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Simple renormalization schemes for multiple scattering
series expansions

Aika Takatsu,a Sylvain Tricot,b Philippe Schieffer,b Kevin Dunseath,b Mariko Terao-
Dunseath,b Keisuke Hatada,a Didier Sébilleau,b

A number of renormalization schemes for improving the convergence of multiple scattering series
expansions are investigated. Numerical tests on a small Cu(111) cluster demonstrate their effective-
ness, for example increasing the rate of convergence by up to a factor 2 or by transforming a divergent
series into a convergent one. These techniques can greatly facilitate multiple scattering calculations,
especially for spectroscopies such as photoelectron diffraction, Auger electron diffraction, low energy
electron diffraction etc., where an electron propagates with a kinetic energy of hundreds of eV in a
cluster of hundreds of atoms.

1 Introduction
Multiple Scattering Theory (MST) is one of the methods favored
to model spectroscopies such as photoemission, X-ray absorption
or electron diffraction, and more generally, most of the core-level
spectroscopies. In particular, as far as condensed matter is con-
cerned, electron diffraction based techniques such as photoelec-
tron diffraction, Auger electron diffraction or low energy elec-
tron diffraction are quite simple experimental setups yet powerful
enough to infer crystallographic and structural characteristics of
thin layers of materials. The flexibility of MST also makes it par-
ticularly suited to the study of the electronic structure of materi-
als as it can describe within the same formalism both bound and
continuum states1,2. In the former case, MST is generally known
as KKR theory. Far from being limited to surface or material sci-
ence, MST also enjoys widespread use in several areas of physics
(nuclear physics, condensed matter, acoustics, geophysics, etc.),
since describing the interaction of a wave with a media composed
of distinguishable objects/obstacles acting as scatterers is a more
general problem.

Among the different formulations of MST, the so-called scatter-
ing path operator approach has been shown to be particularly
convenient for modelling both spectroscopies and band struc-
tures. Within this approach, the scattering path operator τ

ji can
be identified as the operator describing all the pathways an elec-
tron can travel in order to move from atom i to atom j. As such,
it contains all the information about the structural, electronic and
magnetic properties of the material under consideration.

In practice, if we denote the potential describing the interac-
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tion of the probe particle with atom i as Vi and the propagator
describing the behaviour of this probe within the material by G,
we can define the scattering path operator as

τ
ji =V iδi j +V jGV i. (1)

Here, the overbar is simply a reminder that, because atom i and
atom j do not generally coincide with the arbitrary origin we
choose, the corresponding operator contains translation opera-
tors referring to this origin3.

The differential cross sections for many spectroscopies can then
be expressed as functions of matrix elements of this scattering
path operator4. Its evaluation is thus critical in the MST ap-
proach, however the definition (1) is not very useful for practical
purposes, as it contains the total Green’s function or propagator
for the full system. Instead, we can express the scattering path
operator in terms of the free propagator G0 and transition oper-
ators T i for the individual scattering by the potential V i centered
on the atom i. The equation (1) can then be written as

τ
ji = T jδi j + ∑

k ̸= j
T jG0τ

ki

= T jδi j + ∑
k ̸= j

τ
jkG0T i,

(2)

known as the equation of motion of the scattering path operator,
which can be expressed in matrix form as

τττ = (I−TG0)
−1T

= T(I−G0T)−1 .

(3)

The elements of the matrix τττ are the individual scattering path
operators between the atoms i and j. For spherical potentials,
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the matrix T is diagonal with elements T i, while the elements of
G0 are T (−R⃗RRi)G0T (⃗RRR j). T (⃗RRR) is the translation operator which
shifts position vectors by R⃗RR; these translations are necessary to be
able to use the transition operators for single scattering, which
are determined for a potential centered on the origin. The matrix
elements of T (−R⃗RRi)G0T (⃗RRR j) are also known as the KKR struc-
ture constants.

The elements of G0 can be calculated using a suitable basis
(plane waves or spherical waves for example), while the individ-
ual, single scattering transition matrix elements can be obtained
by matching the logarithmic derivative of the inner and outer so-
lutions of the Schrödinger equation at the surface of the potential,
using standard partial wave techniques. It is then straightforward
to construct the kernel matrix G0T and compute the inverse of
(I − G0T) to obtain τττ. This approach, which we shall call the
matrix inversion (MI) method, is in principle exact, but is lim-
ited by the size of the matrix that can be stored; in a cluster of
Nat atoms, if for a given kinetic energy angular momenta up to
ℓmax are required to adequately represent the propagating elec-
tron, the dimension of the matrix to be inverted will be of the
order of N = Nat(ℓmax + 1)2. Since the matrix elements are com-
plex, the amount of storage required will be 16N2 bytes; the extra
work space required in matrix inversion routines for example in
the LAPACK library5 can double this. Furthermore, the time re-
quired to invert the matrix increases as N3, so that calculations
can quickly become very lengthy and greedy for memory, partic-
ularly for larger systems at higher electron kinetic energies, since
ℓmax increases with increasing energy. In such cases, other ap-
proaches such as the path operator expansion6 or Lanczos tech-
niques7 could be useful.

