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Cornerstones are the key stones: using
interpretable machine learning to probe the
clogging process in 2D granular hoppers†

Jesse M. Hanlan, ‡a Sam Dillavou, ‡a Andrea J. Liu a and
Douglas J. Durian *ab

The sudden arrest of flow by formation of a stable arch over an outlet is a unique and characteristic

feature of granular materials. Previous work suggests that grains near the outlet randomly sample

configurational flow microstates until a clog-causing flow microstate is reached. However, factors that

lead to clogging remain elusive. Here we experimentally observe over 50 000 clogging events for a

tridisperse mixture of quasi-2D circular grains, and utilize a variety of machine learning (ML) methods to

search for predictive signatures of clogging microstates. This approach fares just modestly better than

chance. Nevertheless, our analysis using linear Support Vector Machines (SVMs) highlights the position of

potential arch cornerstones as a key factor in clogging likelihood. We verify this experimentally by

varying the position of a fixed (cornerstone) grain, which we show non-monotonically alters the average

time and mass of each flow by dictating the size of feasible flow-ending arches. Positioning this grain

correctly can even increase the ejected mass by 70%. Our findings suggest a bottom-up arch formation

process, and demonstrate that interpretable ML algorithms like SVMs, paired with experiments, can

uncover meaningful physics even when their predictive power is below the standards of conventional

ML practice.

Granular flows occur across natural and designed systems at a
variety of length scales. Whether the constituent grains are
pharmaceuticals,1 pedestrians,2 electron vortices in supercon-
ductors3 or agricultural grains,4 the flows are prone to clogging.
When the constituent grains pass through an outlet smaller
than several grain sizes, a stabilizing arch structure may
spontaneously form, preventing further flow. Clogging has
been studied extensively in controlled settings (hoppers),5–12

varying parameters such as grain shape, friction, and mechan-
ical stiffness, as well as outlet angle and shape.10,13–16 Never-
theless, signatures of imminent clog formation remain elusive.

There is substantial evidence that flow microstates involving
(D/d)n relevant grains near the outlet are sampled randomly
until one deterministically leads to a clog.11,12 Here, D/d is the
ratio of the outlet diameter to the grain diameter, and n is the
dimensionality of the system, indicating that these grains are
contained in an area (n = 2) or volume (n = 3) above the outlet,

not only in the arch. This model predicts a non-diverging form
of average mass ejected per flow event hMi p exp[(D/d)n], as
well as an exponential distribution of ejected masses, both of
which match experimental data well.11,12,17–19 Signatures of
these clog-forming flow microstates remain unknown, but
minimal differences between clogging in air and water suggest
that they are primarily determined by grain positions, rather
than momenta and contact forces.12

This picture suggests that the structure of clogging micro-
states is important to the clogging process. Machine learning
has been successful in identifying a link between local structure
and dynamics in disordered granular systems where particle
rearrangements play a key role, such as glassy liquids and
granular packings,20 and several types of disordered (granular)
solids.21,22 In these works, however, structure was used to
predict localized grain-scale rearrangements, which occur fre-
quently throughout the system. In contrast, clogging involves a
larger number B (D/d)n of grains, and occurs only once per flow
event. This makes the problem both less spatially localized and
more difficult to adequately sample.

Here we use machine learning tools to predict clogs from a
dataset of over 50 000 flow-to-clogging events obtained using an
automated hopper. We analyze positional and momentum flow
microstates and find that nonlinear deep learning methods or
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those that include grain momenta perform only marginally
better than linear, grain-position-only methods. All methods
completely fail to predict clogging until only a short time prior
to clogging (10s of ms, see ESI,† Appendix Predicting Individual
Clog Formation), supporting the picture of Poissonian sam-
pling of flow microstates.

Within that short time, the predictive accuracy of our
simplest model, a linear Support Vector Machine (SVM) given
solely positional information, is 58%. This is only marginally
higher than random guessing (50%), an unsatisfactory result by
prediction and benchmarking standards. Nevertheless, this
model identifies the precise location of potential cornerstones
of an arch as an important predictor of clogging. We confirm
that this correlational observation is causal using experiments
with a fixed cornerstone grain. This key grain controls the
ejected mass by dictating the range of possible flow-ending
arches.

