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1 Introduction

Low-data machine learning models for predicting
thermodynamic properties of solid—solid phase
transformations in plastic crystals¥

Tzu-Hsuan Chao,? Alexander Foncerrada,” Patrick J. Shamberger 2 *° and
Daniel P. Tabor (2 *@

Plastic crystals, many of which are globular small molecules that exhibit transitions between rotationally
ordered and rotationally disordered states, represent an important subclass of colossal barocaloric effect
materials. The known set of plastic crystals is notably sparse, which presents a challenge to developing
predictive thermodynamic models to describe new molecular structures. To predict the transformation
entropy of plastic crystals, we developed a comprehensive database of tetrahedral plastic crystal
molecules (neopentane analogs) and used several types of features, including chemical functional
groups, molecular symmetry, DFT-calculated vibrational entropy, and energy decomposition analysis to
train a machine learning model. To select the most relevant features, we used a correlation matrix to
screen out highly correlated features and ran sure independence screening and sparsifying operator
(SISSO) regression on the remaining features. The SISSO regression samples over combinatorial spaces,
including operations and features, to find the relationship between material properties. Using a dataset
of 49 plastic crystals and 37 non-plastic crystals based on a common tetrahedral geometry, we have
demonstrated the effectiveness of this strategy. Furthermore, we applied this strategy to develop a
regression model to predict transition entropy and enthalpy. The top 100 models from the operation
space showed that the overall distribution of performance became narrower, sacrificing the top-
performing model but avoiding the worst models. Using this approach, we identified the top-performing
descriptors to further clarify the underlying mechanisms of the plastic crystal transformation.

0 5,6,11-13

crystal phases’'® exhibit colossal barocaloric effects,
resulting in a comparatively larger entropy change during

Modern refrigeration technologies rely largely on fluorinated
vapor-phase refrigerants, which, when they escape into the
atmosphere, can contribute significantly to climate change,’
as well as other potential health and environmental effects
associated with per- and poly-fluoroalkyl substances (PFAS). In
contrast, solid state caloric effect materials offer an alternative
strategy to eliminate the use of vapor phase refrigerants.” In
ferroic caloric effect materials, the application of external fields
such as magnetic fields,* electric fields,* and pressure,>® can
induce a phase transition, which results in a change in the
internal state variable (entropy or temperature) of the material,
forming the basis for a refrigeration cycle. Among these, plastic
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phase transition per unit mass for an attainable field change.
The required ‘““fields” for phase transformations are generally
quite high for their domain: 2 T (for magnetocaloric materials),
1 kv m ' (for electrocaloric), or 700 MPa (for elastocaloric
materials). In contrast, barocaloric materials usually only
require about 200 MPa of pressure.’

The mechanism of plastic crystal transformations***® in the
model system neopentyl glycol (NPG) has been investigated
using ab initio methods,'® demonstrating that intermolecular
hydrogen bonds play a key role in regulating phase stability in
NPG. Upon treatment with external pressure, these hydrogen
bonds are further strengthened, influencing the thermo-
dynamics of order-to-disorder transition. When the temperature
increases, the rotational entropy contribution becomes larger,
and the disordered cubic phase becomes more favorable in
terms of AG. Other plastic crystals that lack hydrogen bonds
(e.g., CCl;) show a similar mechanism, but the interactions
among molecules are not as strong as in neopentyl glycol
(NPG). These molecules have been shown to exhibit many
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orientations.” While some orientations are more energetically
favored, many of the others are still accessible in the disordered
phase.

The broader goal of developing barocaloric phases with
specifically targeted properties (transformation temperature,
enthalpy of transition, etc.) requires a strategy to map the effect
of molecular chemistry onto the corresponding phase transi-
tion behavior. Due to the large combinatorial space consisting
of a parent globular molecule (e.g;, NPG) with chemically
allowable substituted functional groups, sequential synthesis
and characterization of individual molecules is practically
infeasible. Thus, developing an accurate predictive strategy
offers significant advantages. To achieve this aim, one could
turn toward machine learning techniques to both predict the
properties of future plastic crystals and understand the thermo-
dynamics in existing systems. Since the 1960s, 27 plastic crystal
molecular types have been reported.'®'® Here, we seek to assess
the predictive ability of trained models based on the sparse
known set of tetrahedral plastic crystalline phases. A chief
objective of this work is to determine whether this current data
set is sufficient to predict whether a related unknown compound
will exhibit a plastic crystalline state, as well as the magnitude of
entropy and enthalpy changes and the equilibrium transforma-
tion temperature.