An alternative procedure is to solve the equations (2) iteratively
by replacing τ

ki on the right-hand side by its equation of motion,
yielding

τ
ji = T jδi j +T jG0T i + ∑

k ̸=i, j
T jG0T kG0T i + . . . (4)

which is often referred to as the Watson series expansion for the
scattering path operator. It is equivalent to a Taylor matrix series
(MS) expansion of the inverse:

τττ =
(

I+K+K2 +K3 + . . .
)

T

= T
(

I+K+K2 +K3 + . . .
)
,

(5)

where the non-Hermitian kernel matrix (TG0 or G0T depending
on the form used) is now denoted by K. When it comes to model
complex phenomena in condensed matter physics arising from
the propagation of an electron in a finite collection of hundreds of
atoms at kinetic energies of hundreds of eV, the series expansion
is the preferred choice. The advantage of this method is that it can
be implemented without storing the full matrix, for example by
recalculating the elements required when evaluating individual
scattering path operators using equation (2). This will greatly
reduce the memory requirements of a simulation to the point of
rendering it feasible, at the price of increasing the computation
time, especially if the series converges slowly. Even worse, the

simulation may fail if the series does not converge at all.
The convergence of series expansions is an old problem in

mathematical physics that has been greatly studied over several
centuries, leading to the development of a number of interesting
approaches (see reference 8 for an overview of several of these
methods).

The aim of this article is to explore a way of extending the
boundaries of the standard series expansion implementation by
improving its convergence. The technique proposed is the so-
called renormalization of the MS series, which was introduced a
few years ago by Sébilleau and Natoli8.

The paper is organized as follows. In the first part (section
2), we discuss an efficient way of monitoring the convergence
properties of the series expansion, namely the application of the
power method to compute the spectral radius of the kernel ma-
trix. Next (section 3), we present three different renormalization
schemes aimed at improving the convergence. Finally, in section
4 we apply these schemes in the calculation of the photoelectron
diffraction diagram of a Cu(111) cluster, demonstrating that the
renormalized series expansion can reproduce very well the ex-
act matrix inversion solution. These methods are implemented in
MsSpec, a multiple scattering package for spectroscopies9,10.

2 Monitoring the convergence of the MS expansion

2.1 The spectral radius

The MS series expansion approach is only meaningful if this ex-
pansion converges. Therefore, we need a tool that can help us
monitor the convergence properties of the expansion. The spec-
tral radius is exactly the tool we need. For a given matrix K, the
spectral radius is defined by

ρ(K) = max | λi | i ∈ [1,N], (6)

where λi is the ith eigenvalue of K and N is the dimension of the
matrix. As was already recognized by Natoli and Benfatto11, if
ρ(K) > 1, the series expansion diverges; if ρ(K) < 1, the series
converges but the number of terms required is larger the closer
ρ(K) is to 1. Provided enough terms are included, the series ex-
pansion should give the same results as matrix inversion.

There is however more to the story, as the spectral radius can
also be used to estimate the number of expansion terms necessary
in order to reach a given accuracy. To illustrate this use, let us
consider the scalar power series expansion of 1/(1−x), where x is
a real number with absolute value less than 1. Table 1 gives the
largest power of x that needs to be retained in the power series
in order to converge to within a given accuracy, for x between 0.4
and 0.9. We see that to converge to within a relative error of 5%
with fewer than 10 terms (i.e. retaining terms up to x9) requires
x ≲ 0.7, while 20 terms will give convergence to about 1% for
values of x ≲ 0.8. This suggests that if we want a series expansion
to converge in a reasonable number of terms, for example 10, the
corresponding matrix should have a spectral radius of 0.7 or less.

A more detailed analysis for the case of the kernel matrix K ≡
G0T is given in appendix 1. In particular, equations (40) and (42)
respectively provide estimates of the expansion order required to
ensure that the absolute or relative truncation errors are within a
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Table 1 Highest power of x that needs to be retained in the power series
expansion of 1/(1− x) (x a real number) for a given relative accuracy.

x 0.4 0.5 0.6 0.7 0.8 0.9

Relative error < 10% 2 3 4 6 10 21

Relative error < 5% 3 4 5 8 13 28

Relative error < 1% 5 6 9 12 20 43

Fig. 1 A cylindrical cluster of 50 copper atoms, organized in 4 planes.
The dark atom at the center of the bottom plane is the photo-electron
emitter.

specified accuracy. The two relations provide estimates that agree
exactly with the numerical values in table 1 for the convergence
of the power series expansion of 1/(1− x).

