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Optimal first-passage times of active Brownian
particles under stochastic resetting

Yanis Baouche a and Christina Kurzthaler *abc

We study the first-passage-time (FPT) properties of an active Brownian particle under stochastic

resetting to its initial configuration, comprising its position and orientation, to reach an absorbing wall in

two dimensions. We employ a renewal framework for the stochastic resetting process and use a

perturbative approach for small Péclet numbers, measuring the relative importance of self-propulsion

with respect to diffusion. This allows us to derive analytical expressions for the survival probability, the

FPT probability density, and the associated low-order moments. Depending on their initial orientation,

the minimal mean FPT for active particles to reach the boundary can both decrease and increase

relative to the passive counterpart. The associated optimal resetting rates depend non-trivially on the

initial distance to the boundary due to the intricate interplay of resetting, rotational Brownian noise, and

active motion.

I. Introduction

Stochastic resetting is a relatively recent concept whereby a
process is randomly reset to a predetermined state. Mainly
introduced in the context of search processes with Brownian
motion,1,2 this framework has been widely expanded to take into
account other types of processes, such as Lévy flights,3–5 non-
Poissonian waiting times,6–9 or partial,10,11 time-dependent,12 or
random resetting mechanisms.13 Overall, stochastic resetting
has proven to be a very fruitful research direction for the physics
community with a variety of applications. The most common
applications being algorithmics,14–17 chemical reactions,18–20

and animal foraging.21,22 In all of those applications, resetting
prevents being trapped in a suboptimal state (e.g., resource- or
reactant-depleted zone), and most importantly, expedites the
search completion (food sources, reactants, or optima), thus
improving performance when time constraints are imposed.

The question of FPT properties is particularly important in
the context of biology, where the efficiency during foraging is a
crucial part of a microorganism’s ability to survive and achieve
its biological purpose.23–29 Using biology as a model system,
active agents have been engineered in the lab and extract
energy from their environment to self-propel.30–34 Establish-
ing a physical understanding of how fast these active colloids

reach specific targets is an important aspect in their design
for target-delivery and bioremediation applications.35–37

Because of the coupling between translational and rotational
degrees of freedom, studying the FPT properties of active
agents is arguably more difficult than the passive (Brownian)
counterpart, but can also lead to a richer variety of results.38–44

In this paper, we study one of the paradigmatic models of
active matter – the active Brownian particle (ABP) – compris-
ing the effect of active motion, translational and rotational
diffusion.45–49

It is well-established that resetting a passive tracer to its
original position enables a stationary distribution and a finite
mean FPT (MFPT) for reaching the target.1,50,51 Yet, the inter-
play of resetting with active motion has not yet been studied in
the context of FPT statistics. In our recent work,52 relying on a
perturbation analysis for low Péclet numbers, we find that the
typical Brownian scaling of the survival probability S(t) p t�1/2

is preserved, yet with a distinct prefactor depending on the
agent’s initial orientation. Even though the MFPT remains
undefined, the median proves to be a robust metric, able to
capture the new dynamics emerging from the rotational
degree of freedom. Building upon our recent findings for
the ABP and combining it with the typical renewal approach
used for stochastic resetting,51 we study the interplay of
resetting and self-propulsion. In particular, at the resetting
event the agent is reset to its initial configuration, comprising
its position and orientation. Our main results suggest that,
owing to the strong dependence on the initial orientation,
resetting in active motion can either increase or decrease the
reset-enabled MFPT to reach the absorbing boundary in
comparison to the passive case. Notably, we measure this
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Dresden, Germany. E-mail: baouche@pks.mpg.de, ckurzthaler@pks.mpg.de
b Center for Systems Biology Dresden, Pfotenhauerstraße 108, 01307 Dresden,

Germany
c Cluster of Excellence, Physics of Life, TU Dresden, Arnoldstraße 18, 01062

Dresden, Germany

Received 3rd April 2025,
Accepted 16th June 2025

DOI: 10.1039/d5sm00340g

rsc.li/soft-matter-journal

Soft Matter

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

6/
07

/2
5 

08
:4

6:
33

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue

https://orcid.org/0009-0000-2070-3107
https://orcid.org/0000-0002-5516-1464
http://crossmark.crossref.org/dialog/?doi=10.1039/d5sm00340g&domain=pdf&date_stamp=2025-07-05
https://rsc.li/soft-matter-journal
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sm00340g
https://rsc.66557.net/en/journals/journal/SM
https://rsc.66557.net/en/journals/journal/SM?issueid=SM021029


This journal is © The Royal Society of Chemistry 2025 Soft Matter, 2025, 21, 5998–6011 |  5999

directional bias through an anisotropy function and find that
it becomes most pronounced when the initial distance to the
wall is comparable to the distance traveled by the agent before
being reset.

This paper is organized as follows: in Section II we
first introduce our model. We then summarize the perturb-
ative approach used to study the FPT statistics of an
ABP without stochastic resetting and, using a renewal
approach, we link the survival probabilities with and without
stochastic resetting. This framework allows us to analytically
compute various statistical indicators, including the MFPT, the
median, and the skewness, and we finally resolve the full
survival probability and FPT probability density, which we
present in Section III. We summarize and conclude in
Section IV.