To address this question, we systematically assessed pre-
viously reported experimental data on tetrahedral carbon-
centered small molecules, a class that includes a number of
compounds (including methane analogs and neopentane ana-
logs) known to exhibit plastic crystalline states, as well as
compounds with similar geometries in which this state is not
observed. To develop a machine learning model capable of
predicting phase transition properties, we aim to use descrip-
tors with high correlation to relevant properties. The descriptor
design focuses on two key aspects: molecular shapes and
interactions. Overall, we developed five descriptor calculation
methods: group contribution analysis, molecular symmetry,
hydrogen bond strength (both donors and acceptors), DFT-
derived molecular properties, and intermolecular energy
decomposition analysis terms.

Molecular symmetry has been shown to correlate strongly
with the classification of plastic versus non-plastic crystals
through interaction with environmental orientation.'® This
symmetry also correlates with rotational entropy as described
by the equation ASSY' = RIng.*® Given the transformation’s
reliance on rotational degrees of freedom, sphericity—derived
from the moment of inertia tensor*'—is included as a mole-
cular symmetry descriptor. To quantify molecular interactions,
a previously calculated empirical table correlating hydrogen
bond strength with functional groups®” was utilized. Further-
more, descriptors such as single-molecule vibrational entropy,
intermolecular interaction energy, and single-molecule volume,
all calculated using DFT, were incorporated as molecular
properties.

Based on this training set, we evaluated the ability to
quantitatively predict (1) the existence of solid-solid transitions
into a plastic crystal state, and (2) the related thermodynamic
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properties of the solid-solid transition.>® To tackle the problem
of high dimensionality from the molecular descriptors where only
limited data are available, we utilized the sure-independence
screening and sparsifying operator (SISSO) approach to explore
the large combinatorial spaces that use operators (addition,
subtraction, and multiplication) and all available features. In this
study, we applied a feature selection strategy to tackle this low-
data problem.**” The results show that the strategy of using a
correlation matrix and SISSO is effective in extracting information
from the original descriptors and in improving the predictive
accuracy. Furthermore, interpreting the operation of the original
descriptors could potentially guide us to the relationship between
the descriptors.

2 Material and methods

In this work, the term descriptor is used when an individual
parameter that is obtained from the chemical species or
environment. The term feature is used when referring to the
direct input to the machine learning model.

2.1 Dataset parameters

The possible chemical space investigated in this study consists of
small globular carbon-centered tetrahedral molecules, only a
small number of which are observed to exhibit a rotationally
disordered plastic crystalline state. We conducted an extensive
literature search to identify the appropriate training and test sets
for these systems. The resulting database, TetraPlastC>%10713:28-46
consists of globular and tetrahedral molecules wherein the
enthalpy of the solid-solid plastic crystalline transition is either
comparable to or larger than the latent heat of melting. While
there are other globular molecules that are proven plastic crystals
(e.g, adamantane), these do not exhibit tetrahedral configura-
tions, and thus, are considered out of the scope of this study.
Additionally, we only considered relatively small functional
groups (shown in Table 1) in the tetrahedral structure to reduce
the steric variability.

Reviewing the identified plastic crystalline compounds, it
was observed that the dataset collected is biased toward com-
pounds that contain hydroxyl, methoxy, and alkyl groups. This

Table 1 Hydrogen bond donor and acceptor strength

Donor element Acceptor element

Functional group and strength  and strength

-CH; C: 0.5 No acceptor

-C,H5 C: 0.5 No acceptor

-CH,OH 0: 4.1 0: 6.3

-COOH 0: 5.5 0: 6.3

-NH, N: 2.0 N: 8.6

-CH,NH, N: 2.0 N: 8.6

-NO, No donor 0: 5.5

-X (X=F, Cl, Br, I) No donor F: 3.9, Cl: 3.10, Br: 2.90, I: 2.61

-CH,X (X = F, Cl, Br, I) C: 1.3 F: 3.9, Cl: 3.10, Br: 2.90, I: 2.61

-SH S: 2.0 S: 3.5
-CHO 0: 0.9 0O: 5.5
-C4Hy C: 0.5 No acceptor
-CONH, N: 4.5 0: 8.3