2.2 Computing the spectral radius
Following the definition (6), the spectral radius ρ(K) may be
computed by direct diagonalization of the matrix K. As an ex-
ample of this, we consider a small Cu(111) cluster of 50 atoms
arranged in 4 planes with the emitter of the photoelectron at the
bottom (see Fig. 1). In Fig. 2 we plot the spectrum of the ker-
nel matrix K ≡ G0T at 4 different kinetic energies, 25 eV, 54 eV,
98 eV and 181 eV, as well as the spectral radius as a function of
kinetic energy from 10 to 200 eV. The photoelectron wave is usu-
ally damped due to inelastic scattering along the electron path
and also due to lattice vibrations. These two damping sources
are known to strongly affect the convergence of the MS series:
a short electron mean free path or large thermal vibration am-
plitudes of the atoms in the cluster will reduce the spectral ra-
dius and thus improve the convergence of the MS series. For this
study, we will only consider damping due to the electron mean
free path, included through the imaginary part of the complex
Hedin-Lundqvist exchange and correlation potential12,13. Lat-
tice vibrations can be described using a temperature-dependent
Debye-Waller factor or by averaging over T-matrix elements, both
of which are available int the MsSpec computer package. In
this work, however, we deliberately choose to neglect vibrational
damping in order to emphasize possible divergences while treat-
ing a relatively small system amenable to direct matrix inversion
as well as series expansion calculations. The spectral radius may
of course be greater than 1 for larger clusters, even when atomic
vibrations are taken into account.

We see in Fig. 2 that the spectral radius is greater than 1 for ki-
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Fig. 2 Spectrum of the kernel matrix K ≡ G0T for the kinetic energies
of 25 eV, 54 eV, 98 eV and 181 eV. The variations of the spectral radius
are also shown (middle figure).

netic energies around 100 eV and around 150 eV. We also observe
oscillations in the spectral radius. While not fully understood yet,
these oscillations are the result of a complex interplay of the elec-
tron kinetic energy, the crystal structure, the electronic structure,
as well as the number and type of atoms present.

The memory required to store K increases rapidly for larger
clusters and higher kinetic energies, so that it becomes unfeasi-
ble to store and directly diagonalize the full matrix. An alterna-
tive that avoids storing the whole matrix is based on the power
method, an iterative approach that gives a direct approximation
to the spectral radius. The method is based on the assumption
that the matrix K has one dominant eigenvalue, whose magni-
tude is much larger than the magnitudes of the other eigenval-
ues. It starts by choosing an initial approximation xxx0 to the eigen-
vector associated with this dominant eigenvalue, then forms the
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sequence of products

xxx1 = Kxxx0

xxx2 = Kxxx1 = K2xxx0

xxx3 = Kxxx2 = K3xxx0

. . .

xxxn = Kxxxn−1 = Knxxx0.

These values can give a good approximation to the dominant
eigenvalue and eigenvector, and so of the spectral radius. We as-
sume that none of the N eigenvalues of K are zero. Then there are
N linearly independent normalized eigenvectors {vvvi} with eigen-
values {λi}, with i ∈ [1,N]. We also assume that the eigenvalues
are ordered so that |λ1| > |λi| for i > 1. The eigenvectors form a
basis and the initial approximation xxx0 can be written as a linear
combination of the eigenvectors:

xxx0 =
N

∑
i=1

αivvvi.

Multiplying both sides by K gives

Kxxx0 =
N

∑
i=1

αiKvvvi =
N

∑
i=1

αiλivvvi.

Repeating n times gives

Knxxx0 =
N

∑
i=1

αiλ
n
i vvvi = λ

n
1

N

∑
i=1

αi

(
λi

λ1

)n
vvvi. (7)

Introducing an appropriate vector norm ||xxx||, such as the Euclid-
ian norm

||xxx||2 =

[
∑

i
|xi|2

] 1
2

,

and comparing successive approximations, we obtain an estimate
for the spectral radius of K:

||Knxxx0||2
||Kn−1xxx0||2

= |λ1|

√√√√√√ ∑i |αi|2
∣∣∣ λi

λ1

∣∣∣2n

∑i |αi|2
∣∣∣ λi

λ1

∣∣∣2n−2

≈ ρ(K).

(8)

Another estimate of the spectral radius can be obtained from
the Rayleigh quotient

RK(xxx) =
xxx†Kxxx
xxx†xxx

. (9)

Clearly if xxx is an eigenvector of K with eigenvalue λ , then
RK(xxx) = λ . Following the same procedure outlined above, an ap-
proximation to the spectral radius after n iterations is then given
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Fig. 3 The Euclidian 2-norm approximation to the spectral radius, equa-
tion (8), after 50 iterations in the power method. Note that the spectral
algorithm can jump from following the largest eigenvalue to following the
second-largest eigenvalue when the ratio of their magnitudes is close to
1 (upper panel).

by

|(Knxxx0)
† K(Knxxx000)|

|(Knxxx000)†(Knxxx000)|
= |λ1|

√√√√√√√
∣∣∣∣∑i |αi|2

∣∣∣ λi
λ1

∣∣∣2n(
λi
λ1

)∣∣∣∣
∑i |αi|2

∣∣∣ λi
λ1

∣∣∣2n

≈ ρ(K).

(10)

Note that there is a complex term λi/λ1 in the numerator, in con-
trast to the expression (8).

As n increases, the sequence of approximations (8) and (10)
converges to the spectral radius ρ(K). The rate of convergence
depends on the initial guess xxx0 and on the ratio |λi/λ1| for i > 1;
if this is close to 1, the convergence will be slower. Accelera-
tion techniques such as the epsilon algorithm14 can also be used
to extrapolate the sequence of approximations to obtain a better
value. Several such acceleration methods are implemented in the
calculation of the spectral radius in the MsSpec computer code9.

