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Morphology prediction for polymer blend thin
films using machine learning†

Bishnu R.,a Rabibrata Mukherjee,b Nandini Bhandaru *a and Arnab Dutta *a

When two immiscible polymers are spin-coated from a common solvent, they undergo phase

separation, resulting in a mesoscale morphology that depends on a host of parameters. The phase-

separated morphology plays a pivotal role in determining the potential applications of blend thin films.

As a guide to experimentalists, a machine learning-based classification framework is proposed that can

predict the morphology of PS/PMMA blend thin films. Different experimental parameters like weight

fraction of PS, molecular weight of PMMA, concentration, and substrate surface energy were used as

inputs based on which the morphology type, i.e., column, hole, or island, was predicted using a multi-

class classification model. Several machine learning algorithms were used to develop the proposed

classifier. Support vector machine (SVM) algorithm resulted in the highest accuracy of 93.75%. An

explainable machine learning algorithm was also implemented to extract valuable insights from the

proposed SVM model. These insights were found to be in excellent agreement with experimental

observations, thus not only enhancing the reliability of the predictive model but also the understanding

of phase separation in PS/PMMA blends. Based on these insights, several guidelines are recommended

to further aid in the experimental design of specific morphologies. An easy-to-use web tool is also

developed so that the proposed model can be accessed freely, which is expected to expedite the design

of application-specific thin films.

1. Introduction

Polymer thin films and coatings with complex micro or nano-
scale structures and structure-dependent properties are of
substantial interest to multiple industries in areas such as
nanoelectronics, optoelectronics, superhydrophobic and self-
cleaning surfaces, nanobiotechnology, lab-on-a-chip devices,
and so on.1–5 Particular interest has been shown in this regard
towards the study of polymer composites and polymer blend
thin films, which display different properties using the same
component polymers and have piqued the curiosity of material
scientists for a few decades.2,6–9 Spin coating of an immiscible
polymer blend on a flat substrate leads to the formation of a
structured film as a result of phase separation, which is the
desired objective as these formed microstructures can have
different applications. However, the exact morphology of a

phase-separated blend film is influenced by multiple para-
meters such as the concentration of polymer solution, the
fraction of each polymer, polymer molecular weights, type of
solvent, type of substrate, spin speed and so on.10–14 Several of
these parameters tend to act in antagonistic manners and
influence each other, which makes the prediction of the
morphologies using existing theories or models a challenging
task. To the best of our knowledge, there is no single model
that can be used to predict the morphology of phase-separated
polymer blend thin films. Repeated cycles of experimental trial
and error may be required to design coatings with a desired
morphology for specific applications.

The mechanics behind bulk phase separation of polymer
blends have been studied extensively and well understood, as
evidenced by the works of de Gennes and others.7,15 Studies on
these bulk polymer blends were conducted to understand the
thermodynamics and kinetics of the formation of morphol-
ogies, based on the enthalpy and entropy of mixing of the
component polymers.16 Other studies in the field focused on
understanding blends based on existing thermodynamic
mechanics, such as Flory Huggins’ theory and equation of state
theories such as the Sanchez–Lacombe equation.17 While these
works have great merits of their own, the assumptions made in
these studies may not be applicable when studying the phase
separation kinetics of polymer blend thin films. Preferential
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wetting of the component polymers by the common solvent of
dissociation, as well as the substrate surface energy, are exam-
ples of factors that need to be accounted for when studying the
phase separation kinetics of polymer blend thin films.7 A few
groups have tried to model for blend thin films incorporating
preferential component attraction to the substrate and evapora-
tion kinetics of the solvent during thin film formation.18–21

While these models try to incorporate thin film parameters,
they still contain several assumptions or are complicated to
implement. For example, Wodo et al. incorporated solvent
evaporation induced phase separation in their computational
approach but they assumed uniform solvent evaporation and
no other mass losses which will not be true in case of spin
coating.18 Schaefer et al. assumed incompressibility of the
system to suppress inhomogeneities in density along with
uniform and steady evaporation.19 Cummings et al. success-
fully included evaporative flux but neglected the effects of
viscosity to that of diffusion.20 Coveney et al. included lateral
and vertical phase separation depending on surface-blend
interaction but for a binary blend system without a solvent.21

Heriot et al. were the first group to collect empirical in situ
observations during the spin coating of polymer blends to
obtain mechanistic insights into morphology development.
They attempted to correlate morphology with the processing
conditions so that desired phase-separated structures could be
fabricated, though their observations are material-specific.22