This journal is © The Royal Society of Chemistry 2025
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occurrence is likely due to the wide utilization of these com-
pounds in synthesis, for their stability in ambient environ-
ments and their presence in the most well-studied plastic
crystalline compounds such as NPG. 86 molecules with
tetrahedral-like structures were collected from the literature,
including compounds which had only a single type of func-
tional group (e.g., neopentane), and increasingly complex com-
pounds which had two different functional groups (e.g., NPG),
and three or even four different functional groups (e.g., 2-
methyl-2-butanethiol, which is observed to exhibit a plastic
crystal transition®’).

The plastic crystals (49) in the dataset include (1) phases that
have direct experimental evidence of rotational disorder (e.g.,
electrical impedance spectroscopy), as well as (2) phases that are
calorimetrically determined to have large changes in configura-
tional entropy at this solid-solid transformation relative to the
melting transformation (as defined by dSs_s — dSs). In contrast,
molecules that are determined to “not exhibit” a plastic crystal
state (37) included (1) compounds that present data (e.g,
temperature-dependent heat capacity data) which conclusively
demonstrate the lack of an additional solid-solid phase trans-
formation over the relevant temperature range of interest, (2)
phases which exhibit low-entropy transitions from one solid
crystalline state to another solid crystalline state, and (3) studies
which present thermophysical data (e.g., enthalpies of fusion)
that would have made it more likely than not to observe a solid-
solid plastic crystal transition if one exist near the melting
transition. Compounds with limited reported information e.g.,
only low-temperature single crystal structure determination, or

(a) (b)
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room-temperature spectroscopy information) were labeled as
“inconclusive” (14) and were not included as part of our known
dataset. 84 molecules were identified to have no calorimetric
data and thus, were not included into our dataset. The summary
of the dataset, classification labels, and sources are provided in
our GitHub repository (link provided in the ESIt).

2.2 Features

Five categories of descriptors of small molecules are consid-
ered, as follows:

2.2.1 Group contribution descriptors. This set of descrip-
tors relies on the nature and quantity of the four chemical
groups attached to the central carbon atom (Fig. 1). The
number of occurrences of each-R group will be encoded into
the features. In the compiled dataset, 26 distinct chemical
groups are observed.

Group contribution methods have been shown in other
applications to predict the melting point and boiling point of
aromatic compounds,*® as well as enthalpies and entropies of
fusion of broad sets of low molecular weight organic
compounds.”*™"  They also form the basis for many
cheminformatics-based models on organic molecule solubility,
synthesizability, and other applications.**"*

2.2.2 Molecular shape and symmetry descriptors. Descrip-
tors of molecular shape included in this study are the average
and standard deviation of the effective radius, the average and
standard deviation of six internal angles, and the distance
between the center of mass and the central carbon atom. The
effective radius of a molecule is the distance between the central
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(a) Illustration of an idealized tetrahedral-like molecule (b) database sparsity (c) calculation workflow.
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carbon atom and the furthest non-hydrogen atom in each leg of
the tetrahedral molecule. The standard deviation of the effective
radius (over the four functional groups that compose the tetra-
hedral molecule) reflects one aspect of the sphericity of the
molecule. A lower standard deviation exhibits a more uniform
molecular geometry. A second measure of sphericity is calcu-
lated based on the moment of inertia tensor, as described in ref.
21. We calculated the moment of inertia tensor and obtained the
three principal components by diagonalizing the matrix. By
ranking these three components, we have I, I, and I;, where I,
is the smallest and I; is the largest. Two factors are calculated:
npr; = I1/I;, npr, = I,/I; and these are used to compute sphericity
= npr; + npr, — 1. The internal angles are calculated with all
combinations of the first atom of four functional groups and the
central carbon as the middle atom in that angle. Molecular
symmetry values are the number of indistinguishable rotated
positions of a molecule, which is also associated with the point
group of the molecule, as described in Wei et al.>* The effects of
the mass distribution in a molecule are accounted for by
two descriptors, average and standard deviation of mass

(vt = (32 Mri) /s
> (Mgi — uM)z/(n — 1) where M = mass and n = 4). All bonds

of the four functional groups oM =

and angles considered are described in Fig. 1(a).