In order to implement these two approximations, we need to
define a starting vector xxx0. Several choices have been tested8,
and the value xxx0 =

(
1, j

1
2 , j, j

3
2 , · · ·

)
was found to perform partic-

ularly well in terms of the number of iterations needed in order
to achieve convergence. Here, we have taken j as the cube root
of unity, e2πi/3.

To better understand the behaviour of the iterative process, we
present in Fig. 3 the evolution of the ratio |λ2|/|λ1| as a function
of energy (upper panel), and of the approximation to the spectral
radius given by equation (8) (lower panel). We note that when
the two largest eigenvalues are close, the power method as well
as the Rayleigh quotient can be misled and jump to the energy
trajectory of the second largest eigenvalue. More precisely, even
though the power method’s approximation to the spectral radius
may not follow exactly the largest eigenvalue, we see that in prac-
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tice this happens when the second largest eigenvalue lies within
approximately 5% of |λ1|; the resulting approximate spectral ra-
dius is however still a good measure of the convergence of the
matrix series expansion.

3 Simple renormalization schemes

Now that we have developed an efficient tool to monitor the be-
haviour of a matrix series expansion, we can apply it to the MS
problem, and more particularly to the Watson expansion. Our
aim in this section is to improve the convergence properties of
matrix series expansions of the form

(I−K)−1 = I+K+K2 +K3 + · · · (11)

For this, we follow ideas developed by Janiszowski15 for deriving
an algorithm for matrix inversion in processors with limited cal-
culation abilities. The main ideas have already been outlined by
Sébilleau et al.16, but we go here into more details.

We seek a general transformation of the form

(I−K)−1 = (I−M(ω,K))−1 N(ω,K), (12)

implying
M(ω,K) = I−N(ω,K)(I−K) , (13)

where ω is a complex scalar chosen to minimize the spectral ra-
dius of M so that the series expansion of (I − M)−1 converges
rapidly. We call N the renormalization matrix. Several renormal-
ization schemes were investigated under the constraint provided
by equation (12), including the Löwdin second order iteration
method17, or the Euler expansion17, but in the end, we focus
on the three transformations described in detail in the following
subsections.

3.1 Gn renormalization

We set
M ≡ Gn = (1−ω

n)I+ω
nK (14)

so that

(I−K)−1 = ω
n (I−Gn)

−1

= ω
n
(

I+Gn +G2
n +G3

n + . . .
)
.

(15)

The matrix N is then just ωnI.

This is the simplest renormalization scheme; the renormalized
matrix M is a linear combination of the identity matrix and the
kernel matrix. The renormalization parameter appears as ωn,
where n is an integer. This general expression may be useful in
formally deriving other renormalization schemes but is less use-
ful for numerical work since by noting ω̃ = ωn, we can rewrite
Gn(ω) = G1(ω̃). In the examples below, we will in general only
consider the G1 renormalization.

Following the definition (14), the eigenvalues λ G of Gn are
related to those of the kernel matrix K by

λ
G
i = (1−ω

n)+ω
n
λi. (16)

We then have

ρ(Gn) = max
i

|(1−ω
n)+ω

n
λi|

≤ |1−ω
n|+ |ωn|ρ(K). (17)

The condition ρ(Gn)< ρ(K) will be satisfied if

|1−ω
n|+ |ωn|ρ(K)< ρ(K). (18)

Writing ω = r exp(iθ), the condition (18) becomes∣∣∣1− rneinθ

∣∣∣< (1− rn)ρ(K), (19)

and since ρ(K) is positive by definition, we must have r < 1 so
that ω lies within the unit circle. Squaring both sides of (19),
rearranging and setting x = (1+ r2n)/2rn, with x > 1 when r < 1,
yields

cos(nθ) > x+(1− x)ρ2(K) (20)

as a constraint on the values of the argument of ω to ensure that
ρ(Gn)< ρ(K).

3.2 Σn renormalization

The different Gn renormalizations satisfy a recurrence relation

Gn(ω) = (1−ω)I+ωGn−1, (21)

with G0 = K. We define the ΣΣΣn renormalization scheme of order
n as the average of the partial sums of Gk for k from 0 up to n:

M ≡ ΣΣΣn =
1

n+1

n

∑
k=0

Gk

= (1− sn)I+ snK,

(22)

where

sn =
1

n+1

n

∑
k=0

ω
k =

1−ωn+1

(n+1)(1−ω)
. (23)

We then have
(I−K)−1 = sn (I−ΣΣΣn)

−1 (24)

with N = snI.
The definitions (14) and (22) for Gn and ΣΣΣn have the same

functional form; they are both linear in the kernel matrix K, and
will have the same eigenvalue spectrum if the renormalization
parameter in the ΣΣΣn case, ωΣ, is chosen so that sn(ωΣ) = ωn

G. In
particular, for n = 1, we see that ΣΣΣ1(2ω-1) = G1(ω). Mathemat-
ically, these two renormalization schemes are equivalent, giving
identical smallest spectral radii so that the convergence properties
of the renormalized series expansion are the same. It is however
interesting to distinguish the two renormalization schemes: as we
shall see later, in cases where we cannot find exactly the optimal
value for ω that minimizes the spectral radius, the ΣΣΣn renormal-
ization scheme can have a wider range of ω giving acceptably
small spectral radii than in the Gn scheme.