II. Model

In this section, we outline the strategy employed to obtain the
first-passage-time (FPT) statistics of an active Brownian particle
(ABP), whose position and orientation are reset to their initial
state at random times. We consider an ABP moving in a two-
dimensional (2D) plane (O, x, z). The particle moves at a
constant speed v along its instantaneous orientation e(W(t)) =
(sin(W(t)), cos(W(t))), where W(t) denotes the polar angle [Fig. 1
(inset)]. The agent undergoes both random translational and
rotational motion, characterized by their respective diffusion
coefficients D and Drot. In addition, the instantaneous position
r(t) and orientation W(t) are randomly reset to the initial
position r0 � r(0) and orientation W0 � W(0); the resetting events
happen at times drawn from an exponential distribution f(t) =

l exp(�lt) with rate l (and mean time between resets 1/l) (see
Fig. 1). These processes are represented by the following set of
stochastic equations:

dr

dt
¼ veþ

ffiffiffiffiffiffiffi
2D
p

g; (1a)

dW
dt
¼

ffiffiffiffiffiffiffiffiffiffiffi
2Drot

p
x; (1b)

r - r0 and W - W0 with T(t), (1c)

where g(t) and x(t) are independent Gaussian white noises of zero
mean and delta-correlated variance, hZi(t)Zj(t0)i = dijd(t � t0) for
i, j A {1, 2} and hx(t)x(t0)i = d(t� t0). Rescaling the position r ¼ aR
with the particle’s hydrodynamic radius a and the time t = tT with
the diffusive time t = a2/D, two non-dimensional numbers appear:
Pe = va/D denotes the Péclet number, measuring the relative
importance of active motion versus diffusion, and L = lt is the
reduced resetting rate, representing the prevalence of resetting
events compared to the diffusive time scale. We further introduce
g = tDrot = 3/4, which follows from the Stokes–Einstein–Sutherland
relation for a spherical particle. The latter lets us interpret the
reduced resetting rate as a competition between resetting and
rotational diffusion L = 3l/4Drot.

A. Renewal framework

To make analytical progress, we rely on a renewal approach for
the survival probability S(T|Z0,W0), i.e. the probability that the
agent, which has started at position Z0 with orientation W0, has
not yet reached the boundary at time T. Note that we have
integrated over the X-direction due to the invariance in the
direction parallel to the wall. For exponentially distributed
resetting times f(T) = L exp(�LT), the survival probability
follows:51

S T Z0; W0jð Þ ¼ e�LTSo T Z0; W0jð Þ

þ
ðT
0

Le�LTSo T 0 Z0; W0jð ÞS T � T 0 Z0; W0jð ÞdT 0;

(2)

where So(T0|Z0,W0) corresponds to the survival probability of an
ABP in the absence of resetting. Eqn (2) is to be interpreted in
the following way: the probability to survive up to time T is the
sum of the probability to survive up to time T without any
resetting event and the sum over the probabilities to survive up
to time T0 given a reset at an earlier time T � T0. The survival
probability provides access to the FPT probability density
F(T|Z0,W0), characterizing the distribution of times at which
the agent reaches the wall:

F T Z0; W0jð Þ ¼ � d

dT
S T Z0; W0jð Þ: (3)

To compute the survival probability we employ a Laplace
transform T / s

Ŝ s Z0; W0jð Þ ¼
ð1
0

S T Z0; W0jð Þe�sTdT ; (4)

Fig. 1 Schematic of the motion of an ABP under stochastic resetting to its
initial position r0 and orientation W0 near an absorbing boundary at z = 0.
The green dot and arrow represent the resetting position and orientation,
respectively. The inset depicts the agent’s position r and orientation W.
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which allows us to readily obtain a closed-form solution

Ŝ s Z0; W0jð Þ ¼ Ŝo sþ L;Z0; W0ð Þ
1� LŜo sþ L;Z0; W0ð Þ

: (5)

It then suffices to know Ŝo – the survival probability without
resetting – to obtain the survival probability with resetting Ŝ in
Laplace space.

The former quantity was the object of our previous work,52

where we have derived analytical expressions for So through a
perturbation expansion for small Péclet numbers. While details
of the perturbation expansion can be found in ref. 52 and
Appendix A, we recapitulate the most important steps here.
Starting from eqn (1a) and (1b), we first derive a (non-
dimensional) Fokker–Planck equation for the probability den-
sity Po R; W;T R0; W0jð Þ of a particle to be at R with orientation
W at time T having started at R0 with orientation W0 at T = 0:

qTPo = �Pe e�=Po + gqW
2Po + r2Po. (6)

Since the boundary is infinite in the X direction, we further
integrate out the X component and arrive at

qTPo = �Pe cos(W)qZPo + gqW
2Po + qZ

2Po, (7)

which is supplemented by the following initial and boundary
conditions:

Po(Z,W,T = 0|Z0,W0) = d(Z � Z0)d(W � W0), (8a)

Po(Z = 0,W,T|Z0,W0) = 0 8T A R+. (8b)

Next, we move to Laplace space (s / T) and thus eqn (7)
transforms to

ðs�HÞbPo ¼ d Z � Z0ð Þd W� W0ð Þ; (9)

where the operator H � H0 þ PeV is split into two compo-
nents: the unperturbed operator H0 � g@W2 þ @Z2 and the per-
turbation V � � cosðWÞ@Z. Expanding the probability density in
terms of the Péclet number

bPo ¼ bPo
0 þ Pe bPo

1 þ Pe2 bPo
2 þO Pe3

� �
; (10)

and inserting it into eqn (9), leads to a set of coupled equations
for the perturbations [eqn (A1a)–(A1c) in Appendix A].

Analytical expressions for bPo
k can be obtained iteratively and

used as input for the survival probability Ŝo s Z0; W0jð Þ ¼

P1
n¼0

Pen Ŝ
o

n s Z0; W0jð Þ via the relation

Ŝ
o

n s Z0; W0jð Þ ¼
ð1
0

bPo
n s;Z Z0; W0jð ÞdZ: (11)

Analytical predictions up to second order in the Pe number can
be found in the Appendix A. Finally, inserting the small-Pe
expansion of Ŝo(s|Z0,W0) into eqn (5) yields the survival prob-
ability in the presence of stochastic positional and orienta-
tional resetting Ŝ(s|Z0,W0) and provides immediate access to the
FPT probability density.