2.2.3 Hydrogen bond strength. As hydrogen bond strength
is understood to play a pivotal role in fixing the orientation of
globular molecules in the rotationally ordered state,'® we include
descriptors based on calculated hydrogen bond strength. The
hydrogen bond acceptor/donor strength is determined by the
functional group in the molecule (Table 1).** After determining
all the acceptor/donor strengths, the following values are calcu-
lated: (1) the average donor/acceptor strength, (2) the standard
deviation of donor/acceptor strength, and (3) the maximum of
donor/acceptor strength. For functional groups that were not
previously published in the literature, such as Cl, Br, and I, we
scaled the values proportionally to the electronegativity of the
atom, using F as a reference. For example, the average acceptor
strength of F is 3.90, Cl is 3.10, and Br is 2.90.

2.2.4 DFT-calculated intermolecular interaction proper-
ties. Given that entropy change is linked to molecular degrees
of freedom, we included several atomistic-scale features in our
analysis to enhance predictive accuracy. Electronic structure
calculations can give some insights into molecular interactions
as well as molecular rotational entropy. We calculated vibra-
tional entropies, dimer interaction energies, and molecular
volumes, which are related to plastic crystal transformation.
All calculations were performed using Gaussian16. The calcula-
tion workflow is described in Fig. 1(c). First, we obtained smiles
string for all 49 molecules and generated random 3D structures
using OpenBabel.>® Second, a CREST conformer generation
calculation®® was performed to find the lowest energy confor-
mer of the molecule. From here, the geometry was optimized
using Gaussian 16°” under ®B97X-D/def2-SV(P) level of theory
on the lowest energy conformer and a frequency calculation to
calculate the vibrational entropy. Using the optimized monomer,

5960 | Soft Matter, 2025, 21, 5957-5968
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Table 2 Functional group model weights

Identifiers Sampling
AS AH T, To

a -H Hydrogen 1.9 —-05 109 194
b -CH; Methyl 6.7 1.0 44.6 64.0
¢ -C,Hs Ethyl 0.3 —4.6 144 2.3
d -CH,0H Hydroxymethyl 191 7.6 100.9 117.9
e -CHFOH Hydroxyfluoromethyl —0.7 -3.4 38.4 1244
f -CHCIOH Hydroxychloromethyl — 11.8 0.4 314 56.1
g -COOH  Carboxyl 20.3 10.8 1532 162.6
h -NH, Amino 26.7 8.7 97.2 80.6
i -CH,NH, Methylamine 19.1 5.5 66.5 67.8
j -NO, Nitro 10.6 3.6 81.9 87.4
k -F Fluoro 5.1 0.4 19.1 22.4
1 —-Cl Chloro 7.2 1.6 56.9 59.3
m -Br Bromo 5.7 1.8 78.5 88.6
o -CH,F Fluoromethyl 11.1 24 588 89.8
p -CH)CI Chloromethyl 6.1 1.7 611  69.9
r -SH Thiol 21.7 5.7 36.6 60.6
v -CHO Aldehyde 6.3 1.7 50.0 79.9
zZ -C4Hy Butyl 113.2 2.9 70.8 133.0

100 volume calculations were performed to get the average
molecular volume with a standard deviation of less than 5%.
Additionally, the optimized monomer was used to generate dimer
initial structures and CREST"® conformer generation. The lowest
energy conformer was further optimized, and the interaction
energy of the dimer was obtained using the lowest-energy dimer
configuration (more details are provided in the ESIT).

2.2.5 Energy decomposition analysis. An energy decompo-
sition analysis (EDA) of the non-covalent interactions of dimers
of the molecules was performed using Q-Chem 5.4.0.>® The
structures are obtained from the lowest-energy dimer configu-
ration using CREST conformer search® and further optimized
using Gaussian 16.°” The methods used in the Absolutely
Localized Molecular Orbitals ALMO-EDA scheme are described
in ref. 59. The electrostatic, Pauli exclusion, dispersion, polar-
ization, and charge transfer terms are considered as separate
descriptors in the correlation matrix.