Experimental system & data

We construct an automated quasi-2D hopper (‘autohopper’),
drawn schematically in Fig. 1a, to directly observe the config-
urations of grains throughout a flow. The transparent vertical
hopper is filled with a single layer of tri-disperse discs of
diameters dS = 6.0 mm, dM = 7.4 mm, dL = 8.6 mm, which we
will refer to as ‘grains’. These grains are laser-cut from anti-
static ultra high molecular weight polyethylene (UHMW PE)
sheets of mass density r = 0.94 g cm�3 and thickness h =
3.18 mm. The spacing between front and rear panes of plex-
iglass is 4.4 mm so that the grains are free to move but form a

monolayer with minimal out of plane displacement. The hop-
per itself is 22.7 cm wide and 50 cm tall, with fill height of
approximately 35 cm.

To begin an experiment, an exciter (green in Fig. 1) situated
near the outlet vibrates the hopper, dislodging the arch and
initiating flow. The grains then flow freely under gravity until a
clog spontaneously forms. The region near the outlet is mon-
itored by a digital camera (yellow) at 130 frames per second.
The system is considered stably clogged when no grains have
exited the hopper for 5 continuous seconds. For each image
taken, custom MATLAB code tracks each grain’s size (small,
medium, large) and location through time to �stracking =
0.14 mm precision (0.016dL). This is accomplished prior to
starting the next flow, so that tracking data rather than raw
video may be written to file to minimize storage requirements.
A representation of this process, as well as a stable arch of
grains, is shown in Fig. 1b.

Grains that pass through the outlet are directed into a closed
loop chute with a blower attached at the base (red in Fig. 1a). An
upward airflow recirculates grains to the top of the hopper,
removing the need for refilling, and allowing the experiment to
continue autonomously without intervention. The air flow is
placed sufficiently far and shielded from the outlet such that air
currents do not disturb grains in our region of interest, and
vents (see Fig. 1a) are placed at the top and sides of the hopper
to prevent circulating currents. We perform over 35 000 experi-
ments in this manner for a single outlet size, D = 3.86dL, and at
least one thousand experiments each for D = {3.61, 3.74, 3.98,
4.15}dL, over 7000 total. We additionally perform over 13 000
experiments with a fixed grain and outlet size D = 3.86dL

(Fig. 4).
We confirm a variety of standard granular flow behaviors in

ESI,† Appendix Hopper Phenomenology: the distribution of
flow events is exponential (Poissonian), the average event size
grows exponentially in (D/d)2, and the average discharge rate
follows the 2D Beverloo law. The large quantity of data captured
with the autohopper presents a wide range of analysis oppor-
tunities. For instance, the dataset contains enough flow
events to inform a multiplicative noise model that captures
the dynamics of the flow rate and the relative stability of
arches.23 However, for analysis in this work, we restrict our
machine learning dataset to a one outlet size, D = 3.86dL, and
use the 29 000 flows that last at least 0.23 seconds, or 10% of
the average flow length. The data for all flows and all outlet
sizes is accessible on the Dryad repository.24 We also provide a
Python script to automatically create folders of the expected
classes described in the following section.25

Machine learning analysis

We approach clogging prediction as a classification problem.
To do so, we introduce four classes of flow microstates, and
construct a labeled dataset as a ground truth. These classes are
Flowing, Clogging (flow states leading to a clog), Clogged
(a stable arch has formed), and Emptied (all grains have

Fig. 1 (a) Schematic of the automated hopper containing a tridisperse
mixture of quasi-2D circular grains (black). Stable arches are broken by an
exciter (green) placed behind and below the outlet (raised slightly for
visualization, see (b) for exact placement). Grains fall under gravity and are
recirculated to the top of the hopper by upward airflow (red) along the left
channel. The entire process is recorded by a camera (yellow) at 130 frames
per second. (b) Close up of the system near the outlet (left) and schematic
of data reconstruction (right). The data recording field of view (yellow)
extends beyond the top of this image. D indicates the width of the outlet,
which can be varied.
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stabilized). By definition these microstates are always experi-
enced in the listed order, though the time spend in each
category varies widely. We define these states starting with
the emptied state and working backwards. This procedure is
described in detail in ESI,† Appendix Labeling and Cleaning
Data, and briefly, along with six example flows, in Fig. 2. The
three machine learning tasks we attempt are to distinguish
Clogging, Clogged, or Emptied microstates from Flowing
microstates. We select our definitions to balance the difficulty
of the problem; for instance, we want our Clogging states to
involve flow so that the problem is not trivial, but not so far
before an arch forms that no prediction is possible. We find
modifying our definitions by shifting forward or backwards by
two frames does not meaningfully affect our results.