To further quantify the FPT properties, we are interested in
the low-order moments of the first-passage times, which are

accessible through the survival probability in Laplace space Ŝ.
In particular, the n-th moment of the random variable FT

associated with the FPT probability density can be obtained via

E Fn
T

� �
¼
ð1
0

TnF T Z0; W0jð ÞdT ; (12a)

¼ �
ð1
0

Tn d

dT
S T Z0; W0jð Þ

� �
e�sT

		
s¼0dT ; (12b)

¼ ð�1Þnþ1 d
n

dsn
sŜ s Z0; W0jð Þ
� �

s¼0; (12c)

where we have used the relation between F(T|Z0,W0) and
S(T|Z0,W0) [eqn (3)] and the properties of the Laplace transform.

B. Expansion in the Péclet number

Note that we can further expand the survival probability for

small Pe, Ŝ s Z0; W0jð Þ ¼
P1
n¼0

Pen Ŝn s Z0; W0jð Þ [eqn (5)], and for-

mally obtain the associated coefficients:

Ŝ0 ¼
Ŝ
o

0

1� LŜ
o

0

; (13a)

Ŝ1 ¼
Ŝ
o

1

1� LŜ
o

0

þ LŜ
o

0Ŝ
o

1

1� LŜ
o

0


 �2; (13b)

Ŝ2 ¼
Ŝ
o

2

1� LŜ
o

0

þ
L Ŝ

o

0 Ŝ
o

2 þ Ŝ
o

1


 �2� �

1� LŜ
o

0


 �2 þ
L2Ŝ

o

0 Ŝ
o

1


 �2
1� LŜ

o

0


 �3; (13c)

which can be readily extended to higher orders. Using this
result, the FPT probability density in Laplace space obeys

F̂ s Z0; W0jð Þ ¼ 1� sŜ0 s Z0; W0jð Þ � s
X1
n¼1

Pen Ŝn s Z0; W0jð Þ; (14)

where the first two terms correspond to the FPT probability
density of a Brownian particle under stochastic resetting and
the sum encodes the effect of activity.

C. Brownian particle under stochastic resetting

Our framework allows recovering the well-established result for
the survival probability of a passive Brownian particle under
stochastic resetting as

Ŝ0 s Z0; W0jð Þ ¼ 1� e�
ffiffiffiffiffiffiffi
Lþs
p

Z0

sþ Le�
ffiffiffiffiffiffiffi
Lþs
p

Z0
: (15)

Notably, we mentioned that introducing a resetting mechanism
for a diffusive process establishes a finite mean first-passage
time (MFPT). It reduces to

E FT½ �B¼ Ŝ0ðs ¼ 0Þ ¼ e
ffiffiffi
L
p

Z0 � 1

L
; (16)

which represents the well-known MFPT for a diffusive particle
under stochastic positional resetting.1 It diverges as p L�1/2

for L - 0, thus approaching the behavior of a Brownian
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particle without resetting. Furthermore, it diverges as L - N,
reflecting the particles that are constantly reset and never
manage to reach the wall. Most importantly, for a fixed initial

distance Z0, there exists an optimal resetting rate L�B ¼

Z�ð Þ2
.
Z0

2 that minimizes the MFPT, where Z* = 1.59362. . . is

the unique solution of the transcendental equation:

Z�

2
¼ 1� e�Z

�
: (17)

This indicates that minimizing the MFPT far away from the wall
requires resetting the agent less often.

III. Results

In what follows, we show our results for the active Brownian
particle under stochastic resetting by expanding Ŝo up to the
second order in the Péclet number. We discuss the mean first-
passage times [Section III A], the optimal resetting rate [Section
III B], the anisotropy of the process [Section III C], the survival
probability and the probability density for the FPT [Section III
D], as well as the skewness and the median of the FPTs [Section
III E and F].

A. Mean first-passage time

We compute the mean first-passage time (MFPT) by following
the strategy outlined in Section II A. Our theoretical prediction

reveals that it becomes finite [eqn (B1) in Appendix B] within
the limit of small Pe and depends strongly on the initial
orientation W0 and initial distance to the boundary z0. Let us
first note that Fig. 2(A)–(C) show that our theoretical predic-
tions are nicely corroborated by simulation results (see Appen-
dix D for details). We further note that though our results may
loose accuracy for Pe Z 1, we show in Appendix C that our
perturbation approach remains valid for this parameter range
and we observe very good agreement with simulations even at
larger Péclet numbers.

Importantly, we find that an agent initially facing the wall
(W = p) reaches it faster than an agent oriented away from the
wall (W = 0), which is in turn slower than a diffusive agent
[Fig. 2(A) and (B)]. Assuming uniformly distributed initial
angles leads to a slightly lower MFPT than the diffusive case
[Fig. 2(C)]. Additionally, increasing activity through the Péclet
number expedites and delays the arrival at the boundary for
W0 = p and W0 = 0, respectively. This is explained by the fact that the
distance the particle travels before reorienting (i.e., the persistence
length) increases conjointly with activity, lp = v/Drot = aPe/g, and
that the agent’s initial orientation is also reset in the process.
Hence, a particle initially departing from (respectively moving
towards) the wall at a higher velocity will reach the wall at later
(respectively earlier) times even with resetting. Importantly, the
divergence of the MFPT p L�1/2 as L - 0 and for L - N is
preserved for an active particle, as resetting too often prevents
ever reaching the wall and not resetting enough leads to the

Fig. 2 (A)–(C) Mean first-passage time E[Ft] for three different initial angles W0 as a function of the resetting rate L (with z0/a = 3) for different Péclet
numbers Pe. Insets show the MFPT as a function of the initial distance z0 for several L and Pe = 0.5. (D)–(F) Ratio of the mean first-passage times of an
active and passive Brownian particle at the optimal resetting rate E Ft½ ��

�
E Ft½ ��B as a function of Pe and z0. Columns show results for particles (A) and (D)

initially facing the wall, (B) and (E) initially facing against the wall, and (C) and (F) with initial angles drawn from a uniform distribution U½0; 2p�. Solid lines
and markers denote theory and simulations, respectively. The black lines in (A)–(C) correspond to the passive case with resetting rate LB = 1.
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divergence as for a simple ABP. We can expect this scaling to
change for higher activity, as persistent motion will dictate
short-time dynamics.