2.3 Downselection of features

Once all descriptors were evaluated for the molecules in this
database, we wanted to investigate the limit of informative linear
regressions with discrete descriptors. To achieve this, an F-test was
conducted on two linear regression models to select the top five
descriptors. The first model utilized the group contribution method
as input to predict transformational entropy, while the second
model relied on all other descriptors. The downselection in the
group contribution model aimed to identify the functional groups
most critical for prediction. Meanwhile, the other descriptors, being
structure-related, were analyzed to determine the key factors influen-
cing the transformation. Reducing the number of features to five in
both models also helped to prevent overfitting of the training data.

3 Results and discussion
3.1 Classification of plastic crystals

We first consider the -classification problem. Classifying
whether a particular compound exhibits a plastic crystalline

This journal is © The Royal Society of Chemistry 2025
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phase can help screen candidate molecules, and prioritize
certain compounds over others. Therefore, we collected other
non-plastic crystal tetrahedral-like molecules into our dataset
for classification. The final set of tetrahedral molecules that do
not contain a plastic crystal phase contains 37 molecules.
Subsequently, we constructed a correlation matrix and then
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employed SISSO to obtain sets of two features from combina-
tions of the descriptors. In order to avoid overfitting, we
conducted tests using different numbers of allowed operators
and descriptors. The results indicated that reducing the num-
ber of operations to three (seven was used in the regression)
could be a sweet spot that balances between underfitting and
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(a) Distribution that shows descriptors that are obtained from SISSO for classification. The scores are plotted to show which descriptors tend to

give better performance. Maximum hydrogen acceptor strength, charge transfer and dispersion are the top three descriptors. (b) and (c) By mapping the
two features and labeled with types (blue for plastic crystal and red for non-plastic crystal). The overall mapping shows that there is a non-linear
separation between two types of data. (d) and (e) One random seed train/test split classification result. The overall accuracy is around 0.7.
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overfitting (testing accuracy improves from 50% to 75%). Using
a limited set of descriptors, we obtained a classification model
with 70 percent accuracy (Fig. 2(b)-(e)). We also mapped the
two features obtained from this model to see if a boundary
exists (in feature space) that effectively separates molecules that
do or do not exhibit plastic crystal states. From Fig. 2(b) and (c),
it can be determined that plastic and non-plastic crystals can be
separated using this set of features. The results above indicate
that the SISSO-reducing technique helps with (1) identifying the
key descriptors and (2) improving the performance compared
to models that take all the descriptors as inputs. Within this
low data regime, fewer inputs can avoid overfitting.

3.2 Multiple linear regression analysis

3.2.1 Group contribution approach. Group contribution
methods use multiple linear regression analysis to derive
thermodynamic properties from the numbers and types of
chemical functional groups present in a particular molecule.
This approach has previously been shown to provide reason-
able predictive power for melting points and boiling points of
organic compounds.*® This is often applied to thousands of
data, while we only have fewer than a hundred points. We
applied multiple linear regression analysis to evaluate the
overall correlation between the number of groups and the
experimental thermodynamic properties. The resulting deter-
mination coefficient is above 0.7 for all key thermodynamic

(
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properties (R* (ASg): 0.77, MAD (AS,,): 0.18 (Fig. 3(a)), R* (AHy):
0.86, MAD (AH,): 0.21, R* (Ty): 0.93, MAD (Ty): 0.07, R* (Timeir):
0.94, MAD (Tpner): 0.06). Although we obtain a high R* for the
entire dataset, there is a risk that the linear regression model is
an overfitted model since it was trained and tested on the same
data. This means we cannot assess its performance using
unseen data. Additionally, the ratio of descriptors to data
points is approximately 1:2, which is quite high for most
machine learning models. As previously mentioned, the data
set is highly biased towards hydroxymethyl and methyl
compounds.