The eigenvalues λ Σ of ΣΣΣn are related to those of the kernel
matrix K by

λ
Σ
i = (1− sn)+ snλi. (25)
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To ensure that ρ(ΣΣΣn) < ρ(K), the condition (20) with r < 1 still
applies, where now sn = r exp(iθ).

3.3 The Löwdin Πn renormalization

We define the ΠΠΠn renormalization matrix as the product of Gk for
k from 0 up to n:

ΠΠΠn =
n

∏
k=0

Gk. (26)

For n = 1 this gives

M ≡ ΠΠΠ1 = (1−ω)K+ωK2 (27)

so that
(I−K)−1 = (I−ΠΠΠ1)

−1 (I+ωK) (28)

where N = I+ωK. The eigenvalues of ΠΠΠ1 are

λ
Π
i = (1−ω)λi +ωλ

2
i . (29)

More generally, we may define

Xn = ω
n
ΠΠΠn−1 = ωXn−1Gn−1

with X0 = I and

σσσn =
n

∑
k=0

Xk.

We then have

ωXn−1 −Xn = ωXn1 (I−Gn−1)

= ω
nXn−1 (I−K) ,

where we have used

Gn = (1−ω
n)I+ω

nK ⇒ (I−Gn) = ω
n (I−K) .

We then can write

Xn = ωXn−1 +ω
nXn−1 (I−K)

= ω
2Xn−2 +ω

n [Xn−1 +Xn−2] (I−K)

= . . .

= ω
kXn−k +ω

n [Xn−1 +Xn−2 + · · ·+Xn−k] (I−K)

= . . .

= ω
nI−ω

n
n−1

∑
k=0

Xk (I−K)

= ω
nI−ω

n
σσσ k (I−K) .

Using the definition of Xn, we finally obtain

(I−K)−1 = (I−ΠΠΠn)
−1

σσσn, (30)

which agrees with equation (28) when n = 1 since σσσ1 = I+ωK.

It is interesting to note from the definition (26) that18

ρ(ΠΠΠn)≤
n

∏
k=0

ρ(Gk)

and in particular
ρ(ΠΠΠ1)≤ ρ(K)ρ(G1). (31)

This shows that if the regular Taylor and G1 series expansions
both converge, then the ΠΠΠ1 series will converge faster than either
of them. Furthermore, the condition ρ(ΠΠΠ1) < ρ(K) implies that
the spectral radius of G1 must be less than 1; replacing ρ(K) by
1 on the right-hand side of the inequality (18) and rearranging
yields

cos(θ)> ρ(K)+
r
2

(
1−ρ

2(K)
)

with r < 1/ρ(K) as the conditions to be respected.

3.4 Expressing the renormalization schemes as power series
in K

The effect of renormalizing the Taylor expansion (11) can be seen
by re-expressing the expansions of the transformed inverse as
power series in the kernel matrix K:

(I−K)−1 =
+∞

∑
k=0

Rk(ω,∞) Kk ≈
Ns

∑
k=0

Rk(ω,Ns) Kk, (32)

where Ns is the truncation order of the expansion.

For the Gn renormalization scheme, writing gn ≡ ωn, the first
few terms in the series expansion (15) are

G0
n = I

G1
n = (1−gn)I+gnK

G2
n = (1−gn)

2I+2gn(1−gn)K+g2
nK2

G3
n = (1−gn)

3I+3gn(1−gn)
2K+3g2

n(1−gn)K2 +g3
nK3

. . .

which can be summarized as

Gk
n =

k

∑
m=0

(
k
m

)
(1−gn)

k−m gm
n Km (33)

where
(k

m
)

is the standard binomial coefficient. Inspecting the
coefficients of Kk gives

Rk(ω,Ns) = gk+1
n

Ns

∑
m=k

(
m
k

)
(1−gn)

m−k

= gn

(
gn

1−gn

)k Ns

∑
m=k

(
m
k

)
(1−gn)

m.

(34)

When ω = 1, every coefficient Rk(ω,Ns) reduces to 1, and we re-
cover the Taylor series expansion. A similar expression holds for
the ΣΣΣn renormalization scheme, with sn replacing gn in the rela-
tion (34).