The MFPTs further depend on the agent’s initial distance z0

[Fig. 2(A)–(C) (insets)]. In particular, they increase linearly in z0

for short distances z0/a t 1, in agreement with the passive case
and irrespective of W0 and L. Increasing L expedites the process
for short initial distances z0/a t 1. At large distances z0/a \ 1
the MFPTs diverge, which occurs earlier for small L. Thus,
independent of the initial orientation W0 resetting more fre-
quently at short distances z0 is more efficient than at large z0.
This can be rationalized as follows: when the time between
resets becomes shorter than the time it takes the agents to
reach the wall, it becomes impossible for particles to reach the
wall and thus the MFPT diverges. Fixing the resetting rate for
the passive case to L = 1 and comparing it to the active case
with the same rate shows that at large z0 the active agent is
always faster (W0 = p, W0 � U½0; 2p�) or takes about an equal
amount of time (W0 = 0) to reach the wall.

Our results demonstrate that the MFPTs exhibit a minimum
as a function of L [Fig. 2(A)–(C)], which begs the question of the
optimal MFPT E[Ft]* (and corresponding resetting rate L*) to
accelerate absorption at the boundary. We begin this discus-
sion by comparing E[Ft]* with its passive counterpart E Ft½ ��B
[Fig. 2(D)–(F)]. For low activity Pe t 0.1, the active and passive
cases are comparable, E Ft½ ��

�
E Ft½ ��B � 1, and the initial angle

remains unimportant. Deviations appear as Pe increases and
approaches one, where agents initially oriented towards the
wall always display a lower optimal MFPT. However, agents
departing away from it exhibit a slightly more complex beha-
vior: at short initial distances z0/a t 3, they are naturally slower
E Ft½ ��

�
E Ft½ ��B � 2 because of the persistent motion, but as

z0/a - 10, rotational diffusion kicks in and allows agents to
reorient and move persistently towards the boundary, which
makes them faster than diffusive particles (see also inset of
Fig. 2B). For the same reason, randomly initially oriented
particles will reach the boundary faster when both activity
and initial position are large enough.

Overall, for particles facing the wall and randomly oriented
particles, the optimal MFPT decreases as a function of Pe for
any z0, while particles facing away from the wall exhibit an
increase of their optimal MFPT with activity, except when the
initial distance is sufficiently large, in which case this trend
does not hold [Fig. 3].

B. Optimal resetting rate

Next, we are interested in what determines this optimal resetting
rate and since trying to solve analytically for L* leads to a lengthy
transcendental equation, we rather rely on numerics and com-
pare it with the passive case L�B in Fig. 4. In agreement with our
observation for the optimal MFPT, the initial angle appears
irrelevant for small Pe t 0.1, thus leading to L�

�
L�B ’ 1.

The optimal resetting rate L* for a particle facing the wall
(W0 = p) displays two behaviors depending on the initial distance:
for z0/a C 1 the optimal rate L* decreases with Péclet number, as

letting the particle reach the boundary through persistent
motion is the most effective strategy. In particular, resetting as
often as in the passive case would take the particle away from the
boundary and increase the FPT. However, at larger initial
distances, L* becomes larger than the passive counterpart and
increases with activity. Thus, active particles need to be reset
more often as they can reorient due to rotational motion, which
enables them to move away from the boundary. Furthermore,
L�
�
L�B displays a maximum (see first plot in Fig. 4D). The

presence of this maximum can be understood by considering
the length the agent moves in the z-direction before resetting

lR ¼
ð1
0

hDzðtÞile�lt ¼ v

Drot þ l
cos W0ð Þ;

¼ 4aPe

3þ 4L
cos W0ð Þ;

(18)

where hDz(t)i is the average displacement at time t47

hDzðtÞi ¼ v

Drot
1� e�Drott
� �

cos W0ð Þ: (19)

Eqn (18) represents the persistence length with a contribution of
the resetting rate (Drot - Drot + l). Thus, as the resetting length
and the initial distance become comparable lR/z0 B 1, resetting
too often becomes disadvantageous.

For a particle that is facing away from the boundary and for
Pe close to one, we distinguish three cases: first, for z0/a C 1,
the particle needs to be reset more frequently because of the
influence of W0. In this regime, it is likely that the particle
arrives at the wall through translational diffusion, while active
motion takes it away. Second, for intermediate z0/a, resetting
events need to be less frequent, to ultimately increase the
chances of reorienting through rotational diffusion towards
the wall and reaching it via active motion. Third and lastly, for
z0/a C 10, the agent requires more frequent resets, similar to
the case of a particle initially facing the boundary.

Averaging out the effect of the initial orientation W0 shows
that an active particle, as a result of persistent motion, needs to
be reset more frequently at larger initial distances and for

Fig. 3 Optimal MFPT E[Ft]* as a function of the Péclet number Pe for
several initial distances z0/a. The solid lines correspond to W0 = p, dashed
lines to W0 = 0 and dotted lines to an initial angle randomly chosen.
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higher Péclet numbers than the passive counterpart [Fig. 4F].
Interestingly L* seems to have no extremum when the initial
angle is randomized, suggesting that resetting more frequently
is always an advantage for the parameter range considered.

C. Anisotropy of the mean first-passage time

To further quantify the effect of the initial orientation we
introduce the anisotropy function via

A z0; W0ð Þ ¼ E FT½ � z0; W0ð Þ
E FT½ � z0; W0 þ pð Þ; (20)

measuring the ratio of the MFPT given an initial position and
orientation with the MFPT given the same initial position but
with the diametrically opposed initial orientation. Fig. 5A
indicates that the anisotropy for an agent initially oriented
towards the wall (respectively opposite to the wall) is
large at small initial distances z0/a t 1 and is a decreasing
function of L. This is due to the fact that at such distances, the
particle initially oriented towards the wall should reach it almost
immediately, which is hindered by a too frequent resetting
mechanism. For z0/a \ 10, the anisotropy relaxes to
A Z0; 0ð Þ ! 1, independently of the resetting rate, as the memory
of the initial orientation progressively decays for such large
initial distances.

