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Using changes in speciation in a dynamic combinatorial library as 
a fingerprint to differentiate the methylation states of arginine†

Alexandria G. Mullins,a Lauren E. St. Louis,a and Marcey L. Waters*a

Herein we describe the development of a sensor array that utilizes 
the complex response of a dynamic combinatorial library (DCL) to 
discriminate all of the methylation states of Arg, previously 
unreported in a sensor array, as well as the methylation states of 
Lys. We find that the use of all species in the DCL, not just those 
that bind, allows for discrimination of analytes that are otherwise 
indistinguishable, demonstrating the value of utilizing a complex 
network of species for differential sensing.

Given their importance in epigenetic regulation of gene 
expression, there is great interest in sensing histone post-
translational modifications (PTMs), including methylated lysine 
and arginine.1–3 Recently, a number of synthetic hosts have 
been developed that bind methylated Lys4–15 and Arg7,16,17. 
Several of these synthetic receptors have been used in 
differential sensor arrays to distinguish the methylation states 
of lysine,18–21 but little work has focused on the sensing of 
methylated arginine,19,20 despite the increasing implication of 
methylated Arg in a wide variety of diseases (Fig. 1).22,23 
Differential sensing,24 sometimes referred to as “artificial nose” 
sensing, exploits several sensors to distinguish between a series 
of analytes via pattern recognition rather than relying on one 
selective “lock-and-key”25 receptor. Typically, a 
solvatochromatic dye is found that binds to a synthetic receptor 
such that displacement of the dye by the analyte provides a 
signal, called an indicator displacement assay (IDA).26 
Combining several of these IDA sensors provides a unique 
pattern of signals, or fingerprint, for each analyte. While this 
approach is easier than achieving highly selective synthetic 
receptors, the need to identify and characterize a group of 
synthetic receptors with a range of binding properties and a 
corresponding solvatochromatic dye that functions in the right 
affinity range requires a significant commitment of time and 
resources (Fig. 2a). 

We describe in this report a generalizable strategy for 
sensing the methylation states of Arg and Lys with two 

significant advantages. First, this is the first sensor array capable 
of differentiating all of the methylation states of Arg, including 
the sensing of Rme1, which has not previously been 
accomplished. Second, this work provides a significantly 
streamlined workflow relative to traditional sensor arrays using 
changes in speciation in a dynamic combinatorial library (DCL)27 
directly as the fingerprint as described below (Fig. 2b and c).
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Fig. 1. Structures of the methylation states of Lys and Arg.

Dynamic combinatorial chemistry (DCC)27 has proven to be 
a useful tool towards the development of differential sensor 
arrays, including development and isolation of synthetic 
receptors for traditional sensor arrays,3 assessment of 
molecular similarity28 and changes in the environment, such as 
pH and ionic strength.29 The power of DCC to identify 
biologically-relevant analytes has also been demonstrated using 
metal-dye displacement30 and covalent capture,31 though these 
are not generalizable methods for sensing DCL analytes as most 
DCLs depend on noncovalent binding. We argue that a 
generalizable method for sensing DCL analytes has been 
accessible using the changes in speciation of DCLs as a 
fingerprint for identifying analytes, yet the power of this 
approach has been largely untapped (Fig. 2). Thus far, this 
strategy has only been reported for oligocarboxylates in 
DMSO.32,33 The selective molecular recognition of analytes in 
water is a challenge34 that continues to hinder the sensing of 
many biological analytes of interest. Therefore, a method that 
could be applied generally without the need to identify and 
isolate receptors could significantly decrease the burden of 
creating sensors for hydrophilic analytes in water.
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Fig. 2. The workflow for development of a traditional (a) and  DCL-based sensor array(b 
and c): identification of a responsive DCL by HPLC, measurement of amplification factors 
(AFs) from the HPLC traces of DCLs, and generate a PCA score plot.

The methylation states of Arg have been a particularly 
challenging set of analytes to distinguish from each other and 
methylated Lys in water due to their similar size and 
hydrophilicity. To date, sensor arrays for methylated Lys have 
been developed using calixarenes, cavitands, and cyclophanes 
via the well-established IDA approach described above,3–17, but 
the bowl-shaped nature of these receptors provide poor 
binding to methylated Arg. To address this deficiency, we 
recently reported the isolation and characterization of a new 
high affinity, high selectivity synthetic receptor for asymmetric 
dimethylarginine (Rme2a), N2G2, which we identified from a 
dynamic combinatorial library (DCL).16  DCLs are libraries of 
potential receptors under thermodynamic control, in which 
addition of an analyte perturbs the equilibrium to amplify 
receptor(s) that bind to it.27  However, rather than pursuing a 
traditional sensor array as described above to achieve 
methylated Arg discrimination, we realized that the DCL itself, 
which was used to identity N2G2, provided differential sensing 
directly, as three unique receptors were amplified to various 
degrees in the presence of different methylation states of Arg 
and Lys (Fig. 2).