The corresponding expression for the ΠΠΠ1 renormalization
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Table 2 Summary of the different renormalization schemes (I−K)−1 = (I−M)−1 N

Scheme Equation M N MS Expansion (I−M)−1 Renormalized coefficient Rk(ω,Ns)

Taylor (11) K I I+K+K2 + · · ·+KNs 1

Gn (15) Gn gn I I+Gn +G2
n + · · ·+GNs

n gk+1
n ∑

Ns
m=k

(m
k

)
(1−gn)

m−k

ΣΣΣn (24) ΣΣΣn sn I I+ΣΣΣn +ΣΣΣ
2
n + · · ·+ΣΣΣ

Ns
n sk+1

n ∑
Ns
m=k

(m
k

)
(1− sn)

m−k

ΠΠΠ1 (28) ΠΠΠ1 σσσ1 I+ΠΠΠ1 +ΠΠΠ
2
1 + · · ·+ΠΠΠ

Ns
1 ∑

min(k,Ns
m=[k/2] [Y

m
1 ]k

scheme is more complicated. The demonstration is given in the
appendix, leading to the final result

(I −K)−1 ≈
(

I+ΠΠΠ1 +ΠΠΠ
2
1 + · · ·ΠΠΠNs

1

)
σσσ1 =

2Ns+1

∑
k=0

Rk(ω,Ns)Kk,

(35)
with

Rk(ω,Ns) =
min(k,Ns)

∑
m=[k/2]

[Y m
1 ]k (36)

where [k/2] represents the integer part of k/2, and

[Y m
1 ]k = ω

k−m(1−ω)2m−k
[(

m
k−m

)
+(1−ω)

(
m

k−m−1

)]
, (37)

with the convention that
(m

k
)
= 0 if k < 0 or k > m. Since ΠΠΠ1 in-

volves a term in K2, truncating the expansion of (I−ΠΠΠ1)
−1 at

ΠΠΠ
Ns
1 yields a power series in K of order 2Ns + 1. Due to the fact

that the summation over m on the right-hand side of (36) is trun-
cated when k > Ns, the expansion (35) coincides with the Taylor
expansion (11) up to order KNs and differs only for powers of K
between Ns +1 and 2Ns +1 (see appendix 2).

The characteristics of the different renormalization schemes are
summarized in Table 2.

4 Application to Photoelectron Diffraction by a
copper cluster

As a test case for the renormalization schemes presented above,
we consider photoelectron diffraction in the 50-atom Cu(111)
cluster illustrated in Fig. 1. This small system can be treated by
direct matrix inversion techniques, and is thus suitable for vali-
dating our matrix renormalization approaches. In particular, we
suppose that photons generated by an X-ray source and incident
at 55◦ with respect to the normal to the material surface, eject a
2p1/2 electron (ionization energy 967 eV) which is then scattered
by atoms in the cluster before eventually escaping the surface.
Photoelectrons with a given kinetic energy are detected in dif-
ferent directions (polar and azimuthal angles with respect to the
normal at the surface); in the results presented below, we shall
only consider polar scans, for which the azimuthal angle is fixed
at zero. Inelastic effects are taken into account using a complex
Hedin-Lundqvist exchange and correlation potential12,13.

The crystal structure is built using the Atomic Simulation
Environment (ASE) Python package19, while the photoelectron
diffraction is treated using MsSpec9,10, which we have extended
to include the three renormalization schemes presented above. As
well as treating several different types of spectrocopy, the MsSpec
package can also be used to compute the spectral radius of the
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Fig. 4 Optimal spectral radius of the renormalized matrices G, ΣΣΣ and
ΠΠΠ as a function of kinetic energy for a 50-atom Cu(111) system. For each
renormalization scheme, these are computed by finding at each energy
the value of ω that gives the smallest spectral radius. Squares, circles,
diamonds and triangles correspond to the spectral radii of K,G1,ΣΣΣ1 and
ΠΠΠ1 respectively; the results for G1 and ΣΣΣ1 are identical.

kernel and renormalized matrices as a function of the kinetic
energy of the photoelectron and the renormalization parameter,
either by direct diagonalization or iteratively using the power
method combined with various acceleration techniques.

The spectral radius of the kernel matrix K as a function of the
photoelectron kinetic energy from 10 to 200 eV is shown in Fig.
4. For a photoelectron energy of 95 eV, where the spectral radius
is the largest, the maximum angular momentum is ℓmax = 8 and
the size of the matrix K is 92 ×50 = 4050. Inverting this relatively
small matrix using the Lapack library took a few minutes using
a modest Intel Core 8th generation i5 processor, while the power
method converges after 50 iterations and took less than a minute.
The spectral radius of K is 1.15, and hence the series expansion
of (I−K)−1 diverges.

In what follows, we shall only consider the renormalization
schemes Gn, ΣΣΣn and ΠΠΠn with n = 1; the index n will therefore
be omitted, unless otherwise stated.

If all the eigenvalues of the matrix K are known, the spectral
radius of the renormalized matrices can be easily computed using
the relations (16), (25) and (29) for any value of ω. Contour
plots of the spectral radius as a function of ω for the three renor-
malized matrices are shown in Fig. 5 at 4 selected energies. The
spectral radius of the original matrix K appears at ω = (1,0) in
the G scheme; it is less than 1 at 70 and 75 eV, while it is greater
than 1 at 90 and 95 eV. The plots present two interesting features:

– the spectral radius of ΣΣΣ is smaller than 1 over a relatively
wider range of ω than for the other two schemes; in other
words, the spectral radius for ΣΣΣ renormalization is less sensi-
tive to the precise value of ω than in the other two schemes,