At intermediate distances z0/a C 1 the anisotropy exhibits a
maximum for large enough resetting rates (L \ 0.1) which can
be rationalized in the following way: at these distances, reset-
ting events start to be prevalent and thus effectively rectify the
trajectory of agents that started moving towards the wall but
oriented away and the trajectory of agents that departed away
from the wall but managed to reorient towards it through
rotational diffusion, strengthening the discrepancy in their

MFPTs. We further note that the maximum displaces towards
the right with increasing resetting rate L, as the distance lR p

Pe/L traveled before resetting decreases with L.
We note that there is a point z�0 where the anisotropy appears

to be independent of the resetting rate. We anticipate that it

Fig. 4 (A)–(C) Ratio of the optimal resetting rate L�
�
L�B for three different initial angles W0 as a function of the Péclet number Pe and of the initial position

z0/a. (D)–(F) Ratio L�
�
L�B as function of Pe (respectively, z0/a) at fixed z0/a (respectively, Pe). Columns show results for particles (A) and (D) initially facing

the wall, (B) and (E) initially facing against the wall, and (C) and (F) with initial angles drawn from a uniform distribution U½0; 2p�.

Fig. 5 (A) Anisotropy A z0; 0ð Þ as a function of the initial position z0 for
different resetting rates L. (B) and (C) Anisotropy as a function of the initial
angle W0 for different L and z0. The Péclet number is Pe = 0.4.
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corresponds to the distance when active motion starts to
become comparable to translational diffusion. Comparing the
length traveled through diffusion during time t (l2 = tD) with the
length traveled using active motion (l = tv) leads to l = a/Pe,
which predicts the disappearance of that point at larger Pe.
This feature remains to be further studied for larger Péclet
numbers that go beyond our perturbation limits.

Finally, we study how the anisotropy behaves as a function
of the initial angle. It is maximal for W0 = 0, 2p, since the
median FPT of agents initially moving away from the wall is
greater than that of agents going to the wall. Reciprocally, it is
minimal for W0 = p. Since translation diffusion plays a major
role for small initial distances, the importance of the resetting
rate is minimal [Fig. 5B] for small z0/a. As the initial distance
gets larger, the particle takes more and more advantage of
persistent motion and the anisotropy thus increases [Fig. 5C].
Most importantly, it becomes larger for increasing L, compared
to smaller z0, where a reduced rate L produces the largest
anisotropy. Thus the curves intersect at an intermediate dis-
tance z�0.

D. Survival probability and first-passage-time distribution

In the past section, we studied the MFPT, which gave us a
quantitative answer to the question of ‘‘speed of completion’’.
We can now try to deepen our understanding by also comput-
ing the survival probability S(t|z0,W0) and the FPT probability
density function F(t|z0W0). Fig. 6(A)–(C) shows an exponential
decay for the survival probability, independently of the initial
angle. Thus, resetting profoundly changes the power-law beha-
vior Bt�1/2 of a simple ABP at low Pe,52 which remains visible

for times t/tr L�1, as resetting has not yet settled in [Fig. 6(A)–
(C) (inset)]. The absence of this power-law tail is a sign that,
unlike the non-resetting case, agents manage to reach the wall
within a finite time due to the resets to their initial
configuration.

As we resolve the distributions for distances larger than the
agent’s persistence length, z0/a = 3 \ lp/a, rotational diffusion
plays an important role. Thus, the question of which survival
distribution decays faster depending on L follows the same
logic as for the optimal MFPT: resetting is an advantage if it
resists departure from the wall without hindering reorientation
towards it (W0 = 0), while at the same time ensuring that there is
enough time to reach it (W0 = p). Furthermore, we note that the
optimal resetting rate is L* E 0.3 for all cases, which is
reflected in the fact that the survival decays the fastest for
L = 0.3.

We further comment on the behavior of the survival prob-
ability at large distances z0/a c lp. In free space, it is well-
established that at large times t \ 1/Drot an ABP enters an
effective diffusive regime characterized by the effective diffu-
sion coefficient

Deff ¼ D 1þ 2

3
Pe2

� �
: (21)

We therefore suggest that an active particle, which starts far
away from the boundary, reaches the wall through effective
diffusion. Thus, its survival probability in this regime assumes
the form of that of a Brownian particle in eqn (15) by replacing

Fig. 6 Survival probability (A)–(C) and FPT probability density (D)–(F) as a function of time t for three different initial angles W0: the particle is initially (A)
facing the wall, (B) facing against the wall, and (C) randomly oriented with an angle drawn from a uniform distribution U½0; 2p�. Here, the initial position is
z0/a = 3 and the Péclet number is Pe = 0.4. Solid lines and symbols denote theory and simulations for different resetting rates, respectively. The black
lines represent the active case in the absence of resetting. The insets show a zoomed-in region of the plot containing them. The colored vertical lines
represent the typical resetting times 1/L.
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the translational diffusivity D by the effective diffusivity Deff:

Ŝ s z0jð Þ ¼ 1� e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþsÞ=Deff

p
z0

sþ le�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþsÞ=Deff

p
z0
: (22)

In the time variable, the latter has the following asymptotic
behavior1

S t z0jð Þ ’ e�lte
�
ffiffiffiffiffiffiffiffiffi
l=Deff

p
z0
for

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l=Deff

p
z0 	 1: (23)

We observe that for Pe = 0.4, the survival probability at long
times is well approximated by that of a passive agent under
resetting performing effective diffusion [dotted lines in Fig. 7].
The asymptotic prediction in eqn (23) also nicely agrees with
our findings, highlighting the exponential tails of the survival
probability at long times. In our previous work,52 we have

demonstrated that the memory of the initial angle is never
actually lost and that the amplitude of the tail of the survival
probability in the absence of resetting depends non-trivially on
the original orientation. Introducing the resetting smoothens
this effect but deviations from the passive case are naturally
expected to increase with the Péclet number.