To be precise, our aim is to use only instantaneous informa-
tion contained in the microstate (positions, sizes, and
momenta of grains) to perform 3 binary classifications to
distinguish the Flowing state from the Clogging, Clogged and
Emptied states, respectively. Thus, our goal is to produce a
binary classification function that takes a microstate Oi as
input, and produces a single number Ci, which distinguishes
between two classes of microstates (e.g. Ci 4 0 for Clogging,
Clogged or Emptied, and Ci o 0 for Flowing). We compose a

function f with many adjustable parameters ~y, which we
optimize for this purpose using supervised machine learning.
Here we assume familiarity with this process, but for an
expanded description, see ESI,† Appendix Supervised Machine
Learning.

Our trainable functions f in this work are primarily linear
Support Vector Machines (SVMs),26 but we also train a Con-
volutional Neural Network (CNN)27,28 for comparison. We use
hinge loss26,29 for the SVMs and crossentropy loss27,28,30 for the
CNN, with further training details given in ESI,† Appendices
Supervised Machine Learning, SVM Cost Minimization and
CNN Reconstruction. We also briefly discuss analysis using
Graph Neural Networks (GNNs) in ESI,† Appendix Graph Neural
Networks.

In linear SVMs, f takes the form

f ðOiÞ~y ¼~y � ~GðOiÞ (1)

where each element of
-

G(Oi) represents a pre-defined feature of
microstate i. We have investigated several choices of G and
present the most informative, GDG (density grid), below, with
other choices described in ESI,† Appendix Alternate Analyses.
In short, each GDG measures the grain density in circular
windows arranged on a hexagonal grid, as shown in Fig. 3a.
More precisely,

GDG
n ¼

X

grains

Agrain \ An

An
; GDG

0 ¼ 1 (2)

with An = prwindow
2, and -An indicates the intersection with the

n-th circular window. GDG
0 = 1 gives the system an adjustable

offset. We calculate Gn independently for each grain size (small,
medium, large), but ultimately find very similar weights
assigned for each species. As such, we average significance
and feature maps across grain size when displayed in this work.

Fig. 2 Still images of six example flow events (rows), labeled by microstate type, which are identified in reverse-chronological order. In the final frame of
each experiment, which we label as Emptied (black, left), we identify final arch grains (highlighted). Moving back in time, the clogged frame (red) is the
moment in which the arch grains reach their final positions to within tracking precision. The clogging frame (yellow) is the last moment in which the sum
of gaps between final arch grains is greater than a small grain diameter dS. Note that only one frame per experiment is considered clogging. All states
before the clogging frame are considered flowing (green). The clogging microstate in the bottom row is 9 t to the right, where t is the average time
needed for flow microstates to decorrelate.
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We find varying the spacing and size of circular windows to
have negligible effect. For each binary classification, we train
our SVM using approximately 20 000 labeled microstates for
each class, and report accuracy of classification on a separate
test set of approximately 5000 microstates for each class.

Results

By conventional metrics, our methods perform well separating
flowing states from emptied states. However, separating flow-
ing states from either clogged or clogging states proves difficult,
reaching classification accuracies only modestly above chance
for the latter. Each of these accuracies are listed in Table 1,
along with results using other structure functions (GBP), and
with added velocity information. We also include results using
a far more flexible, nonlinear method, an 830 000 parameter, 35
layer CNN. The details of these additional methods (and several
more) are included in ESI,† Appendix Alternate Analyses. Even
the most successful method (CNN) is unable to distinguish
between Flowing vs. Clogging reliably, with a test accuracy of
only 61%. We discuss the limits of such a poor predictor in
detail in ESI,† Appendix predicting individual clog formation.
Strikingly, accuracies for this task vary by only 4% across these
methods. Given this similarity of test accuracy, we focus on the
linear SVM that characterizes structure using the density grid.
Its simplicity allows us to interpret solutions, and to directly
identify structural factors important in clog formation.

