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Physical Chemistry Chemical Physics

Full-Dimensional Schrodinger Wavefunction Calcula-
tions using Tensors and Quantum Computers: the
Cartesian component-separated approach

Bill Poirier** and Jonathan Jerke?

Traditional methods in quantum chemistry rely on Hartree-Fock-based Slater-determinant (SD)
representations, whose underlying zeroth-order picture assumes separability by particle. Here,
we explore a radically different approach, based on separability by Cartesian component, rather
than by particle [J. Chem. Phys., 2018, 148, 104101]. The approach appears to be very well
suited for 3D grid-based methods in quantum chemistry, and thereby also for so-called “first-
quantized” quantum computing. We first present an overview of the approach as implemented
on classical computers, including numerical results that justify performance claims. In particular,
we perform numerical calculations with four explicit electrons that are equivalent to full-Cl matrix
diagonalization with nearly 10'> SDs. We then present an implementation for quantum computers
for which the number of quantum gates (and to a lesser extent, the number of qubits) can be
dramatically reduced, in comparison with other quantum circuitry that has been envisioned for

implementing first-quantized “quantum computational chemistry” (QCC).

1 Introduction

The importance of quantum chemistry simulations™# across a

broad swathe of science and engineering lies beyond question. In
the field of quantum computational chemistry (QCC)—i.e., quan-
tum chemistry run on quantum computers="3>
date have attempted to simply “translate” as much as possible
of the standard electronic structure methodology, developed over
many decades for classical computers. Given the vast and funda-
mental differences between quantum and classical architectures,
however, this may not be the most profitable or natural approach.

In particular, standard methods (what in QCC parlance are
called “second-quantized,” in a sense to be defined shortly) rely
on Hartree-Fock (HF) (or other) Slater-determinant (SD) basis set
representations. 1*3{2827135 The underlying zeroth-order picture
assumes separable products of single-particle molecular (spin)-
orbital functions. Depending on the further approximations used
by the particular implementation, standard methods are typically:

L_most efforts to

(a) not always reliably accurate for strongly correlated systems
(except in a full-CI matrix calculation that can be difficult to
achieve in practice).

(b) generally not designed to compute many accurate excited
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electronic states (i.e., tens or hundreds of states, including
position-dependent wavefunctions).

(¢) usually (but not always=%) applied only to the pure elec-
tronic structure for a given molecular geometry, not to
the combined electron-nuclear motion quantum many-body
problem describing the total molecule.

(d) not universally regarded as the most competitive candidates
for long-term, full-fledged quantum computation.

By “full-fledged quantum computation,” we mean calculations
that are performed entirely on a bona fide quantum computer,
without assistance from a classical computer.
refers to fault-tolerant error-corrected quantum computing, on
a scale that lies beyond the reach of present-day NISQ (noisy
intermediate-scale quantum) computing hardware 2738

In the QCC context, standard second-order methods are cur-
rently being pursued as an important near-term strategy—
e.g., for use on hybrid quantum/classical computing plat-
forms. 2422128129351 By jts nature, hybrid computing is limited
in terms of “quantum supremacy” 131831135
computing well beyond the capabilities of the most advanced
classical computers. For the long term, it has been argued
by some well-known leaders in the field that the most ef-
fective QCC algorithms are likely to be first-quantized strate-
giesBHISI20-23I2631I35_j o those that rely on explicit coordinate-
grid-based representations of the entire electronic (or electron-

“Long term”

—by which is meant

Journal Name, [year], [vol.], 1{1g| | 1



Physical Chemistry Chemical Physics

nuclear) wavefunction, across all system coordinates. Some rea-
sons for this assessment are presented below, although the inter-
ested reader is directed to the references above for further ex-
plication. In any event, the “jury is still out” until such time as
fault-tolerant quantum computers have come on the scene—by
which point there will undoubtedly be further algorithmic devel-
opments that will have taken place as well.

Note that we are using “first-” and “second-quantized” in the
QCC sense, 28127135 which differs slightly from standard electronic
structure usage,1"® as has caused some confusion in the past.
To make matters worse, in the QCC context, the term “first-
quantized” can also be used to describe plane-wave and more so-
phisticated basis set representations, similar to the molecular or-
bitals of the second-quantized approach. However, insofar as QCC
and this paper are concerned, the defining feature of any “second-
quantized” calculation is its reliance on an SD basis representa-
tion. First-quantized methods are not constrained in this manner,
and not subject to the limitations (a) through (d) above. Further
clarifying discussion on first- vs. second-quantized calculations,
and the CCS approach, may be found in the Appendix.

In comparison with second-quantized methods, the chief draw-
backs of first-quantized methods are that: (i) much larger basis
set sizes are typically needed to represent the electronic wave-
function (at least for grid-based representations), and; (ii) an-
tisymmetry is not “built in” from the start, but most be explic-
itly imposed. These present very substantial obstacles on classi-
cal computers, so much so such that to date, only a few serious
attempts have been made to develop viable first-quantized elec-
tronic structure methods (mostly in the context of two-electron
basis functions or geminals).22#3 The primary reason is the im-
plied exponential scaling of computational resources with respect
to the number of particles (N), or system dimensionality (3N).

On true quantum computers, however—at least as they are cur-
rently envisioned to exist within a few years—neither drawback
(i) nor (ii) above is expected to be especially daunting. With
regard to (i), the exponential scaling becomes linear scaling, in
terms of the “space complexity,” or total number of logical qubits
required to store the wavefunction. More specifically, storing the
wavefunction will require something like 3Nn logical qubits (ig-
noring ancilla qubits, error correction qubits, etc.), with a min-
imum of n ~ 7. Likewise, the “gate complexity” or algorithmic
scaling is at worst O(NZ) As for (ii), this is taken up in Sec.

It has also been argued that first-quantized calculations are
more accurate than second-quantized (apart from full-CI) calcu-
lations, as fewer approximations and assumptions are used.2373>
Even if largely true, this author is not fully convinced by such ar-
guments; in particular, grid-based calculations can introduce er-
rors of their own—e.g., via quadrature approximation#4=20 (see
also Sec.[4.2). On the other hand, it is certainly true that remov-
ing the SD constraint from the basis set opens the door to new
types of highly efficient representations for handling strongly cor-
related systems, as deserves further exploration (Sec. [2.3).

First-quantized methods also enable direct treatment of the
combined electron-nuclear motion quantum many-body prob-
lem®? (although recently, second-quantized methods have also
been modified to do s0=%). This feature turns out to be vitally im-

2| Journal Name, [year], [voI.],1

portant in the QCC context, owing to the fact that separate elec-
tronic and nuclear motion calculations require large-dimensional
potential energy surfaces, whose explicit calculation itself scales
exponentially—even on a quantum computer. 141735

On the other hand, the tremendous promise of first-quantized
QCC is mitigated by the limits of present-day NISQ hardware,
which can accommodate no more than ~100 or so qubits in to-
tal®>_—to say nothing of gate complexity and depth restrictions
imposed by current gate fidelities.22127128135137I38511 For realis-
tic QCC applications, the circuit complexities required by first-
quantized methods are still beyond what can be accommodated
in the near-term future. Nevertheless by developing better first-
quantized QCC algorithms today—i.e., with improved scaling,
higher accuracy, fewer required qubits and quantum gates, etc.—
we will arrive that much sooner at the desired tomorrow.

Recent efforts in first-quantized QCC development have con-
centrated on improving scaling and scalability;22/24H20128135 51
on efficient strategies for implementing the requisite unitary
evolutions [e.g., linear combination of unitary (LCU) opera-
tors]. 2613515254 Additionally, Galerkin discretization offers a rig-
orously variational approach with respect to basis size, 2426132 by
eliminating all quadrature error. Such techniques represent the
current state of the art, even when grid or plane-wave representa-
tions are used (second-quantized QCC has met with more success,
to date, in terms of specialized orbitals/basis sets12/2735[541560)

The present work approaches first-quantized QCC from a com-
plementary direction—by exploiting alternate representations
that require fewer qubits, and that also give rise to quantum
circuits with far fewer quantum gates. Specifically, we employ
a radically different, tensor-product representation of the exact
Coulomb potential energy operators, based on separability by
Cartesian component rather than by particle.225758/ The resul-
tant “Cartesian component-separated” (CCS) approach is first-
quantized (by the definition given above), and otherwise turns
out to resolve all of the limitations (a)—-(d) (as listed above).

On classical computers, the CCS tensor-product representa-
tion of the Hamiltonian may be combined with a similar tensor-
product form for the wavefunction—giving rise to a highly effi-
cient computational quantum chemistry scheme, exhibiting many
orders-of-magnitude reduction in numerical effort, as compared
to explicit representations. Using only grid or plane-wave basis
sets, classical CCS calculations have been performed to compute
multiple excited electronic states (including wavefunctions) for
atoms up to lithium, 2722 for other central-force applications with
non-Coulomb interactions,>® and for strongly correlated electron
gases with up to N = 4 explicit electrons.®Y"®3 The method is also
currently being applied to solve the combined electron-nuclear
motion problem! 1417035 (for H2+ o4 and H, 631,

To further demonstrate the feasibility of the classical CCS ap-
proach, we perform here an explicit N = 4 calculation of the
“harmonium” central-force system,8:€0768 ysing only a plane-
wave representation. The underlying basis size required is
astronomical—i.e., N ~ 10'3. This calculation may be compared
with a full configuration interaction (full-CI) matrix diagonaliza-
tion conducted using a similar number of SD basis functions, and
with M ~ 5000 single-particle (spin-)orbitals. Such classical CCS
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calculations are important not only in their own right, but also
to establish accurate benchmarks for future first-quantized QCC
calculations—particularly those using grid or plane-wave basis
representations. For example, from such classical CCS calcula-
tions, we can estimate that something like n =~ 7 logical qubits
will typically be required per degree of freedom (Sec. [4.1)).