Putting in parallel the survival probability with the FPT
probability density [Fig. 6(D)–(F)] shows that a faster decay of
S leads to a faster-decaying tail for F, where again no power-law
F p t�3/2 is present, as in the absence of resetting.52 Finally, we
observe that even though the resetting mechanism annihilates
the tail, increasing the rate causes the distribution to flatten
and spread over at intermediate times 0.1 t t/t t 100.
Resetting the particle often enables situations where it reaches
the wall after longer times due to the large number of resets. To
expand on this observation, we compute another statistical
quantity, the skewness.

E. Skewness of the distribution

Given the shape of the FPT probability density, we compute the
skewness, measuring the asymmetry around the MFPT. The
skewness is defined as the third standardized moment:

~m3 ¼
E FT � E FT½ �ð Þ3
h i

E FT � E FT½ �ð Þ2
h i3=2; (24)

where we use eqn (12c) to obtain the moments. The results are
summarized in Fig. 8A where we plot ~m3 as a function of L for
several z0. We first note that the skewness is positive for all
cases, indicating that the FPT distribution is right-skewed, or
skewed towards the large arrival times, accounting for the
agents that manage to reach the wall at later times t/t c 1. It
also diverges for vanishing L, in accordance with the absence of
moments for the non-resetting case. For a fixed z0/a, the
skewness decreases when L increases, which is consistent with

Fig. 7 Survival probability S(t|z0,W0) of an active particle for different
resetting rates L. The solid lines correspond to the perturbation theory,
the dotted lines represent the prediction for the effective Brownian case
[eqn (22)] and the dashed lines the associated asymptotic approximation
[eqn (23)]. Here, the initial distance is z0/a = 30, the initial orientation is W0 =
p, and the Péclet number is Pe = 0.4.

Fig. 8 (A) Skewness ~m3 as a function of the reduced resetting rate L for different initial positions z0 and (inset) as a function of z0 for different L. The
Péclet number is Pe = 0.4 and initial orientation W0 = p. Theory and simulations are shown with solid lines and markers, respectively. (B) Median T1/2 as a
function of the initial position z0 for different reduced resetting rates L. The initial angle is W0 = p and the Péclet number is Pe = 0.4. Theory and
simulations are shown with solid lines and markers, respectively. The shaded gray corresponds to the simulation time limit. (inset) Shows the ratio of the
MFPT and the median as a function of z0/a.
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the observation that the FPT probability density for z0/a = 3
stretches over a broader range of times. If the particle is
increasingly reset, it naturally requires more attempts and thus
time to successfully reach the wall.

Interestingly, the skewness converges to 2 when the initial
position is large z0/a c 1 (independently of L) or when the
resetting rate is large L4 1 (independently of z0). Based on our
analysis of the optimal MFPT and optimal resetting rate, we
expect that the skewness should converge to that of the reset-
ting effective Brownian case. Using eqn (24) with the leading-
order term Ŝ0 provides the skewness of the FPT probability
density of a Brownian particle under stochastic resetting

~mB3 ¼
�8þ e

ffiffiffi
L
p

Z0 8e2
ffiffiffi
L
p

Z0 � 3
ffiffiffiffi
L
p

Z0 � 12e
ffiffiffi
L
p

Z0
ffiffiffiffi
L
p

Z0 þ 3LZ0
2


 �
4 �1þ e2

ffiffiffi
L
p

Z0 � e
ffiffiffi
L
p

Z0

ffiffiffiffi
L
p

Z0


 �3=2 ;

(25)

which converges to 2 for
ffiffiffiffi
L
p

Z0 !1, thus explaining the
behavior of the skewness for the FPT probability of an
active agent.

F. Median of the first-passage time

For the sake of completeness we further compute the median
T1/2, giving the value that splits the distribution into two
equiprobable parts and defined as:

ðT1=2

0

F T Z0; W0jð ÞdT ¼ 1

2
: (26)

In the non-resetting case, where the MFPT is not defined, the
median allowed us to give a quantitative answer to the question
of the FPT,52 which we compare here to the resetting case.
Fig. 8B displays the median T1/2 as a function of the initial
position z0 for several rates L and for W0 = p. In the case of no
resetting and very low resetting rate L { 1, the median grows
quadratically with the initial distance T1/2 p z0

2 (as the
diffusive case). For increasing L, T1/2 starts to diverge at
z0/a \ 10, as the positional resetting events are too frequent
for the agent to ever reach the wall.

To further quantify the (a)symmetry of the distribution, we
compare the ratio of the mean and the median in Fig. 8A
(inset). At small initial distances z0/a t 1, we first notice that
for vanishing L, the ratio E[Ft]/T1/2 diverges since the MFPT
itself diverges while the median remains defined. As the reset-
ting rate increases, E[Ft]/T1/2 decreases due to the resetting
process stabilizing the distribution. We finally note that even
though both the median and the MFPT diverge at large z0/a,
their ratio seems to eventually converge to a value slightly above
one, independently of the resetting rate, which is consistent
with the positive skewness studied in the previous section.
Thus, this further emphasizes that the distribution remains
asymmetric for any parameters considered here. (Let us finally
note that the results remain qualitatively similar for different
initial orientations.)

IV. Conclusion

Here, we have studied the FPT properties of an ABP under
stochastic resetting to its initial configuration. Employing a
previously developed perturbative approach and a renewal
framework, we compute exact expressions for the FPT prob-
ability density and several other statistical indicators such as
the mean, skewness, and median. The main difference to the
bare diffusive case is the additional initial orientation of the
particle relative to the wall, which can make reaching the
boundary slower or faster than a diffusive particle. By quantify-
ing the optimal resetting rate our results demonstrate that
active agents, which are relatively far away from the boundary,
should be reset more frequently than passive ones to minimize
their arrival time, as active motion can take them further away.
We further discuss the effect of the initial orientation through
an anisotropy function which becomes most pronounced when
the initial distance is comparable to the distance the particle
travels before it is reset.

