromatin,9,10,13,26,27 the DNA–protein complex which provides
the building block of eukaryotic chromosomes. With respect to
those models, the main additional ingredient considered here is

Fig. 10 Estimated phase diagram of the magnetic polymer model on the
cubic lattice (K/J = 3) from Monte Carlo simulations. The solid and dashed lines
represent, respectively, the continuous and discontinuous phase boundaries, as
estimated by the Monte Carlo simulations, and the stable SD, CD, and CO
phases are enclosed between these lines. These regions should be compared
with the uniformly colored zones, which correspond to the values of (T,D) at
which the same phases are predicted to be stable by the mean-field (MF)
theory. The red circle is the expected location of the multicritical point (D*,T*).
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the �1 spin dilution, or the presence of neutral spins, corres-
ponding to inert or unmarked chromatin beads, devoid of active
and inactive epigenetic marks (which can in turn be modeled as
�1 spins). This feature can effectively mimic the fact that marks
need to be deposited by enzymes, which are limited in number in
a living cell. Our results show that dilution leads to the emergence
of the compact disordered phase, which was previously only
found with polymer models out of thermodynamic equilibrium.
The CD phase can represent chromatin regions compactified
by bridging proteins which are not epigenetic readers or writers
(an example of such a bridge could be cohesin or another SMC
protein). Another important finding is that changing dilution can
lead to a switch between a continuous and a discontinuous
transition between the compact ordered and the compact
disordered phase. The order of the transition is relevant to the
physics of chromatin, as a first-order transition endows the
system with memory,10 such that, for instance, it is now possible,
within our model, for a compact and disordered state to retain its
state following replication.

In the future it would be interesting to investigate numeri-
cally the 2D case, where fluctuations can further affect the
mean-field predictions, to see if the phase diagram changes
also qualitatively. From the biophysics viewpoint, an avenue to
extend our study would also be to introduce epigenetic book-
marks as in ref. 13, and investigate whether this can lead to the
formation of stable unmarked inert, alongside marked active or
inactive, epigenetic domains in chromatin.
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Appendices
A: Mean-field theory

Hubbard–Stratonovich transformation. To decouple the
quadratic and bi-quadratic terms of the model eqn (2), we
perform a double Hubbard–Stratonovich transformation and
introduce two sets of local fields {fi} and {ai}. This gives

Z ¼
X

g2SAW

X
fSg

ð
DfDa exp � 1

2bJ

X
i;j

fi Lg
i;j


 ��1
fj

 

þ� 1

2bK

X
i;j

ai Lg
i;j


 ��1
aj

þ
X
i

fiSi þ aiSi
2 � bDSi

2
� �

þ bDN

!
(14)

where Da and Df are defined as:

Df � (2p)�N/2(bJ)�N/2 det(L)�1/2dNf (15)

Da � (2p)�N/2(bK)�N/2 det(L)�1/2dNa. (16)

By summing over all possible spin configurations {Si} we get

Z ¼
X

g2SAW

ð
DfDa exp � 1

2bJ

X
i;j

fi Lg
i;j


 ��1
fj

 

� 1

2bK

X
i;j

ai Lg
i;j


 ��1
aj þ bDN

þ
XN
i¼1

log 1þ 2e�bDþai cosh fið Þ
� �!

(17)

The two integrals can be evaluated using a homogeneous saddle
point approximation that replaces the integral with the maximum
value of the integrand attained for fi = f and ai = a. This gives

Z ¼ A
X

g2SAW
exp � f2

2bJ

X
i;j

Lg
i;j


 ��1
� a2

2bK

X
i;j

Lg
i;j


 ��1 

þ
XN
i¼1

log 1þ 2e�bDþa coshðfÞ
� �

þ bDN

!
;

(18)

where A is a normalisation constant. Since the term
P
i;j

Lg
i;j

depends on a given SAW it cannot be computed exactly. We
can, however, approximate it by restricting the sum to the subset
of space-filling SAWs within a volume V known as Hamiltonian
walks.4,28 For a given Hamiltonian walk, Lg simplifies to the
adjacency matrix of the underlying lattice with coordination
number z. This approximation is appropriate for SAWs in the
compact phase, which is space-filling. However, it is rather strong
for swollen SAWs: we mitigate this issue by replacing the lattice
coordination number z with rz, thus considering SAWs that,
having r = N/V o 1, display an effective lower mean number of
nearest neighbors. This givesX

i;j

Lg
i;j �

N

zr
: (19)