On the other hand, the classical CCS calculations conducted
to date may all be regarded as “preliminary,” in the sense that
they have all used a very poor choice of basis that does not
exploit CCS’s primary advantages vis-a-vis correlation. In this
paper, for the first time, we set the theoretical stage for “op-
timized” CCS representations (analogous to Hartree-Fock) that
take maximum advantage of correlation, and may thus give rise
to orders-of-magnitude reductions in the underlying basis size,
Np—irrespective of the subsequent tensor-product reductions that
classical CCS also provides. Such developments are expected to
greatly improve what classical CCS may ultimately be able to do—
with respect to system size N, overall numerical accuracy, or both.

The remainder of this paper is as follows. In Sec. |2} we lay out
the advantages and operation of the first-quantized CCS approach
in more detail, discussing also the form of the tensor-product
representations used for both the Hamiltonian operators and the
wavefunctions. This section concludes with a discussion of per-
mutation symmetry, and how to rigorously enforce the condition
of antisymmetry. Sec. analyzes various classical CCS results that
have been obtained to date (including the brand new results for
N =4 harmonium), with an eye towards what these imply about
the likely capabilities of the CCS approach in future, both in the
classical and quantum computing contexts. Sec. |4 then lays out
our proposed quantum circuitry for implementing CCS as a QCC
method—encompassing both time-independent eigenstate solu-
tions as well as time-dependent solutions.

Although it is highly likely that a CCS QCC approach could be
applied in conjunction with more sophisticated unitary evolution
strategies such as LCU,2® for pedagogical simplicity, we address
here only the more standard and straightforward “canonical Trot-
ter method.”21218128135169! 1y this context, we can realize a sig-
nificant reduction in space complexity, and a vast reduction in
gate complexity, in comparison with other first-quantized quan-
tum circuitry that has been envisioned for QCC. Two alternate
CCS implementations are presented, providing a potentially use-
ful “engineering tradeoff” between space and gate complexities.

2 Methodology

In this section, we present the most generalized version of the
CCS theory—i.e., which does not presume separability by parti-
cle, and therefore allows for substantial correlation to be built
directly into the representational basis itself. Although this is the
most important and distinctive feature of the CCS approach, all
classical CCS calculations performed to date22728163 haye used
sinc or plane wave basis sets, which are separable with respect to
both particle and Cartesian component. Such basis sets have pro-
vided a natural starting-off point for classical computations, and
will also form the basis of our (initial) QCC algorithm in Sec.
On the other hand, the past emphasis on plane-wave—or at least
particle-separated—basis sets may have also served to obscure the
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greater significance of CCS. That situation will be rectified here.

2.1 CCS Explicit and Tensor SOP Representations of the
Wavefunction

For a system of N electrons, let #; = (x;,y;,z;) represent the Carte-
sian components of the /’th electron position. We shall work with
a general CCS representational basis of the form

:me(xlﬁ"~7XN)Yle(yl7"'7yN)ZmZ(Zla"'aZN)7 (1)

where it = (my,my,m;). Note that the basis spans the entire 3N-
dimensional configuration space. The form of Eq. should
be contrasted with the standard SD form. Apart from antisym-
metrization, SDs are separable by particle, whereas Eq. is sep-
arable only by Cartesian component. This means that full corre-
lation across (in principle) all N electrons can be built directly
into the basis representation. On the other hand, Eq. does not
(yet) incorporate either permutation symmetry or spin.

The total size of the representational basis of Eq. is Ng =
MMyM., where M, is the basis size for the d’th Cartesian com-
ponent (i.e., d = {x,y,z}), so that 1 <m,; < M,. Alternatively, M,
may be thought of as the number of CCS “orbitals” associated
with the d’th Cartesian component—which need not be the same
for x, y, and z. Obviously, M, increases quickly with N, even if
an excellent, highly efficient basis is chosen. For the (typically)
worst-case choice of a plane wave (or sinc) basis, we have (e.g.,
for the x component),

me(‘x17"'7'xN) :¢r)rrll_t(x1)"'¢nszA(xN)7 )

with my = (myy,...myy), ete. If 1 <myz <L, so that there are
L basis functions per Cartesian component per particle, then the
number of CCS orbitals per component is My = LV, and the total
basis size is Ny = L3N.

For molecular applications treating core electrons exactly, L ~
100 might be a typical value. In comparison with the second-
quantized SD approach, this would correspond to M = L3 ~ 10°
single-particle orbitals—a “worst-case” choice of basis indeed!
Recognizing further that explicit matrix representations would re-
quire storage of N3 = LV elements in all, it becomes clear that
even two-electron applications lie beyond what would be possi-
ble on any classical computer. Use of smarter CCS basis sets, not
of the Eq. form, can of course greatly reduce the requisite M,
and Np sizes, thereby effectively increasing the number of elec-
trons that might be treated explicitly. In any case, it is clear that
the scaling of explicit vector and matrix representations with re-
spect to N poses a severe challenge for classical computers.

It is at this juncture, then, that the classical and quantum com-
putational strategies part company—at least with respect to how
the N-electron CCS wavefunction is actually represented numer-
ically. On the quantum side, the exponential growth of Np with
N does not pose a fundamental problem; as discussed, this cor-
responds to linear growth in the number of qubits (Sec. [d). We
therefore simply use the explicit vector representation of the N-
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electron wavefunction implied by Eq. , ie.,

M, M, M.

Y Y Y Yo @il G

my=1my=1m,=1

Y(7,...,F

[together with Eq. ()], as is. More specifically, in the present
QCC CCS implementation, both plane wave and sinc representa-
tions are used, with explicit storage of the vector, ¥, i, m,, requir-
ing Nz = L3N elements, as discussed. [As per Sec. the quantum
Fourier transformX 1270 (QFT) is used to switch between these
two representations.]

In contrast, the classical CCS implementation replaces the ex-
plicit vector representation of Eq. with the following [generic
Eq. basis] tensor “sum of product” (SOP) form:

A M, M, M,

~Y Y Y Y xivizh .. y) @

A=1my=1my=1m,;=1

‘{'A(?],.. NG

In Eq. (4), the number of elements to be stored is now only
A(My+ M, + M;)—which, in general, is only a tiny fraction of Np.
Of course—as with all tensor methods—this requires that a a suf-
ficiently good wavefunction approximation is achievable using a
reasonably small number of terms, A. For all CCS applications to
date, this has been achieved with A on the order of 100.2057I58l63
Consequently, explicit N-electron wavefunctions have been stored
using only a modest amount of RAM on classical computers—
evenup to N =4.

Such enormous reductions are not atypical when tensor SOPs
are employed. Recent years have seen an explosion in the use of
modern tensor methods across a vast range of data science ap-
plications, as a tool for drastically reducing data storage require-
ments.Z1173 Even in the electronic structure realm, use of tensor
SOPs to represent the electronic state is not new, and has been ap-
plied to great effect for a number of years now.”#78 Nevertheless,
our use of tensor SOPs is radically different from earlier efforts,
in two important ways. To begin with, it is applied across a CCS
basis that is in general separable only by Cartesian component
[Eq. (1)1 and not by particle. The very nature of the tensor prod-
ucts involved is thus quite different from previous efforts based
on particle-separated SD orbitals.

Secondly—and arguably more importantly—the CCS approach
enables a novel tensor SOP representation of the exact, full N-
electron Hamiltonian, that is remarkably efficient and accurate,
and that can handle Coulombic singularities with ease—even in
a sinc grid-based representation. This is because potential en-
ergy functions are not simply evaluated at the grid points. As
a consequence, it is possible to place a grid point even directly
on a Coulombic singularity, with no particularly damaging nu-
merical repercussions.>%>7 Likewise—and regardless of the par-
ticular CCS basis representation—the Hamiltonian tensor SOP is
not some arbitrary numerical approximation to the explicit matrix
representation, but is instead a fundamental identity that arises
naturally from a CCS analysis of the underlying operators. This is
described in detail in the following subsection.

4| Journal Name, [year], [vol.],1

2.2 CCS Tensor SOP Representation of the Hamiltonian

The first-quantized electronic structure Hamiltonian H is gener-
ally of the form

N ) 52 )
2 14 Piy Piz
H — X 4
; (ng 2me + 2me +

N
ZVee(xiJiaZivijijj)a (5)

N
Y Vext(xi,yi,zi) +
i=1 i<j

where m, is the mass of the electron. The first sum in Eq.
above represents the kinetic energy contribution, which separates
by both particle and Cartesian component. The remaining, exter-
nal (Vexr) and pair repulsion (V,.) potential energy terms, respec-
tively, involve three or six coordinates each. These are generally
taken to have Coulombic form, although the present method is
not necessarily restricted to Hamiltonians of this kind.

Assuming a Coulombic form for the electron pair repulsion con-
tribution, we have

Vee(xiuyivziaxjvyjuzj) = Vee(s)zl/sl/27 with (6)

2

s o= (i—x)?+0i—y)?+@—z)n

Inverse Laplace transformation then yields the following exact
form:

Ve = o= [TBHB)LBB. where )

TuB) =

exp [—ﬁz(d,- —d,ﬂ (8

In Eq. above, the individual §; factors in the integrand (e.g.,
%(B) = exp[—B?(x; —x;)?]) are two-particle operators involving
just a single Cartesian component, d. The critical point is that
these factors separate by Cartesian component, and not by particle.
Note that spherical symmetry implies the same form for all of
the 9;(B), and so in practice the d subscript can sometimes be
dropped.

A form similar to Eq. has been used previously in elec-
tronic structure, in the context of Rys polynomial integrals.”? In
that context, the component separability of Eq. is exploited
in order to simplify the evaluation of Coulomb and exchange
integrals—a perennial, if well-established challenge in the elec-
tronic structure community. Here, however, the Cartesian com-
ponent separability of the  integrand is used in an entirely dif-
ferent manner—i.e., to construct a natural tensor SOP represen-
tation of the two-electron pair repulsion operator itself. Also, Rys
considered only Gaussian basis functions, i.e. not general CCS
basis representations of the form of Eq. (3), and certainly not the
tensor-SOP reduction [i.e., Eq. (E-I)].