Journal Name, [year], [vol.], 1–11 | 7

Page 7 of 11 Physical Chemistry Chemical Physics



1.0

0.5

0.0

0.5

1.0
Im

(
)

70.0 eV

G1 1 1

1.0

0.5

0.0

0.5

1.0

Im
(

)

75.0 eV

1.0

0.5

0.0

0.5

1.0

Im
(

)

90.0 eV

1 0 1 2

Re( )

1.0

0.5

0.0

0.5

1.0

Im
(

)

95.0 eV

1 0 1 2

Re( )

1 0 1 2

Re( )

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Fig. 5 Contour plots of the spectral radius as a function of the complex
parameter ω for the G, ΣΣΣ and ΠΠΠ renormalized matrices at 70, 75, 90 and
95 eV

which may be an advantage in numerical work when search-
ing for an optimal value of ω;

– the strongest reduction occurs for the ΠΠΠ renormalization
scheme, but over a relatively restricted range of ω.

We also note that the optimal values of ω all lie within the unit
circle, as expected following the arguments in section 3 above.

Also shown in Fig. 4 are the optimal spectral radii for the three
renormalized matrices G, ΣΣΣ and ΠΠΠ. The optimal spectral radius at
a particular energy is obtained by finding the value of ω that min-
imizes the spectral radius; each point on a particular curve corre-
sponds to a different ω. The search, performed using the Nelder-
Mead simplex algorithm20, is usually quick when the eigenvalues
of the kernel matrix K have been found by direct diagonalization,
since the eigenvalues and hence the spectral radii are rapidly ob-
tained from the relations (16), (25) and (29). In contrast, the
power method must be re-applied to calculate the spectral radius
for each required value of ω, potentially resulting in longer search
times which may dominate the overall computing time.

We first note that all spectral radii with renormalization are
reduced compared to the spectral radii of the matrix K, some-
times by as much as 50%. This implies that the matrix series
now converges over the whole energy range considered. As
expected, the optimal spectral radii for G and ΣΣΣ are identical.
The ΠΠΠ renormalization scheme gives the smallest optimal spec-
tral radii, and hence potentially the best convergence properties
for the matrix series expansion.

In Fig. 6, we compare the cross sections obtained by direct
matrix inversion and those obtained by matrix series expansion
with G renormalization scheme. The optimal value of ωG is
0.790+ 0.124i, giving a spectral radius ρ(G1) = 0.68. Renormal-
ization has thus converted a divergent series into one that con-
verges quite well by order 8 or 9. More precisely, the maximum
relative difference (MRD) between the cross sections obtained by
direct matrix inversion and by a renormalized series expansion is
about 6% after after truncating the G expansion beyond Ns = 9;
terms up to Ns = 13 are required to obtain an MRD of less than
1%. From equation (42) in appendix 1, however, we expect the
truncation error for the series expansion of the matrix inverse to
be about 2% for Ns = 9 and less than 1% for Ns = 11. The cross
sections thus converge slightly more slowly with increasing series
expansion order, which is understandable since the expression for
the cross section involves the square of the scattering path oper-
ator. We have also noted that the MRD always seems to occur
when the polar angle θ is zero, possibly due to the fact that the
cross section has a deep minimum in this direction.

The ΣΣΣ renormalization scheme yields identical results for opti-
mal ω Σ = 2ωG − 1 = 0.581+ 0.247i, although this analytical re-
lation might not be always verified for values determined by nu-
merical search and tiny differences between cross sections might
thus appear.

Since the ΠΠΠ renormalization scheme yields a smaller spectral
radius, ρ(ΠΠΠ1) = 0.45, the matrix expansion should converge even
faster. The results shown in Fig. 7 suggest that a truncation or-
der as low as 4 or 5 is sufficient; the MRD for Ns = 5 is about
1.4% while for Ns = 6 it is only 0.3%. The corresponding trun-
cation errors for the matrix inverse predicted by (42) are respec-
tively 0.8% and 0.4%. This rapid convergence is due to the fact
that the ΠΠΠ matrix series expansion truncated at order Ns = 5 con-
tains powers of K up to order 2Ns + 1 = 11, the truncation order
at which the G renormalized series expansion also converged to
within 1%.

The expected relative truncation errors in the series expansion
of the inverse matrix operator (I−K) and the maximum relative
difference (MRD) between the cross sections obtained by direct
matrix inversion and by series expansion are summarized in table
3.

Table 3 Comparison of the relative truncation error εrel in the renormal-
ized series expansion of order Ns of the matrix inverse (I−K), given by
equation (42), and the maximum relative difference (MRD) between the
cross sections obtained by direct matrix inversion and by series expansion.
All values are percentages.