Determining correlations or patterns between the multiple
experimental parameters and the final morphology empirically
can have several bottlenecks as it requires appreciable dedica-
tion of time and resources, and the sensitive nature of these
experiments may often lead to inconsistent results. The afore-
mentioned challenges associated with understanding and con-
trolling the phase separation in polymer blend thin films,
coupled with their multidimensional nature, necessitates the
incorporation of machine learning (ML) as a promising
solution. However, the application of ML in microscale and
nanoscale polymeric systems is still in its infancy.23–25 There
are very few works that use experimental data to design ML
models that can explore the complex interactions between
important fabrication parameters, particularly in the morphol-
ogy prediction of block co-polymers (BCPs) or polymer blends.
Tu et al., in one of the pioneering works that applied ML in

polymeric science, explored the use of neural networks (NN) in
predicting the morphology of BCP films upon solvent annealing.26

Li et al. employed deep convolutional NNs to analyze structure
property relations of material systems.27 Vargo et al., in a recent
work, demonstrated the capability of regression models in pre-
dicting the structural properties of complicated systems such as
nanoparticle containing block copolymer nanocomposites.24

While a binary polymer blend is a relatively simpler system that
can be explained by existing phase diagrams and theories, spin-
coated blend thin films are complicated systems with no existing
theories comprehensive enough to predict the final morphology
or the interplay between the various process parameters. By
leveraging ML algorithms, data-driven models can be developed
for morphology prediction that captures the intricate relation-
ships between various parameters influencing phase separation,
such as substrate properties, polymer characteristics, blend com-
position, and film thickness.

The objective of this study is to design an ML-assisted
morphology classification model using an experimental dataset
of blend thin films. Fig. 1 presents a schematic overview of the
proposed ML-based framework, which can complement the
conventional microscopy-based morphology identification of
blend thin films. As evident from Fig. 1, the role of the proposed
ML model will be to accurately predict the morphology and
guide the experimentalists to create morphologies as required
thereby reducing the need for a large number of experiments.
Polystyrene (PS)/poly(methyl methacrylate) (PMMA) blends are
widely studied in the literature owing to the combination of their
similar mechanical and optical properties and immiscible nat-
ure, making them an excellent model system for investigating
phase separation behavior in polymer blend thin films.28,29 PS/
PMMA blends with a variety of phase-separated morphologies
also find applications in several areas of interest, including
nanolithography, antimicrobial agents, and anti-reflection
coatings.30–32 Understanding the phase behavior and morphol-
ogy of PS/PMMA blend thin films is essential for optimizing their
performance in each of these applications. Thus, the overarching
goal of this study are as follows: (1) develop a multi-class
classification model that uses different experimental parameters
as inputs to predict the PS/PMMA blend morphology as column,
island, or hole. (2) Implement an explainable ML algorithm to
unveil the impact of different factors on morphology prediction,

Fig. 1 Schematic illustration of the proposed framework for morphology prediction of PS/PMMA blend thin films.
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which can further aid in the experimental design of specific PS/
PMMA blend morphologies. (3) Deploy the proposed ML model
in the form of an easy-to-use web tool such that it can be
accessed freely by the scientific community, thereby enhancing
the usability of the proposed morphology prediction model for
PS/PMMA blends.

2. Methodology
2.1 Preparation of PS/PMMA blend thin films

Polystyrene (PS, Mw,PS = 280k, PDI = 1.04, Sigma, UK), polymethyl
methacrylate (PMMA, Mw,PMMA = 350k, PDI = 1.4902, Sigma, UK)
and PMMA (Mw,PMMA = 120k, PDI = 1.04, Sigma, UK) were used as
purchased. The polymers (i.e., PS and PMMA) were mixed in
different composition ratios of PS : PMMA (w/w varying as 3 : 1,
1 : 1, and 1 : 3). The polymer was dissolved in toluene (w/v%) to
make blend solutions of varying concentrations from 0.25–3% to
be coated on different substrates using a spin coater (Spin NXG
M1, Apex Instruments, India). The spin coating parameters, such
as RPM and time, were maintained constant at 2500 RPM and
60 s, respectively. The thin films were placed in an air oven after
coating for 2 h at 60 1C to remove residual solvents.

The prepared blend solution was coated on four different types
of substrates of varying surface energy: glass, silicon wafers,
crosslinked PDMS films and silica sol–gel films. Glass slides
and silicon wafers were cut in the dimensions of 1.5 cm � 1.5 cm,
cleaned using RCA cleaning protocols and were used as sub-
strates. Polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning,
USA) consisting of oligomer (part A) and cross-linking agent (part
B) was mixed in the ratio of 10 : 1 and was diluted in n-hexane
(10% w/v). The PDMS solution was spin-coated on cleaned glass
substrates at 2500 RPM for 60 s. The coated films were cured in an
air oven at 90 1C for 10 h to complete the cross-linking process.
The cross-linked PDMS films were used as the third substrate for
blends. The fourth substrate was flat sol–gel films made of silica
sol, subjected to thermal annealing to generate the oxide phase in
the gel films. The details of the fabrication process have been
explained in the referred article.33 The surface energy of all four
substrates was determined by measuring the contact angle using
a goniometer (MDU-4D, Apex Instruments, India). The contact
angle of three probing liquids, namely water, ethylene glycol and
toluene, were measured on each substrate and the surface energy
was determined using the empirical Young–Dupre eqn (1) and (2)
as given below:34