To convert Eq. above into an explicitly tensor-SOP form,
the one-dimensional integral over 8 is evaluated numerically by
quadrature, on a finite and discrete set of quadrature points, f3; .
The integral is then effectively replaced with a tensor-product
sum of the form

Ace
Vee: ZW)L%%%7 ©
A=1
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where the w, are the quadrature weights [into which the 2//7
factor from Eq. has also been subsumed]. Remarkably,
quadrature schemes with as few as A, = 22 points have been
found that provide accuracies near to machine precision, with
substantially smaller A,, values required for chemical accuracy
(i.e., ~1-2 millihartree). To our knowledge, no particle-separated
tensor-SOP matrix representations of V.. provide comparable
accuracy with as few terms.”#7> That said, recent graphically
contracted function (GCF) and all configuration mean energy
(ACME) methods show that such dramatic reductions are possi-
ble, at least in the multiconfiguration self-consistent field (MC-
SCF, including complete active space or CASSCF) and state-
averaged contexts. 20178

The individual factors in Eq. (9) are two-particle single-
component “potential energy” operators that get represented as
single-component matrices as follows (e.g., for x):

T,

(BAZ H ”mm)C) (10)
= /X;; (xl,...,xN)efﬁf%(x"*Xf)ZXmX(xl,...,xN)dxl...de

For basis functions that are also particle-separated as per Eq.
(e.g., plane waves), the integrals in Eq. reduce to two dimen-
sions. Still simpler forms will be considered in Sec. |4} e.g. based
on quadrature. Even for optimized, highly correlated CCS basis
functions of the Eq. form, the integrals of Eq. can be ef-
ficiently integrated numerically—e.g., using a further tensor-SOP
decomposition.

In any event, these CCS Coulomb integrals need only be per-
formed once for all time, for a given choice of basis—irrespective
of any subsequent electronic structure calculations to which they
might be applied. Once the component tensor matrices have been
determined as per above, they are used to construct a tensor-
SOP representation of the electron pair repulsion contribution
to the Hamiltonian operator that requires storage of at most
Ace(M? +My2 +M?) elements. For plane-wave and other particle-
separated CCS basis sets of the Eq. form, only A..L* elements
need be stored.

There remain, in the Hamiltonian of Eq. (5), additional contri-
butions from the kinetic energy, and the external potential energy,
Vext. If the latter represents Coulombic attraction to nuclei—as is
expected to be the most common case—then a CCS tensor SOP
form very similar to Eq. (7) may be employed.>22758 Matrix el-
ements are also defined similarly to Eq. (I0). Storage requires
Aze(M +M; + M?) elements in the most general case—with Az,
about as small as A.., despite the fact that the Coulomb inter-
action is now attractive. For CCS basis sets that are in addition
particle-separated [Eq. ], the scaling is only Az.L2.

On the other hand, it must be recognized that attractive, bare
Coulomb potentials tend to generate large errors when plane-
wave or sinc basis representations are used. Stated differently,
such basis sets represent a very inefficient choice when Vex (7)) =
— Y4 Zi/|F; — R;|—for which L values in excess of 100 (or equiva-
lently, M > 10°) may become required in order to attain chemical
accuracy, as discussed. Better CCS basis sets, particularly highly
correlated ones, will provide much better performance, in terms
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of either: (a) greatly reducing the overall basis size Ng needed to
achieve a given level of accuracy, or; (b) greatly improving the nu-
merical convergence accuracy for a given Np. This issue is taken
up again in Secs. [2.3]and

It should also be stated that Coulomb potentials are far from
the only type for which a Laplace-transformed CCS SOP form
can be obtained. In particular, Yukawa and long-range Ewald
potentials have also been represented in this fashion.28 There
are also, of course, external potentials that naturally adhere to
the CCS form—such as isotropic harmonic oscillator potentials
(i.e. “harmonium”), which have also been considered in this con-
text2816008! (Gec, . Finally, we point out that the Cartesian ki-
netic energy operator itself [Eq. (5)] is also naturally CCS, and
therefore also straightforward and inexpensive to represent in a
CCS basis. For further details, please consult [2Z] and [*8], and
also Secs.[3land [4]

The discussion presented in this subsection primarily refers to
how the various components of the Hamiltonian matrix of Eq.
are represented in tensor-SOP form on a classical computer. In
particular, use of CCS tensor-SOP representations very dramati-
cally reduces Hamiltonian matrix storage down from the le; ele-
ments that would otherwise have to be stored in an explicit repre-
sentation. Similarly dramatic savings using a CCS tensor-SOP rep-
resentation for the wavefunction vector then make it feasible to
perform explicit N-electron calculations on a classical computer—
to chemical accuracy, even for strongly correlated systems, and
for highly excited electronic states, including wavefunctions—at
least up to N =4 or so. This is the story, more or less, on the
classical computing side.

For the quantum computing implementation, however, things
are rather different. Whereas on a quantum computer, qubits
are indeed used to represent the wavefunction (albeit explicitly,
rather than in tensor-SOP form), the Hamiltonian matrix ele-
ments per se are not stored. Instead, the action of the Hamiltonian
on the wavefunction is simulated through the use of appropriate
quantum circuitry—i.e., a collection of quantum gates—applied
to the set of logical qubits used to represent ‘P.

It is worth reflecting on the fundamental differences between
the basic QCC framework as described above, and that of tradi-
tional linear algebra as implemented on classical computers. In
the latter context, a (direct) matrix—vector product is pretty much
always implemented numerically in the same way, regardless of
the choice of basis used to represent the matrix. Of course, the
matrix itself must be stored explicitly, in addition to the vector,
and it is in these explicit representations that one encounters vari-
ations from one basis set to another. In the QCC context, however,
the Hamiltonian matrix is reflected in the form of the quantum
circuitry itself—which consequently changes, depending on the
choice of basis set. Even for a given basis, there can be many
different strategies, all designed to perform the same operation
more or less, but using different quantum circuitry.

In any event, the QCC algorithm proposed in this work (Sec.
certainly differs from previous quantum circuitry designed to do
the same thing. In large measure, this is because it is based on
the CCS tensor-SOP representation of H, as described in this sub-
section, but there are some other new wrinkles as well.

Journal Name, [year], [vol.], 1{1g| | 5
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2.3 Spin, Permutation Symmetry, and Enforcement of Rigor-
ous Antisymmetry

Due to the Pauli Exclusion Principle, the entire N-electron wave-
function (including spatial and spin components) must be anti-
symmetric with respect to exchange of any two electrons. More
properly, the wavefunction must belong to the totally antisym-
metric (A,) irreducible representation (irrep) of the N-body per-
mutation group, Sy. In the standard particle-separated approach,
SDs are used to automatically enforce rigorous antisymmetry of
the entire electronic wavefunction. This generally requires that
spin states are built into the definition of the single-electron states
(spin-orbitals). since our CCS methodology is not based on SDs,
some other means must be adopted to enforce rigorous antisym-
metry of the entire electronic wavefunction.

Spatial-spin decompositions are fundamental to a wavefunc-
tion approach to electronic structure. For this paper, we shall
always assume that the entire N-electron wavefunction can be
written as the product of an overall spatial wavefunction times
an overall spin state. This spatial-spin factorization is legitimate
for the Hamiltonians considered here, which do not involve spin
explicitly (although the methodology could certainly be gener-
alized to accommodate spin-orbit coupling or other corrections
from the Dirac equation). As a consequence, spin never enters
into our numerical calculations at all, so that only the spatial part
of the electronic wavefunction is ever explicitly represented (e.g.,
in Sec.[2.I). Each computed numerical energy level would there-
fore have a 2V-fold spin degeneracy, were it not for antisymmetry.

Conversely, the spin factor plays a huge rule in determining
which spatial wavefunctions can give rise to entire wavefunctions
that are antisymmetric. More generally, spin is used to determine
the spin degeneracies of the computed electronic states. This is
achieved using group theory, as follows. First, for a given permu-
tation group, Sy, the direct-product group (representing the en-
tire wavefunction) is determined. Next, the 2V-dimensional spin
representation is decomposed into its Sy irreps. Based on avail-
able spin irreps and degeneracies, and the direct-product table,
the corresponding allowed spatial irreps and entire wavefunction
degeneracies are determined.

In the two-electron case, this is rather trivial: spatially sym-
metric (A;) solutions correspond to spin-singlet (A,) states, and
spatially antisymmetric (A;) solutions to spin-triplet (A;) states,
as per the standard and familiar rules. Thus, numerically com-
puted (spatial) states for both S, irreps are physically realized.
For larger N, however, the situation becomes much more compli-
cated, in accord with the corresponding permutation symmetry
groups, Sy. For one thing, not all of the Sy irreps are physically
realized for N > 2 . Additionally, there are degenerate irreps that
appear, with far less trivial representations in terms of the under-
lying product basis. The direct-product tables are also decidedly
more complicated. Nevertheless, the requisite group theory has
been worked out by us, for all cases up to N < 6.

Let us begin with the Sy irrep decompositions of the 2N-
dimensional spin state representations. These are summarized
in Table [1} Column III. Note that A, never appears in the spin
state irrep decompositions, except for N = 2. This implies, e.g.,
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Table 1 Sy irrep decompositions of spin state representations for N < 6
(Column Ill). This implies allowed (Column IV) and forbidden (Column
V) spatial irreps, as indicated, in order to enforce antisymmetry (i.e., Ay
character) on the entire spatial-spin wavefunction.

N 2N Spin irrep Spatial irreps
decomposition allowed forbidden

2 4 3A DA, A, Ay

3 8 4A| D2E Ay E A

4 16 5ABE®3T, Ay, E, T A, Ty

5 32 6A;94Gp2H, As, Gy, Hy Ay, G, Hy, I

6 64 7A1B5H, ®H,®3L,; Ay, Hs, Hy, L A, Hy, Hp, Ly,

M, My, S

that the A spatial states are never physically realized for N > 2.
More generally, from the direct product tables for Sy, we have
ascertained exactly which spatial irreps can give rise to an over-
all A, state. The resultant physically realizable spatial irreps, and
also the forbidden irreps, are listed in Columns IV and V, respec-
tively, of Table [1} Note that irreps are labeled as follows. Labels
E, T, G, H, etc., refer to irreps that are, respectively, two-, three-,
four-, and five-fold degenerate, etc. For groups with more than
one irrep of a given degeneracy, subscripts are assigned such that
smaller numerical values correspond to more positive character
under two-particle exchange.