Within this approximation, the number of N-steps SAWs confined
in a volume V is given by29

ZSAW ¼
z

e


 �N
exp �Vð1� rÞ logð1� rÞð Þ: (20)

By plugging eqn (19) and (20) in eqn (18) we obtain the
mean-field partition function as

Z ¼ A
z

e


 �N
exp �Vð1� rÞ logð1� rÞ � Nf2

2bzJr

�
� Na2

2bzKr

þN log 1þ 2e�bDþa coshðfþ bhÞ
� ��

;

(21)

By taking the �1/b log of eqn (21) and dividing by the
system’s size N we obtain the mean-field free energy density
of eqn (3).

Expansion of the mean-field free energy density. Here we
expand the free energy density eqn (3) and the corresponding
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self-consistent equations eqn (6)–(8) in the proximity of the
different phase boundaries.

CO–SD phase boundary. Since we expect a transition where
f and r change from zero (SD) to a nonzero value (CO), we can
expand around r = 0 and f = 0. By substituting the bzr

expression obtained from eqn (7) into eqn (6), and then
Taylor expanding eqn (8) around r = 0, we obtain

aðfÞ ¼ K

J
f cothðfÞ; (22)

that is eqn (9) of the main text, and

r2 ¼ f2

bJz
þ a2

bKz
: (23)

Expanding up to second order eqn (22) around f = 0 and
plugging the result in eqn (23), we find a simple expression for
the local field f as a function of r:

fðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bJ2r2z� K

p
ffiffiffi
J
p : (24)

Fig. 11 Contour plots of the coefficients b(D,T) and c(D,T) for K/J = 0.8 (a)
and (b), 1.8 (c) and (d), 2.3 (e) and (f) and 3.0 (g) and (h). In all panels, red
dots mark the position of multicritical points, while black lines mark the
values where a(D,T) = 0. In the full white regions the functions b(D,T) and
c(D,T) are not defined. Colored-white patterned regions (see legend in
panels (g) and (h)) represent the regions where b(D,T) and c(D,T) have
definite sign, separated by white lines marking either b(D,T) = 0 (left
column) or c(D,T) = 0 (right column).

Fig. 12 (a), (c) and (e) Magnetic susceptibility per spin wM/b and (b), (d) and
(f) variance of the number of contacts Var(c)/N as a function of T for the
systems studied in the main text, K/J = 3 and (a) and (b) D = �5, (c) and
(d) D = 0, (e) and (f) D = 6.
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Finally, by inserting eqn (24) in eqn (3), Taylor expanding
around r = 0 and computing the osmotic pressure as

Pðb; rÞ ¼ � @f

@ð1=rÞ ¼ r2
@f

@r
; (25)

we obtain the virial expansion:

bP(b,r) = B1(b,r)r + B2(b,r)r2 + B3(b,r)r3 + 	 	 	 (26)

with

B2(b,D) = 1, (27a)

B3ðb;DÞ ¼
1

3
�
2bJ3=2

ffiffiffiffi
K
p

zeK=J sin

ffiffiffiffi
K
p ffiffiffi
J
p

� �

2KeK=J cos

ffiffiffiffi
K
p ffiffiffi
J
p

� �
þ KebD

; (27b)

B4ðb;DÞ ¼
1

4
: (27c)

Note that the second virial coefficient is always positive, an
indication that the SD–CO transition is always first order.