gL cos yE þ 1ð Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gLWS gLWL

q
þ

ffiffiffiffiffiffiffiffiffiffi
gþS g

�
L

q
þ

ffiffiffiffiffiffiffiffiffiffi
g�S g

þ
L

q� �
(1)

gPS ¼ 2
ffiffiffiffiffiffiffiffiffiffi
gþS g

�
S

q
(2)

where gLW
S , g+

S and g�S are the dispersive, acid and base components
of the surface energy of the solid substrate, respectively. yE is the
equilibrium contact angle (CA) of the probing liquid on the solid
substrate. gLW

S , g+
L and g�L are the dispersive, acid and base compo-

nents of surface tension of the probing liquids, respectively. Four
parameters known to influence morphology formation were varied

during experiments, namely concentration of solution (Cn), weight
fraction of PS (wPS), molecular weight of PMMA (Mw,PMMA), and
substrate surface energy (gS). These parameters were chosen based
on available materials as well as their importance in deciding the
final blend morphology as reported by experimentalists.7 The
different values for these four features are listed in Table 1.

2.2 AFM image analysis and morphology classification

A total of 80 different PS/PMMA blend thin films were prepared
experimentally by varying the four different features (Table 1). AFM
(PicoScan 5100 Agilent Technologies, USA and Nanosurf CoreAFM,
Switzerland) was used to image all the blend films for identifi-
cation of the different formed morphologies. The AFM was
operated in tapping mode (semi-contact mode) with a B10 nm
radius silicon tip attached to a cantilever with a force constant of
B48 N m�1 (Budget Sensor). The raw AFM images of the PS/
PMMA blend films were analyzed using Gwyddion, an open-source
software platform for AFM data. The PMMA-rich phase was
experimentally identified through selective phase removal via
UV-ozone treatment or 1-chloropentane washing. Quantitative
analysis was performed using the grain analysis tools within
Gwyddion to obtain PMMA area fraction, average morphology
diameter, and average morphology height for each of the images.
The complete dataset enumerating these parameters corres-
ponding to all 80 images are provided in the ESI.† Based on these
parameters, morphologies of the as-cast films were broadly classi-
fied into three distinct classes using the protocol as outlined in
Fig. 2. In case PMMA forms a discrete phase, it can appear either
as columns with rounded tops or islands with flat tops. If PMMA
forms a continuous phase, the morphology is identified as holes.
Fig. 3(A) represents a typical column morphology, which has
vertical projections of PMMA. Fig. 3(B) shows the AFM image of
an island morphology, which comprises wide columns with flat
tops and some tiny scattered columns. Fig. 3(C) represents a hole
morphology as the PMMA phase forms interconnected domains

Table 1 Experimental values of the different features

Features Symbol Values
Number of
data points

Concentration (%) Cn 0.25 9
0.50 10
0.75 9
1 23
2 23
3 6

Weight fraction of PS wPS 0.25 26
0.33 1
0.5 27
0.75 25
0.80 1

PMMA molecular weight (Da) Mw,PMMA 120 000 44
350 000 36

Substrate surface energy (mJ m�2) gS 24.2 19
54.1 19
73.3 31
77.3 11
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with depressions or cavitation on the film surface. Insets A1, B1
and C1 of Fig. 3 show the morphology of the blend films after
selective etching of the PMMA phase using UV-ozone treatment
(PSD Pro UV-4, Novascan, USA). UV-Ozone exposure degrades
PMMA much faster than PS and can be used to selectively remove
the PMMA phase and identify the blend domains.35,36 The inset
AFM images confirm that the columns, islands and the intercon-
nected domain in case of holes are, in fact, made up of PMMA
polymer. Each of the 80 different blend film images were identified
to be one of these three morphologies i.e., column, hole, or island.

2.3 Classification framework

The dataset used for developing the proposed classification
framework consists of 4 input features (wPS, Mw,PMMA, Cn, and

gS, as given in Table 1) and the type of morphology (i.e., column,
hole or island) as output corresponding to each of the 80 AFM
images. These 80 AFM images consist of 41 columns, 20 holes,
and 19 islands, as their respective morphologies. The objective
of the ML model was to use these input features and predict the
morphology. In this study, three different morphologies were
identified as target outputs, thus leading to a multi-class
classification problem. The classifier was developed using five
different ML algorithms: logistic regression (LR), k-nearest
neighbors (KNN), Gaussian Naı̈ve Bayes (GNB), extreme gradi-
ent boosting (XGBoost), and support vector machine (SVM). LR
is considered to be the simplest algorithm for developing a

classifier. It uses a logistic function f zð Þ ¼ 1

1þ e�z
; where z is a

Fig. 2 Image analysis protocol used for classifying the experimental AFM data into different morphology types.