From Table [1} it is clear that as N increases, an increasingly
small fraction of spatial states is allowed by permutation anti-
symmetry. Roughly speaking, this fraction is found to be 100%,
84%, 58%, 35%, and 18%, for N = 2-6, respectively. In order to
exploit this situation as much as possible, symmetry adaptation of
the CCS basis set may be utilized. 738983 This improves the effi-
ciency of the calculations, by enabling each irrep to be computed
independently of the others. Additionally, we need only perform
calculations for those irreps that are physically realizable.

There are two modes in which symmetry adaptation of the basis
can be implemented. The first pertains to a general CCS basis of
the Eq. form, for which the individual X,,, Y, and Z,,_ factors
are themselves Sy-symmetry adapted. This is the eventual goal,
i.e. use of a CCS basis for which the individual component-wise
factors are fully correlated across all N particles, optimized for the
specific application at hand, and symmetry-adapted. More specif-
ically, the single-component, X,,, (x1,...,xn), etc., basis functions
will be obtained as the eigenstates of optimal “effective” com-
ponent Hamiltonians, A,, etc.,8480
ant under Sy. The effective component Hamiltonian problems
have one-third the dimensionality of the full problem (and can
themselves be symmetry-adapted), and are therefore presumed
tractable.

Although perhaps a bit counterintuitive at first, the resultant
“optimal CCS basis” (OCCSB) functions may be conceptualized
as the component-based analog of the SCF orbitals. In other words,
whereas the SCF molecular orbital structure is what naturally
arises when one assumes only separability by particle, the OCCSB
is what naturally arises when one assumes only separability by
Cartesian component. From a practical computational perspec-
tive, the chief advantage in either case is the same: a greatly
reduced separable basis size, in comparison, e.g., with a plane
wave representation.

which themselves are invari-
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We can estimate the basis size reduction as follows. For an ex-
plicit plane-wave calculation, the basis size is N3 = L. A plane-
wave basis may be a reasonably good choice for certain appli-
cations, but for attractive external Coulomb potentials, it leads
to L =~ 100 or so, as discussed (Sec.[2.2). For N = 4 or more,
Np exceeds one mole in size. For an OCCSB, the basis size is
Np = MS,. For N =4, we estimate that M, might be in the range
1000-10000, leading to as few as a “mere” billion total basis func-
tions in all. This is well within reach classically; CCS calculations
to date have been performed with from 10! to 10'® basis func-
tions>U5758I63__3]though basis size per se is not the only factor
governing overall cost of the calculation. Further details are pro-
vided in an upcoming publication, with Sec. [3| of this paper also
providing some new and compelling numerical evidence, in the
context of the harmonium calculations.

In any event, for any CCS basis that respects component-wise
S3 symmetry (i.e., whether the OCCSB or not), symmetry adap-
tation for the final 3N-dimensional basis of Eq. is straightfor-
ward to manage. In effect, each triple-Cartesian product implied
by Eq. has an Sy character decomposition that can be deter-
mined using two applications of the Sy direct-product table. In
practice then, one simply gathers together the triple-product ba-
sis functions for a given (physically allowed) irrep, and uses just
those basis functions to construct a symmetry-adapted block of
the Hamiltonian matrix.

The second mode of symmetry adaptation applies in cases
where the X, (x,...,xy), etc., functions are not themselves
symmetry-adapted. This is necessarily the case if the basis func-
tions are also particle-separated, as in Eq. (2). In such cases,
the basis functions naturally partition into equivalence classes
for which the N individual m,,; indices are identical, apart from
permutations. It is then possible to create symmetry-adapted
linear combinations from each such equivalence class, as fol-
lows: 731805831 () using the Sy character table, construct the rep-
resentation of the projection operator for each irrep, in the small
set of basis functions in a given equivalence class; (b) apply each
projection operator to each product basis function in turn, to con-
struct the symmetry-adapted linear combinations.

The above procedure has been applied for the N=3 and N =4
applications presented in Sec. [3| which represent the first N > 2
CCS calculations ever performed. Although there are a number
of possible scenarios (reminiscent of quantum statistics) a simple
example will serve to clarify the procedure. Consider a set of
N = 3 particle-separated basis functions of the Eq. form, for
which two of the three indices, my,, my,, and m3, have the same
value m, and the third has a different value n # m. This defines an
equivalence class of three orthogonal basis functions, i.e.

O (x1) Gy (x2) Py (x3) =
O (x1) @y (x2) 7, (x03) =
O (1) By (x2) 95 (x3) =

<X1X2)C3 }nmm>
<x1x2x3 ‘mnm>
<x1x2x3 ‘mmn>

Construction and application of the irrep projection operators
then results in one (unnormalized) linear combination with A
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character, zero combinations with A, character, and two combi-
nations forming an E pair, as follows:

A !nmm> + ‘mnm> + }mmn> an
E: !nmm> + ‘mnm> — 2|mmn>7 12)
!nmm> — ‘mnm> (13)

On reflection, the permutation symmetry adaptation schemes
used in the CCS context, as described above, are certainly much
more complicated than the simple and familiar SD “work horse.”
However, they are also much more flexible, as they can be ap-
plied to any possible combination of spin and spatial states, and
moreover, need not be restricted to overall A, symmetry charac-
ter. This last point is extremely important, vis-a-vis generalizing
the CCS method for the combined electron-nuclear motion quan-
tum many-body problem, wherein electrons and nuclei (be they
fermions or bosons, identical or not) are treated on an equal foot-
ing. Such applications present a rich, group theoretical structure
that cannot be fully addressed with SDs alone. They are, however,
easily amenable to the CCS symmetry adaptation tools as laid out
in this subsection—thereby addressing point (c) from Sec.

We conclude this subsection with a brief discussion of numer-
ical contamination. On a classical computer, it is well-known
that numerical roundoff error can introduce a tiny contribution
from the wrong symmetry character into the wavefunction. More-
over, repeated applications, e.g. of the Hamiltonian acting on the
wavefunction, can magnify this error exponentially.8Z88 There is,
however, a simple remedy for this problem as well; periodically,
the projection operator for the desired irrep should be applied to
the current wavefunction, to ensure its purity.

Intriguingly, the situation on a quantum computer is quite dif-
ferent. There are, first of all, various methods that have al-
ready been devised for imposing rigorous antisymmetry on first-
quantized qubit representations of the initial electronic wave-
function, analogous to the procedures described above. 83182
Whereas the original methods were admittedly quite slow,® a
recent first-quantized technique has been shown to be expo-
nentially faster.®? In particular, the gate complexity scales as
O(NlogNlogL), and is trivial compared to other quantum com-
putational costs (e.g., for QPE).

There is also the issue of error propagation. As in the classi-
cal computing case, small symmetry errors are to be expected.
Interestingly, however, a recent, rigorous error bound characteri-
zation®2 found that these errors do not grow exponentially with
repeated applications. This is a quite important result, evidently
due to the fact that all operations performed on a quantum com-
puter are rigorously unitary—unlike the analogous operations on
a classical computer. It is also quite fortuitous, as the implemen-
tation of projection operators that would otherwise be required
to purify the wavefunction might pose a difficulty on a quantum
computer, because projections are necessarily non-unitary opera-
tions.
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3 Results:
marks

Classical Computing Bench-

The classical CCS algorithm has been implemented in our com-
puter code, Andromeda, and applied to several small benchmark
applications, with N = 2, 3, and 4 explicit electrons..202758163 1
every case to date, a plane-wave or sinc basis representation was
used. Results for selected earlier and preliminary work are sum-
marized in Sec.[3.3} In Sec.[3.2] we present results for the “harmo-
nium” system (i.e., with harmonic external field Vi), including
earlier N = 2 calculations,”® together with new results for N = 4.
Other prior or preliminary results, e.g. for long-range Ewald po-
tentials,®® for the H,®” and HJ electronic structure problems,
and for the H, and HJ combined electron-nuclear motion prob-
lems, 2465 will not be discussed further here.

Collectively, the above model calculations are useful in their
own right, but also in terms of what they reveal about prospects
for the classical CCS methodology, once optimized OCCSB basis
sets are employed instead of plane waves. The model calcula-
tions are also quite useful as benchmarks for first-quantized QCC
calculations—providing more accurate estimates for the required
number of qubits, for example, than the methods that have been
relied upon in the past.

First, however, we provide a very brief overview of the classi-
cal CCS algorithm, as it is currently implemented in Andromeda.
For a much more detailed exposition, please consult the refer-
ences.205758/ T begin with, the CCS tensor-SOP representations
for both the wavefunction vector and the Hamiltonian matrix
have already been specified, in Egs. and (9), respectively. In-
sofar as the algorithm is concerned, the main operation is a block
Krylov subspace procedure, similar to Lanczos.2? This requires a
sequence of matrix—vector products with the Hamiltonian. Since
both matrix and vector are tensor SOPs, the operation is fast. On
the other hand, the tensor-SOP rank—or number of terms, A, in
the Eq. sum—increases rapidly with each successive matrix—
vector product. To curb this growth in A, the alternating least
squares (ALS) approach of Beylkin and coworkers is used.”L

3.1 Summary of previous classical CCS results

H Atom:2Z The simplest benchmark calculation possible is the hy-
drogen atom (N =1). In (Ref. [27]) we computed the ground
state energy of the non-relativistic H atom to an accuracy of ~0.3
millihartree (i.e., much better than chemical accuracy). A bare
Coulomb potential was used with a plane-wave basis, which con-
stitutes a “worst-case” choice, as discussed. A single-coordinate
basis size of L = 81 was required, corresponding to a second-
order full-CI matrix diagonalization calculation with M = 531,441
orbitals and Ng = 531,441 SDs.