CD–SD phase boundary. Since this transition involves two
disordered phases, it is convenient to fix f = 0 in eqn (7), solve

it for a, and then plug this expression into eqn (3). Finally, by
computing the corresponding osmotic pressure and expanding

Table 2 Autocorrelation times of the energy, magnetization, and radius of
gyration for K/J = 3, D = 0, and N = 400. Data are reported using the
sampling time (M = 50 MC steps) as the unit of time

T tE tM tRG

2.22 1.6(5) � 103 2.0(2) � 104 6.0(4) � 103

2.33 6.0(2) � 102 7.0(4) � 103 2.0(1) � 103

2.50 2.2(4) � 102 2.2(8) � 103 6.0(1) � 102

2.63 1.0(2) � 102 9.0(2) � 102 3.4(7) � 102

2.70 5.7(6) � 101 6.0(2) � 102 3.6(7) � 102

2.86 3.7(4) � 101 2.4(5) � 102 2.1(4) � 102

3.03 1.5(1) � 101 6.6(8) � 101 3.3(4) � 101

3.13 1.17(7) � 101 3.3(2) � 101 1.5(2) � 102

3.23 1.02(6) � 101 2.2(1) � 101 2.3(2) � 101

3.33 9.3(5) � 100 1.31(5) � 101 3.6(4) � 101

3.57 6.8(3) � 100 2.94(4) � 100 3.3(3) � 101

3.85 5.3(2) � 100 7.82(5) � 10�1 4.3(3) � 101

4.00 4.4(2) � 100 5.77(2) � 10�1 3.5(2) � 101

4.17 4.2(2) � 100 5.28(3) � 10�1 3.3(2) � 101

4.35 4.4(2) � 100 5.06(2) � 10�1 2.3(2) � 101

4.55 4.5(2) � 100 5.01(1) � 10�1 2.2(2) � 101

4.76 5.4(2) � 100 5.0(6) � 10�1 1.7(1) � 101

5.00 6.5(3) � 100 5.0(6) � 10�1 1.8(1) � 101

5.26 8.7(4) � 100 5.0(6) � 10�1 2.4(1) � 101

5.56 1.52(1) � 101 5.0(6) � 10�1 3.4(3) � 101

5.88 2.4(2) � 101 5.0(6) � 10�1 3.7(2) � 101

6.25 3.6(2) � 101 5.0(6) � 10�1 3.8(2) � 101

6.67 2.9(1) � 101 5.01(1) � 10�1 2.4(1) � 101

7.14 9.5(3) � 100 5.03(2) � 10�1 7.0(2) � 100

7.41 5.3(2) � 100 5.0(6) � 10�1 3.7(1) � 100

7.69 3.3(1) � 100 5.0(6) � 10�1 2.1(4) � 100

8.00 2.09(5) � 100 5.0(6) � 10�1 1.51(3) � 100

8.33 1.78(4) � 100 5.0(6) � 10�1 1.33(2) � 100

Table 3 Autocorrelation times of the energy, magnetization, and radius of
gyration for K/J = 3, D = 6, and N = 400. Data are reported using the
sampling time (M = 50 MC steps) as the unit of time