Fig. 3 AFM images of the phase-separated morphology of as-cast PS/PMMA blend thin films (Mw: 280k/350k) spin-coated on cross-linked PDMS
substrates from a 1% solution in toluene. The composition ratio varies as (A) 3 : 1, rounded discrete columns of PMMA in a continuous PS matrix; (B) 1 : 1,
larger discrete PMMA islands with flat tops in a PS matrix; and (C) 1 : 3, continuous interconnected domain of PMMA with holes containing PS which
formed the discrete phase. Insets A1, B1, and C1 show the morphology of the PS phase after selective etching of PMMA using UV-ozone treatment.
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linear combination of the k independent features.37 The geo-
metrical space can be demarcated into classification zones by
constructing k-dimensional planes, making this a parametrized
model that can be interpreted with relative ease.38 KNN is a
non-parametric classification algorithm that works on the
principle of Euclidean distance or the L2 norm.39 Each sample
is compared to their nearest and closely resembling neighbours
and classified accordingly. The performance of a KNN classifier
depends strongly on the choice of ‘k’, i.e., the nearest
neighbors.40 NB is based on the Bayes’ theorem of probabil-
ities. It is a non-iterative classifier that assumes feature inde-
pendence, which in turn provides for an implicit regularization
thereby reducing model variance.41 XGBoost employs an
ensemble ML method of gradient boosting, which involves
the creation of multiple weak learners and a reliably accurate
predictive model that learns from all the weak learners. Reg-
ularization constraints are added to the gradient boosting
algorithm to tackle overfitting.42 SVM model generates hyper-
planes, which are boundaries that the model allocates for
differentiating the classes. The SVM algorithm uses a kernel-
based approach that aids in the classification of nonlinear data
points by transforming linearly inseparable data into a high
dimensional space such that a linear hyperplane can classify
data points.43,44 The Gaussian radial basis function (RBF)
kernel is usually found to be very effective for developing
nonlinear SVM model with good generalization capability that
prevents overfitting.45,46 The dataset was divided into training
and test sets in the ratio of 80 : 20, i.e., 64 training points and 16
test points. Data splitting was done via a stratified sampling
strategy to ensure the same ratio of different morphologies in
both training and test data set. To account for randomness of
splits, this process of data splitting was repeated 10 times,
thereby generating 10 different splits each consisting of 64
training and 16 test data points. For each split, the 64 training
data points were used to develop the classification model using
a 10-fold cross validation with grid-search technique for hyper-
parameter tuning. The performance of the developed classifier
was finally validated using the 16 test data points, which is
completely independent of the training data set and unseen
by the classification model during training.47,48 Besides accu-
racy, the following performance metrics were also evaluated
to assess the performance of the multi-class classifiers using
LR, KNN, GNB, XGBoost, and SVM based ML algorithms.
Eqn (3)–(8) represent the different performance metrics used
in this study.

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
(3)

Precision ¼ TP

TPþ FP
(4)

Recall ¼ TP

TPþ FN
(5)

Specificity ¼ TN

TNþ FP
(6)

F1-Score ¼ 2� Precision�Recall

PrecisionþRecall
(7)

MCC Matthew0s Correlation Coefficientð Þ

¼ TN� TP� FN� FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þ

p (8)

Classification problems have four components that are used to
classify the predictions made i.e., true positives (TP), true
negatives (TN), false positives (FN), and false negatives (FN).48

These components are represented in the form of a confusion
matrix. The confusion matrix for a three-class classification
problem is a 3� 3 matrix. TP for each class denotes the number
of points in the test data set that are correctly identified. The
diagonal elements of rows 1, 2 and 3 in the confusion matrix
represent the TPs for class 1 (column), class 2 (hole) and class 3
(island) respectively. The FP for class 1 would be the number of
test data points incorrectly identified as class 1 when the actual
class is either class 2 or class 3. The FN values of class 1 would
be the number of data points identified as either class 2 or
class 3 when in reality the data point belonged to class 1. The
TN values for class 1 are the data points correctly identified as
belonging to either class 2 or class 3 and not to class 1.
Similarly, this can be extended to class 2 and class 3, to
generate the entire confusion matrix.