This approach provides rapid entry into differential sensor 
arrays by using the amplification factors (AFs) of the species in 
the library, as determined by HPLC integration, as the 
fingerprint using principal component analysis (PCA),36 without 
requiring synthesis and isolation of the receptors or 
identification of a responsive dye. Moreover, we find that 
inclusion of data from nonbinding species can improve sensing, 
demonstrating the added value of information from the entire 
network of species, not just those that bind, to differentiate 
analytes. This approach can in theory be applied to any DCL for 
any analyte that has demonstrated a change in speciation.

Recently, we reported a DCL using monomers E, G, and N 
that exhibits unique amplification of four different receptors, 
depending on the guest: while N2G2 was amplified only in the 
presence of Rme2a, two isomers of ENG2 were amplified in the 
presence of both Rme2a and Rme2s, while a fourth receptor, 
EG3, was amplified in the presence of Kme3 (Figure 3).16  

Fig. 3. The dynamic combinatorial libraries (DCLs) 16 of monomers E, G, and N used to 
generate an identifiable fingerprint for PTMs based on changes in the amplification 
factors of macrocycles EG3, ENG2, N2G2, and G4•G4 (highlighted in gray).

To determine whether these DCLs could be used directly for 
differential sensing, we first evaluated eight short XGGY 
peptides typically used for discovering new receptors, 
representing each of the possible methylation states of Lys and 
Arg (Table S1). All DCLs were equilibrated in 50 mM sodium 
borate buffer (pH 8.5) for 36 or more hours to allow full 
equilibration with 1.35 mM peptide guest, 0.34 mM E, 0.67 mM 
G, and 0.34 mM N. We then calculated the AFs for EG3, ENG2, 
and N2G2 with each peptide guest. The concentration of each 
receptor is determined by integrating the corresponding peak 
area, and amplification factors are calculated by dividing the 
concentration of each receptor in the templated library by the 
concentration in the untemplated library.37 This data was 
analyzed by principal component analysis (PCA), an 
unsupervised multivariate statistical tool, to generate an easy-
to-read representation of the data.36 Each DCL was measured 
four times to provide four data points. We achieved excellent 
discrimination between each of the PTMs at 95% confidence 
(Fig. 4a), including Rme1 which has not previously been 
distinguished by a synthetic receptor or sensor array. Only the 
unmethylated Lys and Arg peptides exhibit some overlap of 
their 95% confidence ellipses. The vectors for each receptor 
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that was monitored (EG3, ENG2, and N2G2) show the extent to 
which the amplification of each receptor contributed to 
distinguishing the PTMs. In agreement with the differences in 
amplification, the methylation states of lysine appear to be 
primarily discriminated by EG3, and the methylation states of 
arginine by ENG2. The unique selectivity of N2G2 for Rme2a 
provides an additional factor for selectively, differentiating the 
mass-degenerate PTMs Rme2a and Rme2s. These results 
demonstrate the ability to achieve a selective sensor array using 
only three exchangeable monomers and their corresponding 
HPLC traces. 

We then probed the ability of this technique to differentiate 
longer, more biologically relevant peptide sequences from the 
H3 histone protein (Table S1). We included peptides with Arg 
methylation at position 8 or Lys methylation at position 9 
(Figure 4b). We also optimized an HPLC method from the 
original 60 minute method used for the XGGY peptides to a 
shorter 15 minute method (Fig. S11). Each of the methylation 
states of Lys and Arg in the R8K9 peptides are still differentiated 
at 95% confidence, including R8K9, R8me1, and K9me1. This is 
the first sensor array that has been shown to differentiate these 
three lower methylation states of Lys and Arg, and exhibits the 
power of the method, as none of the receptors is significantly 
amplified in the presence of these three peptides. Additionally, 
we demonstrated that separation was still observed between 
R2K4, R2me2a, and K4me3 at 10-fold lower peptide 
concentration (Fig. S15). Furthermore, we found that the sensor 
array can be used to quantify mixtures of analytes, such as 
different ratios of R2K4 and R2me2a, as would be needed for an 
enzyme assay18,21,38 (Fig. S16).