The final weights ~y in the linear SVM have specific spatial
importance, that is, they denote the locations in which the
presence of a grain correlates with increased likelihood of a
given state, for example Clogging. However to understand our

solutions, we must visualize not simply the weights, but the
average effect this weight has when applied to the training
data. Put another way, the features with greatest variance in
their contributions sj

2 = var[yj� GDG
j (Oi)]trainingset are those with

greatest impact on the decision function, and therefore the
most important. We plot feature significance aj = sign(qj)sj

2

spatially in Fig. 3b–d. A direct comparison between feature
weights y and feature significance a can be found in ESI,†
Appendix SVM Cost Minimization.

Despite modest predictive accuracy of the SVM, the feature
contributions still give insight into spatial factors of clog
formation. First, the prediction of Emptied vs. Flowing states
gives an unsurprising feature map in Fig. 3b, where grains
(likely falling) in the outlet suggest an emptied state is extre-
mely unlikely. The Clogged vs. Flowing feature significance
map in Fig. 3c suggests a relevance of the overall grain density
gradient. This may be a means of sensing a slowing flow,
occurring at this stage. The fact that velocity information
significantly improves the accuracy only of the Clogged predic-
tion fits nicely with this interpretation (see Table 1).

Notably, when predicting clogging states (Fig. 3d) we see
high-valued blue and red regions next to each other at the edges
of the outlet. This indicates that moving a cornerstone grain
slightly to the right or left might change the prediction drasti-
cally. These results suggest that the lateral movements of a
single grain in this location may have out-sized importance in
clog formation. It is this mechanism that we confirm experi-
mentally in the next section. Further discussion of these
significance maps, as well as those using the alternative (Beh-
ler–Parrinello31) structure functions are included in ESI,†
Appendix Alternate Analyses and Fig. S4.

Guided by our machine-learned solutions, we experi-
mentally measure the impact of ‘cornerstone’ grain position.
We place a fixed grain (magnet) of diameter dFG = dM on the
floor of the hopper near the outlet, as shown by the drawings in
Fig. 4a. This grain is held in place by another magnet on the
exterior of the hopper. We define its position x to be zero when
the grain is centered over the right-hand outlet boundary, and
positive when moved to the right (away from the opening).
We perform over 7500 experiments with a fixed grain, excluding
any flows where we detect any movement of this grain from
analysis (fewer than 200).

Fig. 3 Density grid feature (GDG
j ) locations (a) and their significance aj for each of the three binary classification tasks: (b) Flowing vs. Emptied, (c) Flowing

vs. Clogged, and (d) Flowing vs. Clogging. Features in blue (red) indicate presence of grains in that region is predictive of a flowing (emptied/clogged/
clogging) state. The intensity of the color indicates the magnitude of the effect. The areas where individual grain positions matter most are where the
gradient of these feature contributions in space is sharpest, as in the region immediately next to the outlet in (c) and (d). Note that grains occupying
overlapping feature regions in (a) are counted in both regions.

Table 1 Binary classification accuracy of four machine learning methods
distinguishing clogging, clogged, and emptied states from flowing states.
Superscripts DG and BP are for Density Grid and Behler–Parrinello struc-
ture functions, respectively

Method Clogging (%) Clogged (%) Emptied (%)

Linear SVM, GDG 58 70 95
Linear SVM, GBP 57 68 95
Linear SVM, GDG (+velocity) 59 78 99
Convolutional neural network 61 84 99

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

6/
07

/2
5 

08
:3

0:
18

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sm00367a


This journal is © The Royal Society of Chemistry 2025 Soft Matter

We find a strong and non-monotonic relationship between
the position of the fixed grain x and the resulting average mass
flow hMFGi, as shown in Fig. 4a. Strikingly, even when the grain
does not obscure the outlet (x 4 0.5dFG), its placement may
change the average ejected mass by a factor of almost three,
including increasing its value above the no fixed-grain case
(dashed line in Fig. 4a) by 70%. The mechanisms underlying
these effects can be understood by visualizing the average final
arch grains at several values of x, as shown in Fig. 4b.