2.4 Explainable machine learning: SHAP analysis

Despite being advantageous in solving many problems, non-
linear models are observed to lack explainability.49 To address
this limitation, SHAP (SHapley Additive exPlanations) analysis
an explainable machine learning technique was implemented
in this study. SHAP is a technique that allows for the inter-
pretation and better understanding of the decisions made by
ML models. SHAP is based on cooperative game theory, where
the features of the models become the different players and the
outcome predicted by the model is envisioned as the payout of
the game.50 SHAP analysis elucidates the relevance and impact
of each of the input features on the model’s predictions.50 Once
employed on the ML model, SHAP analysis generates certain
weights for each of the features used to train the predictive
model. A higher weight corresponds to a positive impact on the
result and lower weight corresponds to a negative impact on the
result.46 SHAP analysis was deployed in this study to under-
stand the importance of the 4 different features and their
impact on morphology prediction.

3. Results and discussion
3.1 Insights from experiments

Thermodynamic factors such as free energy of mixing (DGm),
processing temperature (T) and the presence of additives or
impurities play a role in deciding the morphology of bulk
polymer blends. The Gibbs’ free energy of mixing for a binary
polymer blend is shown in eqn (9).

DGm = DHm � TDSm (9)
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where DHm and DSm correspond to the enthalpy of mixing and
entropy of mixing, respectively. The Flory–Huggins equation
relates the free energy of mixing to the volume fraction of the
component polymers, as denoted by eqn (10),

DGm

kT
¼ f1

N1
ln f1ð Þ þ

f2

N2
ln f2ð Þ þ w12f1f2 (10)

w12 ¼
Vm

RT
d1 � d2ð Þ2 (11)

where j1 and j2 represent the volume fractions, N1 and N2 are
the number of molecules, k is the Boltzmann constant, w12 is
the Flory interaction parameter value, which can be calculated
using eqn (11), Vm is the molar volume of the polymer, and d1

and d2 are the Hildebrand solubility parameters of pure com-
ponent 1 and 2 respectively. The value of w12 provides insights
into the conditions for phase separation and compatibility of
the component polymers.51 The physical interpretation of
eqn (9) is that morphologies are formed during phase separa-
tion with the objective of reducing the system’s energy for
greater stability. The stability can be evaluated using a phase
diagram for binary polymer mixtures which comprises of
stable, metastable and unstable regions as a function of com-
position and temperature. While nucleation and growth dom-
inate in the metastable region, leading to binodal phase
separation (dispersed phase morphology), spinodal phase
separation can happen in thermodynamically unstable blends,
which results in bicontinuous phase separated morphology. PS/
PMMA blends typically exhibits upper critical solution tem-
perature (UCST) behavior as the polymer blend is immiscible at
lower temperatures but becomes miscible at higher tempera-
tures, below a critical temperature called the UCST.51 w12

decreases with increasing temperature, promoting miscibility
at higher temperatures. At UCST, interaction parameter reaches
a critical value, wC, which means that the system is at the
threshold of miscibility. From eqn (11), it is evident that

w12 /
1

T
; thus upon decreasing temperature for a PS/PMMA

blend system, as w12 4 wC 4 0, phase separation will occur.
Spin coating of blend thin films involves spinning and
evaporation of solvent containing both the component poly-
mers on a substrate, phase separation, and formation of the
final morphology on the substrate. As solvent evaporation
will lead to reduction in temperature, the polymers become
immiscible, phase separate and the final morphology (bino-
dal or spinodal) depends on the rate of cooling. The process
of spin coating is more complicated as the final phase
separated morphology is not only a function of w12 but also
Cn, X, Mw, gS, choice of solvent and solubility parameters, and
effect of centrifugal forces, Coriolis forces, etc.7 For the PS/
PMMA blend system being studied in this work, the different
property values of the two-component polymers, the solvent
toluene, and the substrates used have been tabulated in
Table 2.

The mechanism of blend thin film phase separation has been
proposed in various experimental works based on different