We further analyzed whether the DCL could differentiate 
the same modification at different positions in the histone 
sequence, which is more challenging, by also evaluating 
peptides with Arg methylation at position 2 or Lys methylation 
at position 4 (Table S1 and Fig. 4c). The PCA plot successfully 
differentiated R2me2a and R8me2a as well as K4me3 and 
K9me3, demonstrating the ability to distinguish the position of 
the PTM without the need for LCMS despite the significant 
similarities in the sequences. We also investigated peptides 
with more than one PTM, and found that R2me2aK4me3 and 
R2me2sK4me3 can be differentiated from each other as well as 
from their corresponding singly modified peptides based on 
integration of the DCL (Fig. 4c). However, R2me2s and R8me2s 

were indistinguishable using the sensor array based on EG3, 
ENG2, and N2G2. 

Next we investigated whether there was more information 
in the system that could aid in differentiation of R2me2s and 
R8me2s. Monomer G is well known to form a G4•G4 catenane 
in the absence of a template,39 and this is observed in the 
untemplated library of monomers E, G, and N. We noted that 
this species decreases to different degrees in response to 
various analytes as monomer G is incorporated in different 
amplified species.  We hypothesized that the decrease of G4•G4 
could provide an additional fingerprint for each analyte even 
though it does not bind them directly. Remarkably, while 
R2me2s and R8me2s are indistinguishable without inclusion of 
the G4•G4 AFs, incorporating the AFs for the G4⸱G4 region 
significantly improved discrimination between R8me2s and 
R2me2s at 95% confidence (Fig. 5), with complete separation 
with 83% confidence ellipses (Fig. S17) by increasing the 
contribution of the PC2 component.36  The ability to 
discriminate two analytes by inclusion of a response from a non-
binding species to increase differentiation exemplifies the 
advantages of using a responsive network as a sensor array. This 
approach makes use of the complex information provided by 
the changes in speciation beyond the typical binding/no binding 
output. 

Fig. 5. PCA score plots demonstrating differentiation of histone peptides containing 
Rme2s without (a) and with (b) AFs calculated from the non-binding species G4⸱G4 in 
the DCL. Confidence ellipses drawn at 95%. Matrix generated using AFs calculated from 
EG3, ENG2, N2G2, as well as G4⸱G4 peaks in (b). Brown arrows represent the contribution 
of each receptor to the principal components.

In summary, we have demonstrated a generalizable method 
for achieving sensor arrays for methylated Arg and Lys by 
directly exploiting the differences in speciation as measured by 
HPLC resulting from differential amplification of a dynamic 
combinatorial library. Using a single library of only three 
monomers, we demonstrate the ability to differentiate 11 

Fig. 4. PCA score plots for different sets of analytes using AFs calculated from EG3, ENG2, and N2G2 peaks with confidence ellipses drawn at 95%. Brown arrows represent the 
contribution of each receptor. (a) A PCA score plot for XGGY tetramer peptides. (b) A PCA score plot for histone peptides with methylation at R8 or K9 demonstrating methylation-
state selectivity. (c) A PCA score plot for histone peptides with methylation at R2, R8, K4 and/or K9 demonstrating site selectivity. 
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different combinations of PTMs, including position dependence 
and multiple PTMs in the same peptide. This is the first example 
of a sensor array capable of discriminating Rme1 from 
unmethylated or dimethylated Arg, a PTM linked to cancer and 
neurodegenerative disease.22 This approach provides a 
significantly shorter workflow than for IDA-based sensor arrays 
for histone PTMs, without the need to design, isolate, and 
characterize selective receptors, and identify an appropriate 
solvatochromatic dye to achieve a sensor array. While it is not 
as high-throughput as a fluorescence or UV-vis based method, 
it is a general method that can be used for many DCLs in a rapid, 
straight forward manner, requiring only a unique pattern of 
amplification of the species in the library for different analytes. 
Furthermore, by using the DCL itself to discriminate unknowns, 
we make use of the rich chemical information encoded in the 
network of interconverting species, including species that do 
not bind to the analyte of interest, demonstrating the power of 
this Systems Chemistry approach. 

This material is based upon work supported by the National 
Science Foundation (CHE-1608333).
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