He Atom:®” In the original study of Ref. [27]), an explicit N =2
calculation of the He atom was also performed, again with bare
Coulomb potentials and a plane-wave basis. The greater Z =2
attraction of the He nucleus as compared with H necessitates
a somewhat finer grid. Moreover, energy excitation and par-
tial screening demand larger coordinate ranges. Consequently,
L =101 is now required to converge the lowest-lying dozen or
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so electronic states to chemical accuracy. This corresponds to
a second-order full-CI matrix diagonalization calculation with
M = 1,030,301 orbitals and N ~ 1.0615 1012 SDs. Note that we
are able to obtain the excited electronic energies (and wavefunc-
tions) without expending any additional numerical effort beyond
that required to obtain the ground state.

Finally, in more recent (unpublished) work, the plane wave ba-
sis was supplemented with additional Gaussians to better handle
the cusp region. This enabled reduction of numerical convergence
error to tens of microhartrees.

Li Atom: A first-quantized plane-wave calculation of the Li
atom (N = 3) ground state energy has been touted as an im-
portant QCC benchmark.?2 The main reasons are that: (a) the
required number of logical qubits has been estimated to be at
least 100, and may therefore not be very far beyond present-day
limits of quantum hardware, and; (b) the classical calculation
is believed to be intractable. Conversely, if the above Li atom
calculation is actually possible on a classical computer, then this
finding would be quite significant, because it would provide an
important first-quantized QCC benchmark, while simultaneously
pushing back the threshold for “quantum supremacy.”

Using our classical CCS code Andromeda, we have obtained
preliminary results for the Li atom—again, treating all electrons
explicitly, and using bare Coulomb potentials and a plane-wave
basis. Our preliminary results suggest not only that a classical cal-
culation is possible, but also that a chemically accurate QCC cal-
culation (performed using exact y matrices; see Sec. should
require only ~60 logical qubits (3Nn = 63, with N =3 and n =7).
This places the Li atom application within much closer reach of
present-day quantum hardware than might have been imagined.
On the other hand, our assertion is not yet fully confirmed, as it is
based on an L = 101 (M = 1,030,301, Ng = 1.0937 10'®) classical
calculation that is not fully completed. In particular, the com-
puted ground state energy is not yet Krylov-converged.

In any event, there is an independent indication that the ba-
sis set convergence itself is sufficient to achieve at least near-
chemical accuracy. More specifically, Andromeda has the capabil-
ity to compute the total probability of a computed wavefunction
along each of the 6N position coordinate edges (i.e., minimum
and maximum d; grid values), and also each of the 6N momentum
space edges. According to this metric, the largest position-edge
probability for the ground state wavefunction is 9.0 10~7, whereas
the largest momentum-edge probability is 2.4 107>, These values
are on a par with similar basis-set converged calculations for He
and H as described above.

Correlated Electron Gas (CEG): 03 The above examples clearly
demonstrate that plane waves are not well suited for systems with
attractive bare Coulomb potentials. Even so, we have been able to
perform explicit all-electron calculations of this kind for systems
with up to N =3 and Np = 10'®. How much further could we
scale up in N, if a more “competitive” basis such as OCCSB were
employed? Short of actually performing such calculations, the
next best thing would be to find systems for which the plane-wave
basis itself might be nearly optimal. For this purpose, the best
application is probably the “correlated electron gas” system—i.e.,
with Vexy = 0, periodic boundary conditions, and a fixed number
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of electrons per unit cell (in contrast to the uniform electron gas
or “jellium” mode]02-62),

Using Ewald summations, we are computing exchange-
correlation energies for the correlated electron gas system with
N =2, 3, and 4 explicit electrons, for both spin-restricted and
spin-unrestricted cases. An extremely broad range of Wigner-
Seitz radii is being considered, ranging from metallic to Wigner
crystal regimes where correlation effects dominate. This project
is still ongoing.®3 However, the best indication is that L = 11 suf-
fices for most Wigner-Seitz radius values. As anticipated, this
represents a very dramatic reduction in basis size—i.e. down to
M = 1331 or Ng = 3.138 10!2 (for N = 4). Put another way, such
small L values suggest that explicit classical CCS calculations up
to N = 6 may be possible.

3.2 Harmonium

The Hamiltonian for the harmonium system is identical to that of
the standard electronic structure form of Eq. (5, except that the
attractive bare Coulomb external potential is replaced with the
following confining harmonic field: 280168

2
[0)
Vext(xi,31,2i) = (X?+y,-2 +z,2) (14)
As a technical matter, too, we consider harmonium with a
Yukawa, rather than Coulomb, form for the pair repulsion po-
tential:

Voo (71,7;) = e il /|7 — 7 (15)

One of the remarkable features of harmonium—or the “Hooke
atom,” as it is also called—is that (nearly) analytical solutions ex-
ist for the N = 2 case, despite the coupling implied by the pair
repulsion contribution. This makes it possible to compare numer-
ically computed results directly with “exact” values, thus offering
an excellent opportunity to benchmark new methods.

For our purposes, we are also interested in harmonium as
an “intermediate” test case, lying in between the pathological
Coulomb V. form of the atomic models, and the Vex; = 0 form
of the correlated electron gas model (Sec. . In particular,
we expect that the plane-wave basis—though not an especially
good choice for harmonium—will nevertheless perform far better
here than for bare Coulomb potentials. Of course, there are many
contexts in electronic structure in which the bare Coulomb inter-
action is replaced with “milder” forms—e.g., screened potentials
(including SCF), effective core potentials, “softened” Coulomb
potentials, etc.

In Ref.[8] we used Andromeda to perform a classical CCS cal-
culation of the 20 lowest-lying energy eigenstates (i.e. energy
levels and wavefunctions) for the N =2 harmonium system with
® =1/2 and y=1 (in atomic units). This parameter choice guar-
antees “non-trivial” behavior—with neither the external confining
field nor the interparticle repulsion contribution dominating. By
comparing with the exact analytical results, we were able to con-
firm an overall numerical convergence of all states to better than
a few tens of microhartrees. Moreover, this was achieved using a
much smaller basis than in the atomic examples of Sec. [3.I}—i.e.,
L =33 (or M = 35,937, Ng = 1.2915 10'2). For chemical accuracy,
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the L value could be reduced by about another factor of two.

For the present study, we have extended the above harmonium
calculations out to N = 4, using the same ® and 7y values. More
specifically, we have computed the lowest-lying 15 states belong-
ing to the A and T, irreps, with the goal of achieving chemical
accuracy. The results, together with Krylov convergence errors,
are presented in Table[2] By this measure, near chemical accuracy
is indeed achieved (rms error = 1.8 millihartree), using a single-
coordinate basis size of only L =17 (i.e., as predicted by the N =2
calculation). This corresponds to M = 4913 or Np ~ 5.8262 10'4.

For the N = 4 harmonium ground state energy, the Krylov con-
vergence error is only ~0.4 millihartree. For this state, we have
also used Andromeda to compute edge probabilities (as for the
Li atom in Sec. above). The largest position-edge probability
is found to be only 2.43 10~7; the largest momentum-edge prob-
ability is only 1.74 10~°. These values imply a very small basis
set truncation error—which, in any event, is likely to be much
smaller than other sources of numerical error for this calculation.

Table 2 Fifteen lowest-lying energies for the N = 4 harmonium system
(atomic units), as computed using the Andromeda classical CCS code,
for the A} and T, irreps (Column Ill). Numerical convergence errors (Col-
umn [V) are taken relative to the previous Krylov iteration. Sy irrep labels
(Column 11) refer to the spatial part of the wavefunction only.

State index  Spatial irrep  Energy Error

1 A 3.6341  -0.0004
2 Ay 3.9406 -0.0010
3 A 3.9572  -0.0025
4 Ay 3.9663 -0.0017
5 Ty 4.1045  -0.0007
6 T 4.1288 -0.0010
7 T, 4.1349 -0.0021
8 Ay 4.3455  -0.0029
9 A 4.3668 -0.0048
10 Ay 4.4304 -0.0025
11 Ay 4.4540 -0.0036
12 A 4.4799  -0.0036
13 T 4.4945 -0.0016
14 T, 4.4999  -0.0020
15 T, 4.5057 -0.0021

4 Results: Quantum Computing Implemen-
tation

As discussed, in “first quantized” QCC,8H12/20723126135 the wave-
function is represented explicitly, as a function over the entire
3N-dimensional configuration space of electron positions. A set
of logical qubits is used for this purpose—e.g., to represent the
value of the wavefunction at each of a set of uniformly-spaced sinc
grid points, forming a 3N-dimensional lattice. An initial wave-
function is generated, and then manipulated through specialized
quantum circuitry, in order to simulate the action of the Hamil-
tonian. Eventually, through many such manipulations, the time-
dependent evolution of the initial wavefunction is simulated—or
alternatively, the energy eigenstates are computed.

For the types of quantum chemistry applications for which QCC
methods can currently be implemented, using today’s quantum
(or hybrid quantum/classical) computers, the second-quantized
methods have the upper hand. This is because such calculations
use the standard simplifying approximations, wherein the num-
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ber of orbitals, M, and/or or the number of SDs, (% ), is greatly
reduced from the CBS-limit and/or full-CI values. This yields a
greatly simplified calculation requiring exponentially less compu-
tational effort than a fully converged calculation—which is gen-
erally not currently feasible on either classical or quantum com-
puters except for very small systems. Even so, the list of such
simple applications that have actually been realized using second-
quantized QCC—which includes, e.g. crude ground state calcula-
tions for the H, molecule and other two-electron systems2232L
still remains short and unimpressive in comparison with state-of-
the-art quantum chemistry on classical computers.Z6"78

Returning to first-quantized QCC, the primary feature here is
that the cost to store the wavefunction, in terms of the required
number of logical qubits, scales only linearly with N. Our first task
in this section, then, is to estimate the number of logical qubits
required—even if it is larger than what can be accommodated on
current quantum hardware. Our second task shall be to explain
the quantum circuitry used to implement the above-referenced
Hamiltonian-based manipulations of the wavefunction, in precise
detail. This we shall do both for the “standard” or canonical Trot-
ter approach, and also for our alternate CCS-based Trotter imple-
mentation, to which the former will be compared.