characterization techniques and parametric understand-
ings.22,52–54 During spin coating, a significant amount of the
polymer solution is splashed out. As the remaining solution
evaporates, the solution concentration increases. Polymer–solvent
combinations with minimal differences in Hildebrand para-
meters exhibit higher solubility and greater stability.55 Conse-
quently, PMMA, having lower solubility in toluene, undergoes
phase separation first and deposits onto the substrate. The
spreading of PMMA on the substrate depends on the disparity
between the g values of PMMA and the substrate. Simultaneously,
at the air–polymer interface, the polymer with the lower g, such as
PS, preferentially covers to reduce the overall surface energy and
achieve stability.22 On a crosslinked PDMS substrate, neither
polymer shows a preference for the substrate. However, PMMA,
being unfavored at the air–polymer interface, forms tall structures
occupying less area, while PS forms a low-lying continuous matrix.
The morphology, whether columnar or island-like for a smaller
fraction of PMMA, or hole-like for a higher fraction of PMMA
(Fig. 2), is determined by the value of wPS. This analysis
suggests that, for a fixed material system, wPS is the primary
parameter governing the final morphology of the blend film.
Nonetheless, blend thin film morphology is highly sensitive,
and variations in polymer molecular weight, film thickness, or
substrate surface energy can alter the morphology type, even for
similar compositions. For instance, on a cross-linked PDMS
substrate, a 1% 1 : 1 blend of PS (280k)/PMMA (350k) formed an
island-type morphology (Fig. 3B), whereas a 1% 1 : 1 blend of PS
(280k)/PMMA (120k) resulted in a columnar morphology. Thus,
determining the precise influence of certain parameters on the
formation of different morphologies is challenging based solely
on experimentation or limited theories. In this context, pre-
dictive analysis using ML algorithms can provide valuable
insights that can greatly aid in comprehending the blend
morphology.

3.2 Performance of classification models

Using five different ML algorithms and ten different splits of
dataset, multi-class classification models were developed. The
performance of the classifier obtained for each ML algorithm
were assessed using the same test datasets, which were com-
pletely unseen to the model during the training phase. Besides
accuracy, MCC is also an important metric to assess the

Table 2 Material properties9

Material

Hildebrand solubi-
lity parameter,
d (cal cm�3)0.5

Glass transi-
tion tempera-
ture (1C)

Surface energy/
surface tension,
g (mJ m�2 or
mN m�1)

PS (280k Da) 9.1 100 41.9
PMMA (350k Da) 9.5 122 43.5
PMMA (120k Da) 9.5 114 41.1
Toluene 8.9 — 27.9
Crosslinked PDMS — — 24.2
Silicon wafer — — 54.1
Glass — — 73.3
Sol–gel film — — 77.3
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performance of a classification model. A high value of MCC
implies that the classification model has achieved good results
in all four aspects of the confusion matrix i.e., true positives,
true negatives, false positives, and false negatives.56 The aver-
age accuracy and MCC values across ten runs for each ML
algorithm is presented in Fig. 4. Based on the results obtained,
SVM algorithm was found to display the highest average
accuracy and MCC values compared to the other ML algo-
rithms. Hence, SVM-based classifier was selected as the best
classification model for predicting the morphology with an
accuracy of 93.75% and an MCC value of 0.9056. Table 3 shows
the values of different performance metrics along with confu-
sion matrix corresponding to the best SVM classification model
evaluated on the test dataset. It is evident from the results
obtained that the SVM algorithm has achieved reasonable
performance with respect to all metrics for each of the three
classes. Thus, the proposed SVM-based multi-class classifica-
tion model can be used reliably to predict the morphology for
PS/PMMA blends.

3.3 Insights from SHAP analysis

SHAP analysis enhances the interpretability of ML models by
quantitatively measuring the impact of individual features on

specific predictions. Thus, SHAP analysis was implemented to
extract valuable insights from the proposed multi-class SVM
classification model that resulted in the highest accuracy. The
SHAP summary plot as given in Fig. 5 shows that out of the four
features, wPS has the highest impact on morphology prediction
followed by Mw,PMMA, Cn, and gS. These findings corroborate
well with the experimental observations documented in the
literature pertaining to PS/PMMA blends. For instance,
PS/PMMA blends exhibit an island-like morphology when
wPS o 0.5. However, when wPS Z 0.5 the height of the
morphologies increases, leading to column formation.57 Ton-
That et al. also observed a variation in the type of morphology
for PS/PMMA blends from holes to a columnar surface with a
decrease in the value of wPS.58 Xue et al. reviewed various works
on blend thin films, highlighting the complex and antagonistic
influences of multiple parameters.7 For instance, at low
Mw,PMMA, PMMA may preferentially segregate at the surface
despite PMMA having a higher value of g than PS, indicating
that Mw,PMMA can be a more critical factor than g.59 Addition-
ally, research on the dependence of PS/PMMA blend morphol-
ogy on film thickness and gS indicates that gS plays a significant
role only when the film thickness falls below a certain thresh-
old relative to concentration.57 Different morphologies, such as
columns, islands, and holes, were observed with an increase in
Mw,PMMA.11 gS can also influence lateral and normal phase
separation during spin coating by affecting the preferential
aggregation of one polymer at the substrate, as reported by
Walheim et al.13 The thermodynamic stability of a thin polymer
film over a solid surface is governed by the type of substrate (gS)
as substrates with low gS can lead to spontaneous film rupture
and dewetting. For a polymer blend thin film, the two polymers
generally exhibit different wetting tendencies during spin coat-
ing depending on gS, which can drive the blend to adopt
different phase separation pathways. Low gS substrate such as
crosslinked PDMS do not have a strong preferential wetting for
either constituent polymer. The phase separation is mainly
driven by the miscibility of PS and PMMA in toluene solvent,

Fig. 4 Average accuracy and MCC values across 10 runs for different ML algorithms.