When obscuring the outlet (small x, Fig. 4b1), the fixed grain
serves as the cornerstone of the final arches, which are rela-
tively narrow. As x is increased, the region between the corner-
stone and outlet becomes excluded space, unable to stably
admit another grain, resulting in wider and wider arches
(Fig. 4b2) and increased ejected mass. At larger distances from

the outlet x 4 (dFG + dS)/2 B 0.9dFG, the fixed grain allows for
free-flowing grains to act as a stable cornerstone, resulting in
narrower arches (Fig. 4b3) and reduced ejected mass once
again. As x increases further, the fixed grain continues to
indirectly dictate cornerstone position, even when it is multiple
diameters away from the outlet (Fig. 4b4 and b5). At this stage,
the effect of x is reduced, which we attribute to the random
availability of differently-sized cornerstones. Overall, we find a
clear correlation between average arch width and the average
ejected mass, as shown in Fig. 4c. Thus, the non-monotonic
dependence of flow rate on fixed grain position x (Fig. 4A) is
explained as follows. x affects average arch width non-
monotonically due to commensuration effects (Fig. 4B), and
arch width monotonically affects average ejected mass hMi.
This observation dovetails nicely with the Thomas and Durian
model,11 as wider arches require a larger area of grains to
cooperate. As a result, there is a smaller likelihood of clogging
per sampling time. We find that arches formed in the presence
of a fixed grain are slightly wider and significantly taller than
those generated without one, as shown in Fig. 4d, perhaps a
result of the additional stability of the fixed grain.

Discussion

We have constructed an automated quasi-2D hopper, and
performed and analyzed tens of thousands of clogging experi-
ments. By labeling four classes of behavior (Flowing, Clogging,
Clogged, Emptied), we cast clogging prediction as a machine
learning (ML) classification problem. We have attempted a
wide variety of classification methods, including many varia-
tions of SVMs, high-dimensional linear regression, several
CNNs, and Graph Neural Networks (GNNs). We have also
included velocity information, modified the scale of binning
of features, and more. Methods not included in the main text
are described in detail in ESI,† Appendix Alternate Analyses.
CNNs are the most successful (61% prediction accuracy) but are
not appreciably better at distinguishing flowing from clogging
states than our linear SVM (58% prediction accuracy). Neither
of these does much better than random guessing (50%).
We note that ML is typically recommended for problems in
which data is plentiful. But there are many condensed matter
systems like ours, in which phenomena of interest depend on a
very large number of relevant microscopic parameters, not all
of which are known. For these systems, experimental data is
usually far too sparse to cover that high-dimensional space. So
perhaps it is not surprising that, by usual prediction or bench-
marking standards, we fail to predict imminent clogs. Further,
it is possible that the information required to accurately predict
clogs is simply not contained in the images fed to our models.
This is in contrast to standard ML problems where the infor-
mation is definitively present (e.g. distinguishing cats and
dogs). We note that our model predictions began to achieve
their reported accuracy with approximately 10 times less data
than was used in this study, potentially suggesting that our
dataset provides no useful information beyond that scale.

Fig. 4 Effect of fixed grain. (a) Mean ejected mass hMFGi as a function of
fixed grain position x relative to the outlet edge. Mass and position are
normalized by average ejected mass without a fixed grain hMNi and
diameter of the fixed grain dFG = dM, respectively. Numbered datapoints
correspond to maps in (b). (b) Averaged final arches for several x values, as
well as with no fixed grain (last panel). The relevant fixed grain location is
drawn in solid color. (c) Normalized ejected mass vs. averaged arch width
(horizontal distance between cornerstone centers) normalized by outlet
size D. Note that the small gray squares correspond to no fixed grain with
different outlet sizes, but with width still normalized by the same value. (d)
Arch height vs. arch width, both normalized by outlet size D. Height is
calculated as the vertical distance from the outlet to the highest grain
center.
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Of course, our numerous attempts do not prove there is no
better solution, and we encourage other researchers to try their
hand in improving upon our benchmarks. To facilitate such a
competition we make our data available at.24 Additionally, we
have detailed a variety of alternative analyses on this data and
potential pitfalls in ESI,† Appendix Future Directions. One
notable pitfall is the imposition of too much coarse-graining,
including prematurely enforcing symmetries, even those
imposed by the boundary conditions (such as left/right sym-
metry). In optimization problems it is often helpful to have
additional degrees of freedom to find the solution, even if they
are ultimately not required.32 We note that our models were
trained only on one outlet size, making it prudent for them to
ignore the (unchanging) outlet pixels and thus unlikely that any
will generalize. However, our physical understanding of the
SVM predictions (Fig. 4) suggests that models able to capture
cornerstone position relative to the outlet (e.g. a CNN) could
predict similarly well across outlet sizes, if provided the right
training data.