T tE tM tRG

2.33 1.3(2) � 102 2.5(8) � 103 4.9(1) � 102

2.50 2.9(3) � 101 7.0(2) � 102 1.2(1) � 102

2.703 7.3(4) � 100 1.1(2) � 102 3.9(4) � 101

2.8 4.4(2) � 100 4.1(3) � 101 2.0(1) � 101

3.03 2.67(9) � 100 2.1(1) � 101 1.41(7) � 101

3.23 2.07(6) � 100 9.8(4) � 100 9.8(4) � 100

3.33 2.02(5) � 100 6.0(2) � 100 8.4(3) � 100

3.57 1.83(4) � 100 1.13(2) � 100 7.2(3) � 100

3.70 2.03(6) � 100 6.8(4) � 10�1 6.4(2) � 100

3.85 2.35(8) � 100 5.5(3) � 10�1 6.1(2) � 100

4.00 2.8(1) � 100 5.1(1) � 10�1 5.9(2) � 100

4.17 3.08(9) � 100 5.06(2) � 10�1 6.1(2) � 100

4.35 4.7(2) � 100 5.0(8) � 10�1 6.2(2) � 100

4.44 5.7(2) � 100 5.0(8) � 10�1 6.8(2) � 100

4.55 8.4(4) � 100 5.0(8) � 10�1 8.0(3) � 100

4.65 1.1(6) � 101 5.0(8) � 10�1 9.8(4) � 100

4.76 1.3(6) � 101 5.0(8) � 10�1 1.1(5) � 101

4.88 1.25(6) � 101 5.0(8) � 10�1 8.8(4) � 100

5.00 7.8(3) � 100 5.04(2) � 10�1 5.4(2) � 100

5.05 6.8(3) � 100 5.0(2) � 10�1 4.4(1) � 100

5.13 4.9(2) � 100 5.0(8) � 10�1 3.3(1) � 100

5.26 3.17(1) � 100 5.0(8) � 10�1 2.1(6) � 100

5.41 2.68(9) � 100 5.0(8) � 10�1 1.55(3) � 100

5.56 2.14(7) � 100 5.01(1) � 10�1 1.22(2) � 100

5.88 1.74(6) � 100 5.0(1) � 10�1 9.9(1) � 10�1

6.250 1.38(4) � 100 5.0(8) � 10�1 8.68(8) � 10�1

6.67 1.06(2) � 100 5.0(8) � 10�1 8.1(7) � 10�1

8.33 9.2(2) � 10�1 5.0(8) � 10�1 7.2(7) � 10�1

Table 1 Autocorrelation times of the energy, magnetization, and radius of
gyration for K/J = 3, D = �5, and N = 400. Data are reported using the
sampling time (M = 50 MC steps) as the unit of time

T tE tM tRG

2.00 5.0(4) � 104 2.0(2) � 105 8.0(8) � 104

2.13 2.0(2) � 104 1.2(5) � 104 6.0(3) � 103

2.27 3.0(1) � 103 5.0(2) � 103 2.7(9) � 103

2.38 2.0(8) � 103 2.7(8) � 103 2.2(7) � 103

2.50 1.1(4) � 103 4.5(7) � 102 1.3(2) � 103

2.63 4.4(10) � 102 2.3(2) � 102 1.1(2) � 103

2.78 2.3(4) � 102 2.3(2) � 102 9.0(2) � 102

2.94 1.0(1) � 102 1.0(8) � 102 7.0(1) � 102

3.13 6.7(6) � 101 3.9(2) � 101 6.0(1) � 102

3.33 4.7(4) � 101 1.03(3) � 101 6.0(1) � 102

3.45 3.9(4) � 101 4.92(8) � 100 5.8(8) � 102

3.57 3.2(3) � 101 2.39(3) � 100 5.6(7) � 102

3.70 2.8(2) � 101 1.202(8) � 100 5.0(6) � 102

3.85 2.9(2) � 101 7.62(3) � 10�1 4.7(6) � 102

4.00 2.9(2) � 101 5.9(2) � 10�1 4.3(6) � 102

4.17 3.1(2) � 101 5.29(1) � 10�1 3.9(5) � 102

4.35 3.1(2) � 101 5.1(1) � 10�1 3.7(5) � 102

4.55 3.2(2) � 101 5.02(8) � 10�1 3.9(5) � 102

4.76 3.4(2) � 101 5.01(8) � 10�1 3.9(5) � 102

5.00 1.7(8) � 101 5.01(7) � 10�1 6.8(4) � 101

5.13 1.6(8) � 101 5.01(1) � 10�1 6.3(4) � 101

5.26 1.72(9) � 101 5.01(7) � 10�1 6.9(6) � 101

5.41 1.9(1) � 101 5.0(4) � 10�1 7.0(5) � 101

5.56 2.1(1) � 101 5.0(4) � 10�1 7.2(6) � 101

5.71 2.4(2) � 101 5.0(1) � 10�1 7.5(6) � 101

5.88 3.0(2) � 101 5.0(4) � 10�1 7.7(7) � 101

6.06 3.5(3) � 101 5.0(4) � 10�1 8.0(7) � 101

6.25 4.0(3) � 101 5.01(1) � 10�1 7.7(7) � 101

6.45 4.7(4) � 101 5.01(1) � 10�1 6.7(5) � 101

6.67 5.6(4) � 101 5.02(1) � 10�1 6.7(5) � 101

6.90 7.0(5) � 101 5.02(1) � 10�1 6.8(5) � 101

7.14 6.6(5) � 101 5.0(4) � 10�1 5.7(4) � 101

7.41 4.3(2) � 101 5.01(7) � 10�1 3.3(2) � 101

7.69 2.7(1) � 101 5.0(4) � 10�1 1.9(7) � 101

8.00 1.52(5) � 101 5.0(4) � 10�1 1.0(3) � 101

8.33 7.8(2) � 100 5.0(4) � 10�1 4.9(1) � 100
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it for r C 0 we obtain the virial coefficients