Table 3 Performance metrics and confusion matrix for the best SVM
model

Performance metric Value

Accuracy 0.9375
Precision (column, hole, island) 1, 0.8, 1
Recall (column, hole, island) 1, 1, 0.75
Specificity (column, hole, island) 1, 0.9167, 1
F1 score (column, hole, island) 1, 0.8889, 0.8571
MCC 0.9056

Confusion matrix Column Hole Island

Column 8 0 0
Hole 0 4 0
Island 0 1 3
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Fig. 5 SHAP summary plot in which the four features are listed on the vertical axis, and the horizontal axis represents their relative impact on
morphology prediction.

Fig. 6 SHAP summary plots for (A) column, (B) hole and (C) island. Impacts on model’s predictions are on the horizontal axis, and features are on the
vertical axis. High feature values are labelled in red, low values are labelled in blue and intermediate values are labelled in purple.
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concentration and composition. Under these conditions, an
increased tendency for hole formation is observed, likely due to
the early phase separation and deposition of PMMA as inter-
connected thread-like structures. This is also accompanied by
an increase in the average surface roughness or height. In
contrast, on sol–gel derived substrates with high gS, both
PMMA and PS exhibit favorable wetting behavior, resulting in
island-like morphologies with reduced vertical dimensions.

A deeper understanding of how individual input parameters
influence morphology and their effectiveness as tuning factors
is essential for assessing their significance. Fig. 6(A)–(C) eluci-
date the impact of different input parameters on the individual
morphologies i.e., column, hole, and island, respectively.
Fig. 6(A) suggests that column formation is favored at higher
values of wPS (i.e., lower PMMA fraction) and Cn, and lower
values of Mw,PMMA. From Table 2, it is evident that lower
Mw,PMMA has lower value of g, which tends to enrich the air–
polymer interface. As a consequence, gS has minimal impact on
column formation for PS/PMMA blends. Fig. 6(B) shows that
lower values of wPS (i.e., higher PMMA fraction) and higher
values of Mw,PMMA favored the formation of holes. In addition
to this, the lower surface energy differences between the sub-
strate and PMMA promote holes as the elevation is reduced.
Fig. 6(C) indicates that higher values of Mw,PMMA and gS favor
the formation of islands whereas higher values of wPS (i.e.,
lower PMMA fraction) strongly hinders island formation. While
gS has little effect on column formation, lower gS values
promote hole formation, whereas higher gS values lead to
island formation. This insight provides a deeper understanding
of how blend thin films evolve during spin coating, and high-
lights the preferential wetting of the surface by PMMA.9 Based
on the values of solubility parameters, PMMA, which has lower
solubility in toluene, undergoes phase separation first and
deposits onto the substrate. If the substrate has higher gS, it
should facilitate PMMA spreading and hole formation. How-
ever, SHAP analysis indicates that increasing gS also enhances
spreading of PS in toluene solution, which inhibits hole for-
mation and instead drives PMMA to deposit as islands. This
effect is particularly pronounced in blends with a higher PMMA
fraction (wPS = 0.25).

Results obtained from the SHAP analysis can be used to set
the values of different features in experiments for producing
desired morphologies. If the goal of an experiment is to
produce a PS/PMMA blend with column morphology, it can
be inferred from Fig. 6(A) that high values of wPS and Cn and
low values of Mw,PMMA would result in column formation.
Similarly, from Fig. 6(B) it is observed that lower values of
wPS, Cn, and gS, and higher values of Mw,PMMA are required for
formation of holes. It is evident from Fig. 6(C) that to obtain a
PS/PMMA blend with island morphology, experiments need to
be conducted with higher values of Mw,PMMA and gS, and low to
intermediate values of wPS. The least impactful feature, most
impactful feature, and easily tunable features for a specific
morphology can also be inferred from the SHAP plots (Fig. 6).
Variation in the values of the least impactful feature will have
minimal effect on the outcome of the synthesis of the PS/PMMA

blend with the desired morphology. For instance, it can be
inferred from Fig. 6(A) that choice of substrate has a relatively
less impact on the formation of columns as compared to PS
fraction in the blend. At the same time, Fig. 6(B) and (C) shows
that changing gS from a lower value to a higher value can
change the morphology of the same polymer blend from hole to
island. Table 4 enumerates all of these findings, which will aid
in the design of experiments to prepare PS/PMMA blends with a
desired morphology.