In this study we ran headlong into another inherent limita-
tion of ML analysis besides its voracious need for data. Because
finding good solutions often requires over-parameterization,32

solution weights ~y typically contain spurious variation; there-
fore, one can only claim that predictive information is present
somewhere in the data. This type of claim is not without its
scientific uses,33 however it does not, in itself, provide mecha-
nistic understanding. Moreover, ML analyses (Fig. 3) are corre-
lational, meaning that even high prediction accuracy provides
an insufficient basis for any causal claims.

Despite this, we have uncovered new physics. In particular,
by inspecting the features of greatest significance in our
simplest method, a linear Support Vector Machine (SVM), we
were able to identify that grains in the region immediately
adjacent to the outlet are potentially critical to the onset of clog
formation. To test this hypothesis directly, we performed a
series of experiments with fixed grains in this key position.
While many studies have modified outlet width, angle, and/or
shape,5,10–16,34,35 or added ‘floating’ obstacles above the
outlet,36,37 our experiments are distinct in that they sample a
subspace of plausible positional microstates when no fixed
grain is present. This allows us to probe the enormously
high-dimensional dynamics of clog formation efficiently. For
instance, it allows us to make some rare states (e.g. the wide
arches in Fig. 4b2), common, and therefore far easier to study.
Further, our method allows us to make causal claims about key
grains affecting clog formation, which is unlike perturbing or
analyzing already-stable arches,23,38,39 where only counterfac-
tual arguments about formation may be made (e.g. were this
arch to form differently, it wouldn’t clog).

These experiments showed that the position of the ‘corner-
stone’ grain has a large effect on ejected mass, potentially
increasing it by 70%. Finally, we found that this relationship
stems from the cornerstone grain’s ability to dictate the size of
final arches, and thus the clogging likelihood. Our results
suggest a two-step process for clog formation. First, the base
grains dictate the available space of stable arches, whose

ultimate widths do not vary dramatically (see Fig. 4b). Second,
grain microstates are sampled until one forms a clog, with
likelihood monotonically decreasing with arch width (see
Fig. 4c). The first step (base width) is continually resampled
during a flow, resulting in draws from the probability distributions
in the second step (arch formation) at width-dependent rates.

Conclusions

These results have implications for practical hopper design,
and suggest a rich set of open questions about this and other
granular-flow systems. For instance, our system (and others like
it) encounters meta-stable arches frequently, only to sponta-
neously resume flow.23 Might portions of the outlet region be
continually finding rigid substructures, only to have them fall
apart due to lack of cooperation? Does limiting the subspace of
possible arches (Fig. 4b) explain other non-monotonic depen-
dencies in similar systems, such as mass ejected as a function
of silo width (not outlet width)?40 In a larger view, what is the
relative importance of microstate sampling (finding an arch) vs.
arch stability? Further work with multiple fixed grains might
prove useful here, by limiting the arch structures available.
Such experiments might also allow more detailed investigation
of the ‘‘second step’’ discussed above, where perhaps the
second layer of grains selected in an arch also obeys an
observable probability distribution.

In sum, our results give causal insight into clogging, a rare,
nonlinear, collective event that is influenced by poorly under-
stood processes like frictional aging.33 This provides a heart-
ening lesson for utilizing machine learning in scientific
exploration: even when ML methods fail to make accurate
predictions, their ability to find high-dimensional correlations
can guide experiments on a broad range of complex phenom-
ena across many fields.
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