The theory developed in this work is valid for small Péclet
numbers and it is expected that the interplay of all processes
changes for high activity. First insights along this line predict
a t�1/4 scaling of the survival probability of highly persistent
agents in the non-resetting case and for particles initially
aligned parallel to the wall, highlighting the distinct physics
that can arise in this limit.53 For instance, an agent departing
away from the wall and swimming persistently at high Péclet
number is unlikely to reach the wall and it would be interesting
to see what the resetting mechanism changes in this case.
While we have here integrated out the direction parallel to the
wall, it would be interesting to explore where the particles hit
the wall.

While we have considered the effect of simultaneous reset-
ting of both the position and orientation, the behavior of only
resetting the position or the orientation is important for
identifying optimal resetting protocols in active systems. The
process of resetting the particle’s position while orientation
diffuses depends on the relative importance of the resetting
rate and the rotational diffusivity, L. Thus, in the regime of
large rotational diffusivity L t 1, this problem is expected to
reduce to the situation, whereby the angle after each reset is
chosen randomly. In the regime of low rotational diffusivity
L \ 1, the initial orientation is expected to play a crucial role
that needs to be further elucidated. Resetting of the
orientation54 towards the wall will decrease the FPT, yet in this
context considering the associated cost may be important.

Since the agent considered here is active, there are even more
directions in which one can extend this work. Experimental
realizations of positional stochastic resetting for passive particles
have been achieved through different implementations55,56 and
have yielded validation of the underlying theory. This is particu-
larly relevant for our case, where the question of resetting a
microscale active agent is experimentally not straightforward.57

Resetting is naturally associated with a thermodynamic cost58–62

and as these active agents are generally immersed in a fluidic
environment they would also need to overcome an additional
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drag force and withstand shear-induced reorientations, not
present in passive systems.63 Further experimental efforts may
focus on designing efficient resetting protocols for microswim-
mers, guided by our theoretical predictions.

In the context of foraging and other target-search problems,
stochastic resetting is often depicted as an advantageous search
strategy56,64 but in a lot of situations agents are active and cannot
be said to simply perform Brownian motion. One experimental
example at the macroscale represents experiments on centimeter-
sized, active robots, whose orientation is subject to resetting via
light stimuli, providing potential insights into the optimal fora-
ging and homing behaviors of animals.65 Unraveling the interplay
of orientational and positional resetting in complex environ-
ments, including quenched disorder, boundaries,66,67 and exter-
nal fields,68,69 is important for identifying optimal strategies of
biological systems to find targets without being trapped in the
environment. Furthermore, focusing on different swimming stra-
tegies that go beyond the paradigmatic active Brownian particle
model, such as chiral motion,70 represents an exciting future
research avenue.
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Appendices

The appendix contains a summary of the perturbative approach
used to compute the propagator in the absence of resetting
[Section A], the expression of the MFPT in the presence of
resetting [Section B], a validation of the perturbative approach
for intermediate Péclet numbers [Section C], and finally the
details of our simulations [Section D].

A: Perturbative approach

In this section, we provide additional details regarding the
approach we used for the FPT statistics of an ABP without
stochastic resetting in ref. 52. Therefore, we insert the expan-
sion in eqn (10) up to second order in the Péclet number into
the Laplace transform of the Fokker–Planck equation [eqn (9)]
to obtain a coupled set of equations that are solved iteratively:

s�H0ð ÞbPo
0 ¼ d Z � Z0ð Þd W� W0ð Þ; (A1a)

s�H0ð ÞbPo
1 ¼ VbPo

0 ; (A1b)

s�H0ð ÞbPo
2 ¼ VbPo

1 : (A1c)

The contribution of order i + 1 can be computed from the

contribution of order i through:

bPo
iþ1 Z; W; s Z0; W0jð Þ

¼
ð1
0

ð2p
0

Gðs;Z; W;Z0; W0Þ VbPo
i

h i
Z0; W0; s Z0; W0jð ÞdZ0dW0;

(A2)

where G denotes the Green’s function solving eqn (A1a) with
boundary condition G(s,Z = 0, W, Z0, W0) = 0. Computing G is
done by first solving the equation for an unbounded domain
(whose solution we denote by Gu) and subtracting the contribu-
tion of an image solution to impose the boundary condition:

Gðs;Z; W;Z0; W0Þ ¼ Guðs;Z; W;Z0; W0Þ � Guðs;Z; W;�Z0; W0Þ

¼ 1

2p

X1
‘¼�1

ei‘ðW
0�WÞ 1

2p‘
e�p‘jZ�Z

0 j � e�p‘jZþZ
0 j


 �
;

(A3)

where pc
2 = s + gl2. We further note that due to the symmetry of

the coefficients, pc = p�c, there is no need to change the angular
part of the image solution.