4.1 Explicit Quantum Representation of the Wavefunction

Note that both tasks above depend intimately on the choice of
basis set. For convenience and simplicity, we shall throughout this
section presume either a plane-wave, or a sinc (plane-wave dual),
basis representation—with the latter related to the former via an
inverse Fourier transform. Note that both basis representations
conform to Eq. . Let ]w} denote the 3N-dimensional numerical
wavefunction vector, whose individual components are denoted

lI"mxmym: = \Pm“.,4<.mNX‘m]y,...,mNy,mlz,....mN: (16)

from Egs. and . There are clearly L3V such components in
all.

The total number of logical qubits needed to represent the en-
tire |l[/> is thus 3Nn, with L =2". Thus, for L ~ 100, we can expect
n = 7. Note that for each of the 3N coordinates, d;, there is a spe-
cific set of n qubits, used to represent the L corresponding one-
dimensional basis functions, q),‘,’l’_d (x;). We therefore associate each
such bundle of n qubits with the coordinate d;, but, also with the
part of the wavefunction associated with that coordinate, which
we call }y/,d> Note that the concept of |1//l~d> has meaning in quan-
tum computing, even when }w) itself is not separable per se.

In quantum computing circuit diagrams, individual qubits are
traditionally represented as horizontal “wires”. These flow from
left to right, encountering various quantum gates along the way
that alter the qubit states—and thereby, also, the correspond-
ing |y). In addition to the logical qubits representing |y), var-
ious “ancilla” or workspace qubits are also often relied upon,
to be used at various stages throughout the quantum computa-
tion. These are often used to get around unitarity restrictions—
although here, the ancilla qubits generally represent function out-
puts. Ancilla qubits are typically presumed to be in an initial (and
often final) state of “zero”, which we denote as }0)
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Some additional quantum circuit conventions that we adopt
here are described next. Since for each dimensional set, the num-
ber of qubits, n, is fixed—and since there is no reason to consider
subdividing below the level of a single coordinate—in all of the
quantum circuit diagrams presented here, we treat connections
involving ]u/id> as if they were single-qubit wires, rather than bun-
dles. As additional notation, let |y;) represent the part of |y)
associated with particle i, spanning all three Cartesian coordi-
nates, x;, y;, and z;. Likewise, u/ij> includes all Cartesian coor-
dinates for particles i and j, whereas |1[/, ja) includes just the two
d’th components—e.g., q/m>, associated with x; and x;. Also,
whereas |1//> refers to the wavefunction in the sinc representa-
tion, the corresponding Fourier or plane-wave representation is
denoted | ).

Finally, the usual “slash” notation will be used for ancilla qubit
bundles, representing function outputs. To achieve chemical ac-
curacy, each such bundle will typically require 15-20 qubits,
minimum. Going forward, we choose model CCS QCC param-
eters based on the benchmark Li atom calculation as described in
Sec. As a conservative choice, n = 7 qubits per coordinate,
and 3n = 21 qubits per ancilla bundle, provides an energy func-
tion resolution (on the overall energy scale of the Li atom prob-
lem) of around 4.0 10~¢ hartree—which is well beyond chemical
accuracy. Note also that the range of all coordinates in our Li
atom calculation is given by the maximum value, xya.x = 7.6 bohr.
In Sec. we use these values to estimate the corresponding n
value that would be required using the canonical Trotter method.

4.2 Quantum Circuitry: Canonical Trotter Method

Next we address the second task above, i.e. describing the quan-
tum circuitry necessary to implement the requisite Hamiltonian
manipulations of |y). For both time-independent and time-
dependent QCC applications, one must apply unitary time evolu-
tion of the form |y(t)) = U(r)|y(0)),141355 where | y(0)) is the
initial wavefunction. In the time-dependent context, this directly
propagates the wavefunction, as desired. In the time-independent
context, quantum eigensolvers such as quantum phase estimation
(QPE) LH12L29130135] are yysed to obtain the ground eigenstate (and
in some cases, excited eigenstates); however, this too requires
unitary time evolution of the above form, 1111222130135

The specific form of the time-evolution operator is U(f) =
exp [—(i/m)Ht], where ¢ is the final time, and 7 is the reduced
Planck’s constant (taken to be unity in all that follows). In the
canonical Trotter method, this is implemented via repeated ap-
plications of U(€), where ¢ is a sufficiently small time step such
that the individual contributions from Eq. can be treated sep-
arately. In other words,

U(e) =~ --exp[—i€Vee(x1,y1,21,%2,¥2,22)] X a7

.. -exp[fl'&‘Vext(Xl s V1,21 )] X

A2 ') A2
Piy
- exp [ie;;i} exp {isznl;:| exp [ie ;Z} ,

an approximation known as “Trotterization,” or the Lie-Trotter-
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Fig. 1 Overview of quantum circuit to implement unitary short time evolution, U(£)|u/>, via Trotterization, on a quantum computer. This structure is

used in both the canonical and CCS Trotter quantum circuitry.

Suzuki decomposition. 2128128135169 Apy overview of the quantum
circuit implementation of U (8)‘1[/>, based on Eq. , is pre-
sented in Fig. [1l Note that the associated ancilla bits, needed to
carry out the individual operations in practice, are not indicated
in this figure.

We next turn to the canonical Trotter implementation of the
various Hamiltonian component contributions in Eq. and
Fig. |1} To begin, we note that it is easiest to implement matrix—
vector products on a quantum computer, if the matrix is diagonal.
Then, the additional condition of unitarity implies that each |1//>
component is simply multiplied by some phase shift. However,
we further note that, due to basis set truncation error, the sinc
basis representation is only an approximate position representa-
tion. Thus, in reality, an exact sinc-function representation of the
potential energy contributions in Eq. gives rise to matrices
that are only nearly diagonal. More specifically, we find that the
sinc functions themselves are not true Dirac delta functions, but
rather, narrowly peaked functions centered around a uniformly-
distributed set of discrete grid points, known as the “sinc discrete
variable representation” (sinc DVR) grid points. 4442

We are therefore led to a natural, diagonal, grid-based ap-
proximation to the true potential matrices, obtained by sim-
ply evaluating the potential function at the individual sinc DVR
grid points, taking these values to comprise the diagonal ma-
trix elements, and then setting the off-diagonal elements to
zero.48 Note that this procedure introduces new “quadrature er-
ror,” above and beyond the basis set truncation error already
present. 4442 Goulomb potentials—being both singular and long-
range—present a “worst-case scenario” in terms of sinc DVR
quadrature error. For example, one must avoid placing sinc DVR
grid points directly on Coulombic singularities, or the sinc DVR

matrix elements become infinite! On the other hand, the basis set
truncation errors associated with sinc or plane-wave representa-
tions of Coulomb potentials also present a worst-case scenario, as
discussed previously.

As an aside, we can now return to our estimation of the value
of n needed to implement the canonical Trotter method for the
model Li atom calculation, as described at the end of Sec. 4.1
Given that the core electrons are unscreened near the origin, we
can use the Z = 3 hydrogenic ground state orbital, |y, S>, to de-
termine how well the sinc DVR above estimates the analytical ex-
pectation value, <W1S’Vext‘ll/ls> = —9 hartree. The best sinc DVR
performance is realized using a “half-integer” grid placement,
which places the origin exactly half-way between two adjacent
grid points. The procedure, then, is to reduce the grid spacing
until the numerical quadrature error in the expectation value cal-
culation is reduced down to the energy threshold identified at the
end of Sec. for the corresponding CCS calculation. Having
performed this calculation numerically, we find that the resultant
number of sinc DVR grid points in each [—xmax,*max] coordinate
interval becomes L ~ 24,000, corresponding to n = log, L = 14.6.
Even if we relax the error threshold to the level of chemical accu-
racy, these numbers become L ~ 1014 and n ~ 10.0.

Returning to a discussion of quantum circuitry, it is in the fash-
ion described above that the potential energy contributions in
Eq. are implemented in the canonical Trotter approach—
i.e., as phase shifts obtained from potential energy evaluation
at the sinc DVR grid points. Put another way, since the poten-
tial energy matrices are diagonal in the sinc DVR, their contri-
bution to the time evolution can be implemented using ordinary
function evaluation—a standard operation for quantum comput-

ers. BIL2I9I33137 Note that each such function evaluation involves
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only a subset of coordinates—and therefore only a subset of
qubits, as indicated in Fig. Specifically, each external (Vex)
or pair repulsion (V,,.) potential energy term involves three or six
coordinates, respectively.

Based on the above description in terms of sinc DVRs, the quan-
tum circuit used to implement exp (—i€Ve.)| w12 is given in Fig.
A bundle of ancilla qubits (lowest wire) is used to represent the
value of the function, Vi, = Ve (x1,¥1,21,%2,¥2,22), which becomes
the output of the first gate encountered—i.e., the V,, gate indi-
cated near the lower-left corner. Note that this gate also receives
input from six explicit coordinates or sets of qubits—i.e., 6n qubits
in all, in addition to the ancilla bundle. These act as “control
qubits,” associated with specific sinc DVR grid points, whose pur-
pose is to determine the associated function output value. Once
the latter value is determined, it is then directed to the second
gate, where it is used to effect a phase shift. Note that as a mat-
ter of notation, we use e V12 to refer to the phase shift gate in
the quantum circuit diagram, whereas exp (—ieV,.) refers to the
corresponding quantum operator. Finally, a second V,, function
evaluation is applied, in order to “reset” the ancilla qubits.

[¥12)
‘¢1y>
|912)
|122)
‘¢2y>
)

10) = Vee FH e=ievie Ve |-

Fig. 2 Canonical quantum circuit to implement exp(—ieVe.) |y12) on a
quantum computer. The function evaluation, Via = Ve (x1,¥1,21,%2,2,22),
involves six explicit coordinates and sets of qubits, and includes an in-
verse square-root evaluation.