Through consideration of the weighing strength of each
functional group, this dataset is capable of determining func-
tional groups that have a greater impact on the plastic crystal
transition (Table 2). The larger the weighting factor, the more
influential that specific functional group on that thermody-
namic property. The more influential functional groups tend to
be those that have strong hydrogen bonds. The results for using
all 30 features (types of functional groups) from group con-
tribution methods have high correlation factors. Additionally,
the tailored group contribution method is inflexible for predic-
tion as with this method, there are no ways to predict the
properties of compounds containing functional groups that are
not present or that are poorly sampled in the testing database.
The present model provides reasonable predictions for key
thermodynamic properties related to the functional groups
tested, but cannot be extended to those outside the testing
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(a) Tailored group contribution model of the entropy of transition for the TetraPlastC database. (b) The results of linear regression with all

descriptors in the database. (c) The results for the downselected descriptor linear regressions of the entropy of the transition.
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dataset, since the number of features is still considered too
high compared to the size of the existing dataset.

3.2.2 Structural descriptor approach. Structural descriptor-
based methods relate the impact of chemical functional groups
on the resulting thermodynamic properties of plastic crystal
molecules by correlating the impact of those functional regres-
sions and provide insight into the underlying mechanisms that
influence the plastic crystalline transition by applying multiple
linear regression analysis to search for correlations between
thermodynamic properties and structural descriptors, rather
than the quantity and type of chemical functional groups (as in
the previous section). The structural descriptor-based regres-
sions provide insight into the underlying mechanisms that
influence the plastic crystalline transition. These models apply
multiple linear regression analysis to search for correlations
between thermodynamic properties and structural descriptors
rather than the quantity and type of chemical functional groups
(as in the previous section). The regressions that take in only
calculated descriptors resulted in high correlation coefficients
(R* (ASy): 0.80, MAD (AS,,): 0.17, R* (AHy): 0.84, MAD (AH,):
0.23, R? (Ty): 0.89, MAD (Ty): 0.09, R* (Tmert): 0.89, MAD (Tiere):
0.08). Similarly to the group contribution regressions, the
correlation coefficients (see ESI,i Fig. S1 and S2) also imply
that the linear regression models overfit because the ratio of
features to data points is also high at about one descriptor for
every two data points. The descriptors with the highest sig-
nificance were the interaction-based descriptors, except for the
average radius (as a proxy for size, see ESI,{ S6). Having a direct
correlation to the phenomena from a structural descriptor
allows an intuitive connection between the impact of each
descriptor and the influence on the observed phenomena.
Using structural descriptors also allows modular predictions
for compounds with functional groups not represented in the
database. To deal with these potential over-fitting problems,
the down-selected structural descriptors provide a guarantee
against over-fitting while retaining the simple interpretations at
the expense of accuracy. These models’ correlation coefficients
reflect the lower accuracy as the coefficients for melting tem-
perature, transition temperature, enthalpy of transition, and
entropy of transition are 0.82, 0.86, 0.77, and 0.67, respectively.

3.3 Low data machine learning techniques: employing SISSO

Based on the results presented in the previous sections, it remains
difficult to accurately predict the classification and thermody-
namic properties of unknown molecules. In the following section,
we assess the performance using the distribution of 100 randomly
generated train/test split sets to avoid the risk of obtaining a good
performance from a “lucky” set. Additionally, due to the limited
amount of available data, we employed two separate dimension-
ality reduction techniques: (1) removing high correlation descrip-
tors within each group of descriptors and (2) applying sure-
independence screening and sparsifying operator (SISSO) techni-
ques. By limiting the number of descriptors in the machine
learning model, we can avoid the overfitting problem for testing
set molecules. In order to maintain an appropriate number for
each group, we used different criteria to screen out unnecessary
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descriptors. The highly correlated descriptors were determined by
a value of the correlation coefficient, r > 0.5 (r > 0.1 for group
contribution method threshold of 0.5 (0.1 for group contribution
method to ensure that not too many descriptors are included).
After screening out the highly correlated descriptors, we com-
bined these descriptors into the SISSO task and selected two
features as our final inputs for the regression (or classification
model). To evaluate the validity of this strategy, we examined a
subset of 30 molecules out of the 49 plastic crystal molecules
contained in the full data set and checked the testing score
distribution. By choosing 30 data points, we are able to conduct
“every-set” testing as the number of combinations of hypothetical
train/test split is computationally feasible (30!/(24!6!) = 593 775).
Plotting the testing score distribution can indicate the overall
performance in case the sampled train/test split is occasionally
the “easy” set to predict. We compared the testing score distribu-
tion between the original descriptors and the two features that
were down-selected after the two screening steps (Fig. 4(a)-(e)).
Additionally, the comparison is done on five groups of descriptors
since these have been shown to have a high correlation with
transformational entropy. The results of all five testing groups
indicate that the dimensionality reduction strategy here improves
the overall performance significantly (the peak shifts to the right
for all five cases).