Each contribution to the survival probability is then
obtained by marginalizing over the position:

Ŝ
o

i s Z0; W0jð Þ ¼
ð1
0

bPo
i s;Z Z0; W0jð ÞdZ: (A4)

The zeroth-order solution, corresponding to the survival prob-
ability of a passive particle, is

Ŝ
o

0 s Z0jð Þ ¼ 1

s
1� e�

ffiffi
s
p

Z0


 �
; (A5)

and the first- and second-order corrections read:

Ŝ
o

1 s Z0; W0jð Þ ¼ cos W0ð Þ
g
ffiffi
s
p e�

ffiffi
s
p

Z0 � e�
ffiffiffiffiffiffi
sþgp

Z0


 �
; (A6)

Ŝ
o

2 s; Z0; W0jð Þ ¼

� e�Z0
ffiffi
s
p
þ ffiffiffiffiffiffisþgp þ

ffiffiffiffiffiffiffiffi
sþ4g
p� �

24
ffiffi
s
p ffiffiffiffiffiffiffiffiffiffi

sþ g
p

g2
6eZ0

ffiffiffiffiffiffiffiffi
sþ4g
ph


 2e
ffiffi
s
p

Z0ðsþ gÞ þ eZ0
ffiffiffiffiffiffi
sþgp
�2s� 2gþ Z0g

ffiffiffiffiffiffiffiffiffiffi
sþ g
p

ð Þ

 �

þ 3eZ0
ffiffiffiffiffiffi
sþgp þ

ffiffiffiffiffiffiffiffi
sþ4g
p� � ffiffi

s
p ffiffiffiffiffiffiffiffiffiffi

sþ g
p

� 4eZ0
ffiffi
s
p
þ
ffiffiffiffiffiffiffiffi
sþ4g
p� �

ðsþ gÞ
�

þ eZ0
ffiffi
s
p
þ ffiffiffiffiffiffisþgpð Þ 4sþ 4g� 3

ffiffi
s
p ffiffiffiffiffiffiffiffiffiffi

sþ g
p� ��

cos 2W0ð Þ
i
:

(A7)

Finally, the survival probability in Laplace space in the
absence of resetting up to second order in the Péclet number
is given by Ŝo = Ŝo

0 + Pe Ŝo
1 + Pe2 Ŝo

2. The latter is inserted into
eqn (5) in the main text to obtain the survival probability with
resetting.
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B: Analytical expression for the MFPT

The analytical expression of the MFPT of the ABP up to second
order in the Péclet number in Laplace space reads

E FT½ � Z0; W0ð Þ ¼ f Z0; W0ð Þ
g Z0; W0ð Þ; (B1)

where

f Z0; W0ð Þ ¼ 24g2 � 12e�Z0

ffiffiffiffiffiffiffi
Lþg
p

Pe2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ gÞ

p
þ 1ffiffiffiffiffiffiffiffiffiffiffiffi

Lþ g
p 6e�

ffiffiffi
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Expansion of the full expression up to second order in the
Péclet number results in

E FT½ � ¼ E0 FT½ � þ Pe E1 FT½ � þ Pe2 E2 FT½ � þ O Pe3
� �

(B3)

with E0[FT] = E[FT]B [eqn (16)] and the activity-induced contribu-
tions:

E1 FT½ � ¼
eZ0
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C: Validation of the perturbation approach

In ref. 52, we show how the contributions of the first- and
second-order corrections affect the FPT statistics for a non-
resetting particle, and give a recursive scheme to compute
higher-order corrections. In particular, the second-order term
captures the essential orientational degrees of freedom; higher-
order corrections typically contribute negligibly to the statistics.
This is why all our results are obtained by truncating the series
expansion of Ŝo at the second-order in Pe. To check the range of
validity of our perturbation approach for the computation of
the MFPT, we also plot E[Ft] as a function of the Péclet number,
Pe (i.e., our perturbation parameter). Our results shown in
Fig. 9 indicate that, at least until a resetting rate L = 3, the
theory provides good agreement with simulations up to Pe E 1.
It also remains valid up to Pe = 3 for the largest resetting rate
L = 3, whereas discrepancies start to emerge as the resetting
rate is lowered. This can be explained by considering that for
L = 3, the length traveled by the particle before resetting is

Fig. 9 MFPT E[Ft] as a function of the Péclet number Pe for several
resetting rates L. Here, the initial distance is z0/a = 3 and the initial
orientation W0 is chosen randomly. Solid lines and symbols denote theory
and simulations, respectively. Dashed lines correspond to the result given
by eqn (B3).
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smaller than the persistence length lR/lp = g/(L + g) { 1. Thus,
the agent essentially reaches the wall without fully taking
advantage of persistent motion. For lower resetting rates
the effects of active motion can fully develop, leading to the
observed discrepancies between theory and simulations.

In the same figure, we also plot as dashed lines the expan-
sion of the MFPT given by eqn (B3) and see that it performs
worse at larger Pe. Even though the expression given by
eqn (B1) is exact up to second order in the Péclet number, it
is a ratio and thus contains terms of mixed-order. Computing
its series around zero naturally leads to truncating higher-order
terms to approximate E[FT]. Our results show that the agree-
ment with numerics becomes considerably worse at Pe \ 1,
which is why we use eqn (B1) throughout the manuscript.

D: Computer simulations

To perform stochastic simulations, we discretize eqn (1a) and
(1b) according to the Euler–Maruyama scheme:

rðtþ DtÞ ¼ rðtÞ þ veðWðtÞÞDtþ
ffiffiffiffiffiffiffiffiffiffiffi
2DDt
p

N tð0; 1Þ; (D1a)

Wðtþ DtÞ ¼ WðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DrotDt

p
Nrð0; 1Þ; (D1b)

where Dt = 10�3t is the time-step, Nt(0,1) and Nr(0,1) are
independent, normally-distributed random variable with
zero mean and unit variance. Furthermore, the statistics are
obtained by simulating trajectories for 105 particles.

Acknowledgements

We gratefully acknowledge discussions with Thomas Franosch
and Magali Le Goff. Open Access funding provided by the Max
Planck Society.

References

1 M. R. Evans and S. N. Majumdar, Diffusion with Stochastic
Resetting, Phys. Rev. Lett., 2011, 106(16), 160601.

2 J. Whitehouse, M. R. Evans and S. N. Majumdar, Effect of
Partial Absorption on Diffusion with Resetting, Phys. Rev. E:
Stat., Nonlinear, Soft Matter Phys., 2013, 87(2), 022118.

3 L. Kusmierz, S. N. Majumdar, S. Sabhapandit and G. Schehr,
First Order Transition for the Optimal Search Time of Lévy
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