The first gate in Fig. [2| represents one fairly standard way to
evaluate functions on quantum computers—which is really based
on reversible classical computing. The function evaluation gate
(in this case V,,) is a controlled, reversible permutation operation
that acts as follows. If the control qubits are all in definite, unsu-
perposed states, so that they represent one specific point [in this
case, (x1,y1,21,%2,¥2,22)], then the function gate permutes the un-
superposed input constant state 0 into the unsuperposed desired
function output constant [in this case Vee(x1,y1,21,X2,2,22)]. In
this manner, unitarity is achieved—since the permutation opera-
tion is invertible.

Canonical implementation of the V,, function evaluation gate
is complex. Not only does this gate receive input from many con-
trol and ancilla qubits, but the standard pair repulsion function
itself is also highly correlated, and involves Coulombic singular-
ities that must be carefully avoided, as discussed. In addition to
multiplications and additions, which are fairly straightforward to
implement (even error-corrected) on a quantum computer, 214103
the V,, function also requires evaluation of an inverse square-
root, which at present is extremely costly if reasonable accuracy
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is required. 201951104/ A]] of this implies a large circuit complexity—
rendering the exp(—ieV,.) operation the computational bottle-
neck of the entire canonical Trotter approach (as indeed, is also
generally the case for classical algorithms).

For exp (—ieVext), a similar, but simpler circuit than Fig. [2| may
be used, for which there are only three explicit coordinates and
thus three sets of control qubits, associated with a single particle.
However, this still represents greater complexity than is desired.
As a design goal, we seek to reduce the complexity of the calcula-
tion down to a few operations involving no more than one or two
qubit sets:

1. operations that involve a change of representation (e.g., QFT)
should be efficiently reducible to a single qubit set.

2. operations that do not involve a change of representation
should be efficiently reducible to two qubit sets.

It remains to consider the kinetic energy contributions to
Eq. (I7). From Fig.[1] we observe that each such contribution sat-
isfies Condition 1. above; only a single qubit set is involved. This
is, of course, because of the fact that the kinetic energy is separa-
ble by both particle and Cartesian component. On the other hand,
the j2,/(2m,) contributions are decidedly not diagonal in the sinc
representation. A Fourier transform is thus required—to trans-
form from the sinc to the plane wave representations, in terms of
which the matrix representation of p7,/(2m,) becomes diagonal.
This is performed using the standard quantum Fourier transform
(QFT) algorithm, 111279 denoted “FT” in the quantum circuit di-
agrams. Specifically, FT is applied to ‘l//id>, which thus becomes
|Wia). Then, the e~i€Pia/2m: phase shift can be implemented, in
similar fashion to Fig.|2| The quantum circuit implementation for
ﬁﬁ] |wix) operation is indicated in Fig. ‘ for

2m,

this entire exp [—ie
i=landd=ux.

vr.) —[FT] T
0) ———] e

2
—iep2 V4
i€, 2me 1z
2me € plz/ © 2me

a2
Fig. 3 Quantum circuit to implement exp {—is e | 1yy,) on a quantum

2m,

computer. The function evaluation involves just a single coordinate (the
momentum py,), and hence just a single qubit set. This circuit is used in
both the canonical and CCS Trotter quantum circuitry.

4.3 Quantum Circuitry: CCS Trotter Method
For the CCS implementation proposed here, much of the canoni-
cal Trotter quantum circuitry can be retained. In particular, from
a high-level perspective, the overview as presented in Fig. |1| ap-
plies equally well to both the canonical and CCS Trotter quantum
strategies. Our CCS implementation as presented here is thus also
a Trotterized approach. Furthermore, action of the kinetic energy
operator is still implemented exactly as in Fig. 3} as it adheres to
our “design philosophy” as described in Sec. 4.2

On the other hand, the CCS implementations for exp (—i&Vext),
and for the bottleneck exp (—ieV,.) operation, are very different
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from the canonical approach. Specifically, we pursue a quantum
circuit implementation in keeping with the CCS tensor-SOP de-
composition described in Sec. For brevity, we focus the dis-
cussion that follows on the more challenging case of implement-
ing exp (—ieV,.), although similar procedures can also be applied
for exp (—ieVext).

From the CCS tensor-SOP form of Eq. (9, it is clear that a nat-
ural quantum circuit implementation for exp(—ieVe. ) | y12) should
take the form presented in Fig. 4] In comparing with the canoni-
cal quantum circuit of Fig. |2} we see that the two implementations
are completely different. The CCS version would appear to offer
many advantages. In particular, the six-dimensional function calls
are replaced with exp (7 is?{?) { V124 ) Operations involving just two
coordinates (e.g. x; and x;)—thereby satisfying design Condition
2. above. Moreover, the yj” functions themselves are Gaussians,
with very smooth behavior and a restricted, well-defined range.

o) — I a
[¥122) exp(—ied}) exp(—igyher)
|¥1y) — B |
Y129 exp(—ied,) exp(—iey)e)
W2y> ] — —
!wlz> — — - — —
|t12:) exp(—ieq}) exp(—iciie)
|'¢}2z> i —_— s — -

Fig. 4 CCS quantum circuit to implement exp(—ieVe.) |y12) on a quan-
tum computer, based on Eq. @ The six-dimensional V,, function gate of
Fig. [2]is now replaced with two-dimensional function gates, which sepa-
rate by Cartesian component. The two-particle wavefunction contribution
|w12) decomposes naturally into |yi2.), |Wi2y), and | yi2.) components.

As implied above, the ?Z} matrix representations are diagonal
in the sinc DVR, and thus amenable to a straightforward quan-
tum circuit implementation—i.e., essentially a two-dimensional
version of Fig. The specific quantum circuit used to imple-
ment exp (—ie?j |1[/12d> in the sinc DVR is presented in Fig.
Note that a similar quantum circuit may be employed for the CCS
tensor-SOP components of Vex, except that only a single coordi-
nate or set of control qubits is needed.

Diagonal sinc DVR )A/;L matrices certainly present one reason-
able avenue for QCC implementation of the CCS approach. Their
Gaussian form, moreover, implies that far fewer grid points would
be needed to represent V,, (to the same level of accuracy) than
what was estimated in Sec. to be needed for the canonical
approach. On the other hand, a sinc DVR calculation still does
introduce some quadrature error, which does not exist in the clas-
sical CCS implementation—e.g., as was used to generate the re-
sults of Sec.[3| For this reason, it might be less efficient, in terms
of basis size, than the corresponding classical calculation. That
said, insofar as factors determining the necessary basis size is con-
cerned, Vey, is much more important than V,,, if bare Coulomb po-
tentials are used. Consequently, it is not so clear how much worse
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this CCS form of quadrature error would actually make things, in
practice.

Nevertheless, we maintain that it is worth the effort to try to
develop alternate QCC implementations that use exact sinc ?f}
matrices (i.e., as computed without recourse to sinc DVR grid
points)—thereby eliminating all quadrature error, and reducing
the basis size still further, down to exactly the number used in
classical calculations. In this context, the greatest challenge is
posed by the fact that the exact matrices are no longer diagonal.
Also, though still quite small by virtue of being two-dimensional,
they are not quite small enough to satisfy our design conditions.

Despite the above challenges, we have developed an exact sinc
QCC implementation that not only overcomes the non-diagonal
limitation, but also satisfies both design conditions. This ap-
proach is based on the fact that the off-diagonal part of an exact
¥ matrix can be written in the form fofrgiag = (PiP ,-15 +Dp; bj)/2—
where D is diagonal, and d subscripts (and A superscripts) have
been dropped for clarity. In the € — 0 limit, Trotterization then
yields

exp(—i€foidiag) ~ exp(—iep;pjD/2) exp(—ieDp;p;/2).  (18)

Note that the individual factors in Eq. above are no longer
unitary; the exponents are comprised of non-commutative oper-
ator—rather than tensor—products. Although some algorithms
have come on the scene very recently, 105108 we have developed
our own QCC implementation that is unitary, and correct to first
order in €. It involves separate FT operations for j; and p;, and
also a two-dimensional function evaluation for D—thereby satis-
fying our two design conditions. As this work is currently under
review by Texas Tech University for possible patent protection,
further details will be presented in a future publication.

Regardless of the particular CCS QCC implementation as de-
scribed above, in all such cases the computational bottleneck is
likely to be evaluation of the Gaussian or exponential function—
which, like the inverse square-root described in Sec. is
currently regarded to be very expensive on quantum comput-
ers. 201951104 1ndeed, this cost could be so great as to render the
various potential advantages of the CCS approach (e.g. the re-
duction in circuit complexity that might otherwise occur) largely
moot, in practice.

To address this issue, we have concurrently developed a new
algorithm for evaluating Gaussian and exponential functions ef-
ficiently on quantum computers—for which an additional TTU
provisional patent has been filed. The algorithm is described and
analyzed in great detail in a companion paper'2*—not only in
terms of gate and space complexity scalings, but also down to
the level of specific Toffoli gate and qubit requirements. For most
practical applications, the cost is the same as that of performing a
handful of multiplications (with or without error correction), and
is thus on a par with the other costs associated with the present
CCS QCC algorithm.

Using the model CCS QCC parameters as described at the end
of Sec. the Toffoli count for Gaussian function evaluation is
only 704, whereas that for the corresponding inverse square-root
evaluation would be 134,302. Note that in practice, the latter
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|w1x>

‘w2w>

’0> — exp[—ﬁi(wl - .TQ)Q} —| e—ieexp[ 63 (21—22)?] l— exp[—ﬁ?\(;tl - x2)2] —

Fig. 5 CCS quantum circuit to implement exp (fie?}) |wi2¢) on a quantum computer, in the sinc DVR. The function evaluation, ¥* = exp[—B7(x; —x2)?],
involves two explicit coordinates and sets of qubits, and includes an exponential function evaluation.

calculation would actually require more than the n =7 qubits pre-
sumed here, as discussed in Sec. [4.2] so that the actual required
Toffoli count would be even far greater than this (the scaling is
O(n*)—which, with the more realistic n = 10 value, suggests an
additional cost doubling).