3.4 Predicting transformational entropy and enthalpy

As the subset of 30 sampled molecules described in the previous
section demonstrated the validity of the strategy, we further
applied this strategy to the complete dataset of 49 plastic crystal
molecules. We excluded the division operation in the SISSO
regression task, as the division operation could possibly lead to
infinity if one of the descriptors in the data is 0, which will results
in untrainable features. Since the number of potential train/test
splits is very large, an every-set testing approach (where every
possible train/test split is tested) is not feasible. We sampled 100
train per test splits to approximate the distribution of the scores
over these possible splits. We performed a 7-fold cross-validation
(because of the dataset size of 49). Furthermore, by using SISSO,
we identified the top 100 combinations of descriptors from the
original set. To summarize, we obtained 100 feature sets from one
train/test split and an overall 70000 scores from the sampling
(Fig. 4(f) and (g)). Here we plotted the distribution for all 100
splits. The peak in the distribution is around R* 0.5, which is
already an improvement within the data size we have. In Fig. 5(c)-
(f), predictions on two different splits are shown to show some
edge cases in the distribution. The selected descriptors are listed
below each panel. This result demonstrates that the performance
is strongly dependent on which specific train/test split is initially
selected. This strategy highlights that examining the overall
correlation across the dataset is insufficient to determine the
model’s suitability for future screening. The down-selection
approach can help pinpoint key descriptors, but its predictive
power remains uncertain since it relies solely on fitting the entire
dataset. Furthermore, for small and sparse datasets, evaluating
models across various data splits is crucial to assess their overall
predictive performance.
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Fig. 4 To show the effectiveness of SISSO, we plotted testing distributions using the following categories of descriptors: (a) group contribution method,

(b) molecular symmetry, (c) hydrogen bond strength, (d) Svib, volume, inter

action energy, (e) energy decomposition analysis. The green bars use all

descriptors, while the yellow bars are SISSO-reduced features. These are trained and tested on the sampled training and sets, and the distribution is based

on every possible train/test split. (f) and (g) 70 000 scores obtained from 1
calculated among 100 x 7 (7-fold cross-validation) x 100 (top 100 models f

3.5 Chronological assessment

Over the past few decades, the total sum of knowledge on
tetrahedral plastic crystal molecules has steadily increased. In this
section, we considered this accumulation of knowledge and posed
the question of, “How has our ability to accurately predict the
properties of solid-solid phase transformations between rotation-
ally ordered and disordered states evolved over time?” (if these
models had existed throughout time). To answer this question, we
re-trained the SISSO model at different points in time, including
the cumulative body of knowledge that was known at that point in
time, and evaluated the validity of that model on data that was
collected after that point in time. This test evaluates whether
certain periods of time introduced new functional groups that
complicate the overall prediction or if the measured experimental
values are relatively inaccurate. On the training side, we can
observe the evolution of the relative performance of the model
and whether a particular data set deteriorated the performance of
the model. On the testing side, we can estimate the difficulty of a
certain functional group not being within the training data, which
we expect makes the overall training harder. We tested on both
regression and classification tasks. For regression (Fig. 6(a) and

5964 | Soft Matter, 2025, 21, 5957-5968

00 train per test splits sampled from the whole dataset. The scores are
rom SISSO) sets.

(b)), the molecules associated with higher prediction losses in 1999
are highlighted above the plot. Specifically, 1,3-dichloro-2,2-
dimethylpropane and 2,2-dichloropropane are identified as pro-
blematic molecules for these models. For classification, a signifi-
cant drop in accuracy occurred in 2008, coinciding with the
addition of two molecules containing carbonyl groups. In 2019,
the accuracy declined again, primarily due to the very small size of
the test set. The trends in entropy and enthalpy predictions
indicate that the discovery of new plastic crystals and corres-
ponding experimental data generally improved the models pre-
dictive performance. From Fig. 6, we can tell that predictions after
1994 and 2005 started to show a decreasing trend in the prediction
loss, which corresponds to a training data size of 20 and 34.
Additionally, after the chloro-containing compounds are added to
the training set, the prediction loss decreases.