B2ðT ;DÞ ¼ 1� 2
ffiffiffiffiffiffiffiffiffi
bKz
p

ebD þ 2ð Þ (28a)

B3ðT ;DÞ ¼
1

3
� 2bKzebD

ebD þ 2ð Þ2
(28b)

B4ðT ;DÞ ¼
1

4
�
bKzebD ebD � 2

� � ffiffiffiffiffiffiffiffiffi
bKz
p

3 ebD þ 2ð Þ3
: (28c)

CD–CO phase boundary. In this case, the transition is between
two compact phases (ra 0), one magnetically disordered and one

magnetically ordered. We first plug the expression for a from
eqn (22) into eqn (6) and solve for r. This gives

rðfÞ ¼ febD�K=Jf cothf

2bJz sinhf
þ f cothf

bJz
(29)

Inserting eqn (22) and (29) in eqn (3) and expanding the
result around f = 0 we find the polynomial expression

f (b,D) = f0 + a(b,D)f2 + b(b,D)f4 + O(f6). (30)

The explicit analytic expressions of a(b,D), b(b,D), and c(b,D) are
cumbersome and will not be reported explicitly.

In Fig. 11 we show the contour plots of the coefficient b(b,D)
and c(b,D) for the four different values of the ratio K/J discussed
in the main text. Condition a(D,T) = 0 is represented on the
plane as black lines. For all K/J considered, this locus of points
is made of straight and curved lines, originating from D = 0 and
T = 0. Condition b(D,T) = 0 is displayed instead as a white line.
Both this white line and the curved black line display a
horizontal asymptote as D - �N. From Landau’s theory of
phase transitions, critical points arise when a(D,T) = 0, b(D,T) 4 0,
and c(D,T) 4 0. Instead, a tricritical point is observed when
a(D,T) = b(D,T) = 0 and c(D,T) 4 0. Thus, despite the presence of
the straight black line, no critical points are observed in the
green regions where c(D,T) o 0 (see Fig. 11b, d, f and g). When
K/J = 0.8 (Fig. 11a and b), the black line lies totally inside the
blue region, where b(D,T) o 0: no critical points appear on the
CO/CD phase boundary. When K/J = 1.8 (Fig. 11c and d),
the black line intercepts the white one when D - �N: thus,
a tricritical point is observed when there are no neutral states.
Indeed, we compute, numerically, the values of K/J and b such
that a continuous CO/CD transition occurs: we solve the system
of equations

aD!�1ðb;KÞ ¼ 0

bD!�1ðb;KÞ ¼ 0

(
(31)

where

aD!�1ðb;KÞ ¼ �
2bJ2z log 1� 1

bJz

� �
þ 2J þ K

6bJ
(32)

bD!�1ðb;KÞ ¼
24bJ2zðbJz� 1Þ log 1� 1

bJz

� �
180bJðbJz� 1Þ

þ 9bJ2zþ 2bJKzþ J � 2K

180bJðbJz� 1Þ :

(33)

Such a system of equations cannot be solved analytically
because of the logarithm appearing in both expressions. How-
ever, setting J = 1 and z = 6, we can solve eqn (31) numerically, to
obtain K E 1.8 and b E 0.2. As such, for K { 1.8 the transition
is always discontinuous, at K C 1.8 becomes continuous at very
negative values of D, and for K c 1.8 the transition is always
continuous, in agreement with the results reported in Fig. 2–5.

By increasing the K/J ratio, the tricritical point moves
towards higher values of D, and in Fig. 11e it is represented

Fig. 13 Estimations of (a) C/b, (b) wM/b and (c) RG
2, complete with error

bars, when K = 3, J = 1, D = 0 and N = 400.
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as a red dot. Increasing further the K/J ratio, the tricritical point
moves further towards the right (Fig. 11g), but in the phase
diagram shown in Fig. 5a a CO/CD tricritical point is not observed
because of the presence of a first-order CO/SD phase transition.