3.4 Experimental validation

The proposed classification model was further validated by
performing additional experiments. A total of 8 different PS/
PMMA blend thin film experiments were carried out as per the
methodology elucidated in Section 2.1. The raw AFM images
obtained for each of these new experiments were analyzed as
per the protocol explained in Section 2.2 to obtain the actual
morphology types (column/hole/island). Readers may refer to
the ESI,† for additional details pertaining to AFM image
analysis. Corresponding to each experiment, the input feature
values were used to predict the morphology using the proposed
classification model and results were compared with the actual
morphology. Input dataset pertaining to these 8 experiments
and the comparative prediction analysis is given in Table 5. It is
evident that the proposed model predicted the morphology for
each of the newly performed experiments correctly, which
further enhances the reliability of the proposed model.

3.5 Web tool development

An easy-to-use web tool was developed that can be used to
predict the morphologies for PS/PMMA blends. The web
tool provides a well-defined interface for users to input the
values of the different features and obtain the corresponding

Table 4 Design guidelines for preparing desired morphologies

Morphology Composition
PMMA mole-
cular weight Concentration

Substrate sur-
face energy

Column High Low Avoid low Minimal
impact

Hole Low High Low Low
Island Low to

moderate
High Avoid high High

Table 5 Dataset and results for experimental validation

Experiment
no.

Cn

(%) wPS

Mw,PMMA

(Da)
gS

(mJ m�2)
Actual
morphology

Predicted
morphology:
proposed
model

1 2 0.5 120 000 43.8 Column Column
2 2 0.25 120 000 43.8 Island Island
3 0.1 0.25 350 000 73.3 Hole Hole
4 0.5 0.75 350 000 24.2 Column Column
5 3 0.5 120 000 24.2 Column Column
6 3 0.5 15 000 54.1 Column Column
7 1 0.2 350 000 54.1 Hole Hole
8 1 0.8 350 000 54.1 Column Column
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morphology as the output based on the proposed classification
model. The web tool can be accessed freely by using the
following link: https://morphology-prediction-tool.onrender.
com/.

4. Conclusion

A data-driven multi-class classification framework using ML
algorithms was developed to accurately predict the morphology
of PS/PMMA polymer blend thin films. ML models were trained
using a labelled dataset with four inputs and one output. The
inputs to the model are different experimental factors like wPS,
Cn, Mw,PMMA, and gS, whereas the output consists of the
morphology type, i.e., column, hole, or island. Five different
ML algorithms, namely logistic regression, k-nearest neighbors,
Gaussian Naı̈ve Bayes, extreme gradient boosting, and support
vector machine were implemented to perform a comparative
analysis and obtain the best classification model that can
accurately predict the morphology. Based on the results
obtained, it was evident that the SVM algorithm led to the
best classification model with the highest accuracy of 93.75%.
The SVM-based model also resulted in a high MCC score of
0.9056, thus indicating that the model has achieved good
performance with respect to all four aspects of the confusion
matrix i.e., true positives, true negatives, false positives, and
false negatives. To extract significant insights about the devel-
oped SVM model, an explainable ML algorithm i.e., SHAP
analysis was implemented. Based on the results from SHAP
analysis, it was observed that the wPS had the maximum
impact on morphology prediction, which was followed by
Mw,PMMA, Cn, and gS. These observations were found to be in
alignment with the experimental observations reported in the
literature, thus further enhancing the reliability of the
proposed model. The precise morphology of a blend thin film
is influenced by several factors, which makes it almost impos-
sible to predict the morphology purely based on experimental
considerations, though the functionality of a coating might be
strongly dependent on it. To circumvent this critical limita-
tion, a design guideline is formulated, which will allow
researchers to attain a desired morphology for PS/PMMA
blend thin films, thereby significantly reducing resource-
intensive and time-consuming experiments. The paper also
reports the development of an easy-to-use web tool based on
the proposed model for morphology prediction, which can be
accessed freely. The model proposed in this study is pertinent
for morphology prediction of a specific polymer pair i.e., PS/
PMMA blend. However, the methodology proposed in this
study is generic in nature and can be extended in future to
other polymer blend systems. Besides the four inputs, other
factors like solvent vapor pressure, relative miscibility of the
polymers in the solvent (Hildebrand solubility parameter),
polymer–polymer interaction (Flory–Huggins interaction para-
meter), spin coating speed, etc. can also be incorporated as
inputs within the model. Incorporating these aspects, along
with sufficient data availability across various polymer blend

systems, can enable the development of a generalized model.
Leveraging machine learning predictions to modulate the
morphology of polymer blends can significantly reduce
resource consumption and support researchers working
across a wide range of applications, including micro- and
nano-fabrication, optical coatings, and antimicrobial sur-
faces. Consequently, this work is expected to accelerate the
design of application-specific thin films.
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