3.6 Correlation between selected features and model performance

From the top 100 models and 100 sampled train/test splits, we
generated 10000 combinations of features selected using
SISSO. We then counted the occurrences of certain descriptors
and color-coded them based on the corresponding model

This journal is © The Royal Society of Chemistry 2025
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Fig. 5 One train/test split prediction obtained from the regression task. Selected features are described below the plot. (a) and (b) Distribution that
shows features that are obtained from SISSO for regression. The scores are plotted to show which descriptors tend to give better performance.
Interaction energy, maximum hydrogen acceptor strength, dispersion, and average distances between central carbon and four functional groups are the
top four descriptors. (c) and (d) Examples showing a good prediction of both entropy and enthalpy. (e) and (f) Examples showing a poor prediction of both
entropy and enthalpy.

scores. The results are shown in the Fig. 5(a) and (b). Among molecular interactions between two molecules. As secondary
these descriptors, maximum acceptor strength, charge transfer, ranking descriptors, geometry-related descriptors are also com-
and dispersion energies are the top-performing descriptors. All monly selected, particularly those used for understanding the
these terms are related to either hydrogen bond strength or shape of the molecule.
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We conclude that electronic interactions and molecular
shapes are the top descriptors that correlate with transforma-
tional enthalpy and entropy, aligning with our observations
using an ftest down-selection method. For commonly seen
operating correlations, we identified two frequently observed
feature operations:

(1) Maximum acceptor strength - center of mass and

(2) Center of mass x Egispersion

Based on these observations, we can conclude both mole-
cular rotation and interaction between molecules are important
to transformational entropy. Although the relationship between
mass and dispersion energy is not entirely clear, their contribu-
tion to transformational entropy is significant enough to war-
rant inclusion in future training. Overall, by running 100
models, we identified the top candidates for future model
applications. Compared to other thermodynamic property
models, such as a predictive model for T,,°°°> our model
demonstrates several advantages. First, we present the perfor-
mance distribution across multiple train/test splits, ensuring
that the results are not biased by datasets that are easier to
learn. Additionally, our model achieves moderate performance
without incorporating melting temperature as a descriptor.
According to the literature, melting points are highly correlated
with the glass transition temperature, yet they are not easily
accessible features. In contrast, our model benefits from using
descriptors that can be computed theoretically, making it more
suitable for candidate screening. Finally, while some previous

5966 | Soft Matter, 2025, 21, 5957-5968

models achieve R* > 0.8°*° (with melting point as one of their
features), our model shows a peak performance around 0.7
(70% accuracy), which is an improvement over earlier T, pre-
diction models.**®

4 Conclusions

In conclusion, we have aggregated previously reported experi-
mental AS data for all previously reported carbon-centered
tetrahedral-like plastic crystal molecules. Using five types of
molecular descriptors, including DFT calculations, we have
demonstrated that both correlation matrix and SISSO
approaches can effectively reduce feature dimensions and
improve overall model performance. To show the effectiveness
of this approach, with sampled set testing, the performance
distribution is consistently right-shifted, regardless of which
descriptors are used. We used the same strategy for classifica-
tion, which resulted in an average of 0.7 accuracy. By plotting
the score and selecting features from each model, we were able
to obtain top performance descriptors. We have quantified the
impact of structural descriptors that are essential for develop-
ing predictive models and identified key mechanisms under-
lying the plastic crystalline transition: (1) hydrogen bond
strength and center of mass, and (2) center of mass and
dispersion energy in the dimer configuration. These descrip-
tors can be categorized into molecular interactions and mole-
cular shape. Both hydrogen bonding and dispersion forces

This journal is © The Royal Society of Chemistry 2025
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contribute to intermolecular interactions and are the dominant
forces in plastic crystalline materials, as demonstrated in
previous studies.’®'” Regarding the center of mass, previous
research has explored how variations in the moment of inertia
influence plastic crystal transitions, and our findings align with
these studies. These simple regression models provide valuable
insights for designing new plastic crystalline compounds with
tailored thermal properties, expanding the scope of materials
suitable for practical applications.
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