5 Conclusions

The frontier in quantum chemistry calculations has always in-
volved pushing the following limits: (a) full CI; (b) complete basis
set (CBS); (c) number of explicit electrons, N. All of these imply
a substantial increase in Np, the basis size or number of Slater
Determinants (SDs) needed to perform the calculation. Over the
decades—but especially in the last 10 years or so—impressive and
steady progress has been made towards increasing the number of
SDs that can be treated explicitly in calculations. 747811071109
Much of the recent progress has relied on massive parallelization,
but use of tensor decompositions of various kinds is also play-
ing an increasingly important role. Moreover, going forward, it
is clear that quantum computing—for which exponential growth
in Ng corresponds to mere linear growth in the number of logical
qubits—will engender an even greater sea change.>"3>

Whatever the future may bring, it seems that the quantum
chemistry discipline may be at a “tipping point,” where there is
once again room to consider bold new ideas. One such idea—
that the electronic structure Hamiltonian operator separates more
naturally by Cartesian component than by particle—represents a
radical departure from the traditional particle-separated starting
point, and serves as the focus of this work. In addition to di-
rectly addressing the traditional three limits, (a)-(c) above, the
CCS approach also has ramifications for two additional quan-
tum chemistry frontiers: (d) calculation of many excited states
(including wavefunctions); (e) application to combined electron-
nuclear motion quantum many-body problem. These latter two
require Np X Np matrix diagonalization (as opposed to just calcu-
lation of the ground state), as well as the ability to go beyond
traditional SD representations. Frontier (e) is, in addition, of spe-
cial relevance for QCC.

In this study, we have sought to demonstrate the potential ad-
vantages presented by the CCS approach in both classical and
quantum computing contexts. On the classical side, the CCS
tensor-SOP decomposition of the wavefunction [Eq. @D] enables
astronomical basis sizes to be considered with minimal RAM
requirements—e.g., Nz =~ 10 for the harmonium calculation per-
formed in the present work, and up to Ng ~ 10!® more generally.
Of even greater import is the CCS tensor-SOP decomposition of
the Hamiltonian operator itself, which reduces the complexity of
both the classical and quantum calculations—essentially by re-
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stricting the set of coordinates that must be considered at one
time, from six down to two.

That said, on the quantum side, the overall computational
bottleneck is presented by the evaluation of the appropriate
function—i.e, the inverse square-root in the canonical first-
quantized QCC case, or the Gaussian/exponential in the CCS QCC
case. Using the new exponentiation algorithm as described in our
companion paper,1%4 the Toffoli count of the latter is found to
be a factor of 200 times smaller than the former, for a realistic
model QCC example (Sec. . Moreover, that estimate assumes
an equal number of qubits for both canonical and CCS calcula-
tions, when in reality, the former number is likely to by around
50% higher than the latter. Running in conjunction with the new
exponentiation algorithm, then, the present CCS approach would
appear to become a highly competitive contender for performing
first-quantized QCC calculations, going forward.

In Sec. we have presented two different CCS QCC Trot-
ter implementations—i.e., the exact non-diagonal sinc option, and
the approximate diagonal sinc-DVR option. Both of these repre-
sent an improvement over the standard canonical Trotter QCC
implementation, in terms of both gate and space complexities, as
discussed. In comparing the two CCS QCC implementations to
each other, however, we find that the exact non-diagonal imple-
mentation requires more quantum gates, but fewer qubits, than
the diagonal sinc-DVR alternative—thereby presenting a useful
“engineering tradeoff.” A similar tradeoff is also available for the
exponentiation algorithm itself. 104

We conclude by once again stressing the key point that the
full benefits of the CCS approach have yet to be realized. This
is because to date, all calculations have been performed using
plane-wave and/or sinc basis functions, which represent a terri-
ble choice for unscreened Coulomb systems. As discussed, some-
thing like L ~ 100 is required for such systems, corresponding
to M = L3 = 10° single-particle orbitals. For harmonium, plane
waves are a reasonably good—but still not great—choice of basis.
Here, we find a reduction to L = 17 or M ~ 5000. For the uniform
or correlated electron gas application, plane waves are of course
a much better choice, giving rise to L = 11, or M ~ 1000 orbitals.
All of these are requirements for achieving chemical accuracy.

The main lesson here is the unsurprising one that a suitable
choice of CCS basis for a given application can lead to a dramatic
reduction in basis size. Ultimately, this should result in explicit
classical calculations up to perhaps N = 6. Larger calculations
could also be performed, using the output of a CCS calculation
as a highly-efficient, multi-particle basis set (i.e., the N-particle,
CCS version of a geminal basis set). Of course in practice, this will
first require the development of the “optimal CCS basis” (OCCSB)
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functions of the Eq. form—i.e., the CCS analog of HF molec-
ular orbitals.

As a technical matter, we advocate use of optimal separable
basis theory®488 to compute the OCCSB functions (rather than
traditional SCF), because the result is an optimized, complete or-
thonormal basis obtained “all at once” (as opposed to a collec-
tion of non-orthogonal ground and excited state SCF functions
obtained one at a time). In any event, and as mentioned sev-
eral times, the individual OCCSB functions will incorporate cor-
relation implicitly—thus potentially dramatically reducing the re-
quired basis size, even in cases where electron correlation is se-
vere. At the same time, the CCS tensor decomposition enables
classical computers to handle Nz = 10> or more basis functions,
which is very promising.

Of course, OCCSB calculations have yet to be performed on
classical computers, the era of first-quantized QCC is still a ways
off, and it is never certain what the future will bring. Never-
theless, one thing already seems quite clear: it is best to have
a variety of different methods in one’s computational arsenal—
as indeed, has been the case within the confines of traditional
second-quantized classical quantum chemistry for decades.
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Appendix: First- and Second-Quantized Cal-
culations, and the CCS Approach

In order to better understand the “first-” vs. “second-quantized”
terminology in the context of QCC, it is helpful to consider the
corresponding quantum operators, as distinct from their basis set
representations. In the traditional first-quantized formalism, the
Hamiltonian operator is expressed using electron position coordi-
nates as indicated in Eq. (5.2 Of course for numerical purposes,
this operator may be represented as a matrix using any desired
representational basis set—i.e., any set of orthonormal functions
on the entire 3N-dimensional “configuration space.” (Note that
the latter phrase is being used in the generic sense to mean the
space of all particle positions, rather than in the electronic struc-
ture sense of orbital occupations).

In particular, the basis functions need not be SDs. One ob-
vious choice of basis that is decidedly not of the SD form is sug-
gested by Eq. itself—i.e., the position eigenstates. In principle,
these are Dirac delta functions; in practice, due to basis set trun-
cation, these are sinc functions, 4429 associated with a uniform
lattice of grid points, and spanning the same Hilbert subspace as
a corresponding band-limited set of plane waves. Both sinc (aka
“plane-wave dual”) and plane-wave basis sets have been consid-
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ered in the QCC context, 13124126135 and have also been employed
with the CCS approach. However, many other CCS basis set are
also possible—including those with substantial particle correla-
tion “built in” to the individual basis functions (Sec. [2.3).

What is not built in to any first-quantized approach, however,
is antisymmetry—which, as noted, must therefore be explicitly
imposed. Here, the second-quantized approach has the upper
hand, essentially because it treats operators and basis functions
on an equal footing.? In particular, second-quantized Hamilto-
nian operators are sums of products of creation and annihilation
operators, acting on a set of M > N single-particle (spin-)orbitals.
Second quantized basis functions are “occupation number” (ON)
vectors—i.e., binary strings denoting which of the M orbitals
are occupied—spanning the 2M-dimensional Fock space (in the
“grand canonical” sense where N may vary, although for all of
our applications, N is fixed). All ON vectors may be obtained by
applying orbital-specific creation operators to the “vacuum state”
of no electrons. The second-quantized approach is thus more ab-
stract and algebraic than the first-quantized approach, although
at the end of the day, ON vectors always correspond to properly
antisymmetrized SDs of single-particle orbitals. This is both an ad-
vantage (because antisymmetrization need not be dealt with ex-
plicitly) and a disadvantage (because no other type of basis may
be considered).

The CCS approach as advocated here does not rely on SDs,
single-particle orbitals, nor particle separability of any kind. It is
therefore very much a first-quantized approach, by any reckon-
ing. Using the representational basis, the Hamiltonian operator
is (implicitly) represented as an Np x Np matrix, which is then di-
agonalized. In principle, a large number of accurately converged
eigenstates may be obtained, with rigorous variational conver-
gence to the exact results guaranteed in the complete basis set
(CBS) limit. The approach may therefore be compared with full-
CI matrix diagonalization calculations from the second-quantized
realm [i.e., for which all Ng = (% ) possible SDs are retained].
However, CCS calculations are much more flexible than full CI—
not only with respect to the choice of basis itself, but also in terms
of how the basis is truncated. More specifically, in a full-CI calcu-
lation, M is the only convergence parameter (with M — o defining
the CBS limit). In contrast, in the CCS case, there are up to 3N
(though usually just 3) separate basis truncation parameters, each
of which can be adjusted independently for maximum efficiency.

There is one more advantage of the CCS approach that is partic-
ular relevant, especially for QCC. Since it is not limited to SDs, it
can be applied directly to the combined electron-nuclear motion
quantum many-body problem. Ordinarily, one imposes the Born-
Oppenheimer (BO) approximation, 1’ to separate the electronic
and nuclear motion problems, although this introduces a source
of error. More accurate results may therefore be obtained by solv-
ing the combined problem directly. In the QCC context however,
there is a much more compelling and practical reason for want-
ing to solve the combined problem. This is because the BO ap-
proximation necessitates the development of an explicit potential
energy surface (PES) over the entire 3N-dimensional space—a
prospect which even on a quantum computer, scales exponen-
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tially with N.1#1735 By solving the combined electron-nuclear
motion problem “all at once,” such PES problems are completely
avoided—as are all BO-type errors.

The above considerations justify claims (a) thru (d) in Sec. [1}
although additional arguments have also been provided through-
out this paper.
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