B: Monte Carlo simulations

Variance of magnetisation and contacts. We report here the data
regarding the dependence of the magnetic susceptibility per spin
wM, and of the variance of the number of contacts Var(c) as a
function of T for the different systems considered (D = �5, 0, 6).
Fig. 12 reports such data for D =�5 (panels a and b), D = 0 (panels c
and d), and D = 6 (panels e and f). We observe that the sets of peaks
for wM/b always occur at low temperatures and correspond, as
highlighted in the main text, to the CO/CD transition. We note that
the positions of these maxima do not change much with changing
D, in agreement with the mean-field predictions. Indeed, in Fig. 5a
the transition line between the CO and CD phases in the D–T plane
is flat and practically does not depend on the temperature.

Instead, the sets of peaks of Var(c)/N always happen at high
values of T and correspond to the CD/SD transition. In this
case, the positions of these maxima shift to lower values of T
with increasing D, which is also in qualitative agreement with
the mean-field predictions.

Correlation times and error bars. Tables 1–3 report the
estimates of the integrated autocorrelation times30 for

D = �5, D = 0 and D = 6, respectively. Since data are collected
every 50 MC steps, the data reported use this quantity (that is,
the sampling time) as the time unit.

These estimates contribute to the error bars of the obser-
vables since the variance of an observable O is 2tO larger than it
would be for statistically independent samples. In Tables 1–3
we report the values of tO for the total energy, the magnetisa-
tion, and the radius of gyration.

The T dependence of some observables with their corres-
ponding error bars is exemplified in Fig. 13, where we reported
the data at D = 0. We note that the largest error bars appear at
low temperatures: this is because of the difficulty in efficiently
sampling the system there, due to the large autocorrelation.
Error bars are also large at temperatures close to the critical
point, where critical slowing down is expected.

C: Monte Carlo simulations for the case K/J = 0.8 and D = �6

Here we present some preliminary results for MC simulations
regarding the intermediate case K/J = 0.8 and D = �6. As
reported in Fig. 2a, the mean field theory predicts the existence
of a CD phase, which borders the CO phase with a discontin-
uous transition and the SD phase with a continuous transition.

The presence of a unique peak in the specific heat (see
Fig. 14a) suggests that, at variance with the MF prediction, the
simulated 3D system does not display an intervening CD phase

Fig. 14 Monte Carlo results for K/J = 0.8, D = �6. In panels (a)–(c), different curves and points are as in Fig. 7. (a) Variance of the total energy as a
function of T. (b) RG

2/N2/3 as a function of T. (c) Binder cumulant of the energy Bn(E) as a function of T. (d) Values of T at which Bn(E) has a minimum as a
function of 1

� ffiffiffiffi
N
p

. (e) Values of T at which different observables (reported in the legend) display a maximum as a function of 1
� ffiffiffiffi

N
p

. We extrapolate an
estimate for the temperature corresponding to the CD/CO transition. (f) Height of the maxima of different quantities (reported in the legend; for C/b, we
plot H 0max ¼ Hmax=10) as a function of log N.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

6/
07

/2
5 

18
:0

1:
26

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sm00212e


This journal is © The Royal Society of Chemistry 2025 Soft Matter, 2025, 21, 5296–5311 |  5311

between the CO and SD phases. The presence of the single SD/
CO transition is confirmed by the crossing of the radius of
gyration curves once scaled by N2/3 (see Fig. 14b). Additionally,
the fact that the minima of the Binder cumulant curves
(reported in Fig. 14c) tend to 2/3 as N - N, as shown in
Fig. 14d, suggests that the SD/CO transition is continuous (as in
the case K/J = 3 and D = 6). The continuous character of the
transition is further corroborated both by the shift of the
locations of the maxima of CV, wM and Var(c) (see also the

crossing points of the Rg
2/N2/3 curves) as a function of 1

� ffiffiffiffi
N
p

(see Fig. 14e) and by the growth of the heights of these
observables as a function of log N (see (Fig. 14f)).

These findings, complemented with those reported in the
text for K/J = 3, suggest that in the 3D system the CD phase will
appear at a value of the ratio K/J between 0.8 and 3.0.
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