G1 renormalization

Ns 3 5 7 9 11 13

εrel 21.4 9.9 4.6 2.1 0.98 0.45

MRD 34.8 20.3 13.2 6.01 2.03 0.65

ΠΠΠ1 renormalization

Ns 3 4 5 6

εrel 4.10 1.85 0.83 0.37

MRD 7.75 6.98 1.35 0.32
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Fig. 6 Comparison of photoelectron diffraction cross sections at 95
eV. Full curve: direct matrix inversion of (I−K); series expansion with
G renormalization scheme, optimal ω G = 0.790+0.124i giving a spectral
radius ρ(G1) = 0.68: long dashed curve, truncation order 3; dotted curve,
truncation order 5; dash-dotted curve, truncation order 7; dashed curve,
truncation order 9.
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Fig. 7 Comparison of photoelectron diffraction cross sections at 95 eV.
Full curve: direct matrix inversion of (I−K). Series expansion with ΠΠΠ1
renormalization scheme, optimal ω Π = 0.637+ 0.250i giving a spectral
radius ρ(ΠΠΠ1) = 0.45: long dashed curve, truncation order 3; dashed curve,
truncation order 4; dotted curve, truncation order 5. The convergence is
more rapid than for G renormalization, only requiring terms up to order
4 or 5.

5 Conclusions

The matrix series expansion (5) converges if the spectral radius of
the kernel matrix K is less than 1. This may be sufficient for fur-
ther mathematical development, but the convergence may be too
slow to be of use in numerical work. The idea of renormalization
is to recast the series expansion in another form with faster con-
vergence properties, by introducing a renormalized kernel matrix
M with a smaller spectral radius. Multiplication by an associated
matrix N is then performed to recover the exact result.

We have proposed three simple renormalization schemes in-
volving a single complex parameter ω that can achieve this goal,
yielding a convergent series even for cases where the original ex-
pansion diverges. Numerical tests on a relatively small Cu(111)
cluster show that the ΠΠΠ1 scheme is particularly advantageous, re-
ducing the spectral radius by up to a factor 2 in some cases. The
main difficulty is determining an optimal value of the renormal-
ization parameter ω; this can be found using standard optimiza-
tion approaches such as the Nelder-Mead simplex algorithm20

combined with an iterative approach for determining the spectral
radius.

When used to simulate typical X-Ray Photoelectron Diffrac-
tion experiments with kinetic energies in the 100-1500 eV range,
the standard Watson series expansion may not converge properly.
Computing spectral radii by direct matrix inversion for such cases
is not possible because of the large memory requirements. The
power method allows the convergence properties to be predicted
efficiently for such cases. However, even though the tools and
methods presented here succeeded in improving the MS series
convergence, the overall procedure of optimizing ω can become
quite long. A dedicated study to better understand the origin
of the divergence and the variation in the spectral radius is in
progress to further improve the renormalization procedure.

Appendix 1: Estimate of the truncation order

To simplify the notation, let us write A = (I−K)−1. We can then
approximate A by a series expansion of order n:

An = I+K+K2 +K3 + · · ·Kn. (38)

The absolute truncation error εabs introduced by this approxima-
tion is then

||A−An|| ≤ εabs, (39)

where || || represents any matrix norm. Using equation (38),
the previous inequality can be written as

||(K)n+1 (I−K)−1 || ≤ εabs.

We can then use the property

||XY|| ≤ ||X|| · ||Y||,

which is valid for any matrix norm, as well as18

ρ(Xn) = ρ(X)n ≤ ||X||n.

Journal Name, [year], [vol.], 1–11 | 9

Page 9 of 11 Physical Chemistry Chemical Physics



Choosing the minimum norm for which21

ρ(X) = inf
||·||

||X||,

the inequality (39) will always be satisfied if

ρ((Kn+1) (1−ρ(K))−1 ≤ εabs.

This leads to the condition

n ≳
log [εabs(1−ρ(K))]

log [ρ(K))]
−1. (40)

For instance, choosing an accuracy εabs = 0.1, we find n ∼ 43 for
ρ(K) = 0.9, n ∼ 9 for ρ(K) = 0.7, while for ρ(K) = 0.5 n drops to
∼ 3.

Defining the relative truncation error εrel by

||A−An||
||A||

≤ εrel, (41)

and using similar arguments, we obtain an estimate for the trun-
cation order required for convergence to within εrel:

n ≳
log [εrel]

log [ρ(K))]
−1. (42)

Appendix 2: The ΠΠΠ1 renormalization scheme as a
power series in K

The ΠΠΠn renormalization scheme is (cf equation 26):

(I−K)−1 = (I−ΠΠΠn)
−1

σσσn,

which for n = 1 reduces to (cf equation 28)

(I−K)−1 = (I−ΠΠΠ1)
−1 (I+ωK) , (43)

with ΠΠΠ1 = (1−ω)K+ωK2. We now show how to write the renor-
malized series expansion as a series of powers of K (cf equa-
tions (35) to (37)):

(I−K)−1 =
∞

∑
k=0

Rk(ω) Kk. (44)

We recall that

ΠΠΠn =
n

∏
k=0

Gk,

with ΠΠΠ0 = G0 = K, so that for n = 1,

ΠΠΠ1 = G0G1 = KG1

with G1 = (1 − ω)I + ωK. The Taylor expansion of the matrix
inverse (I−ΠΠΠ1)

−1 in equation (43) is

(I−K)−1 =

(
∞

∑
k=0

(KG1)
k

)
(I+ωK) .

Using the binomial expansion (33) with n = 1 and gn = ω gives

(I−K)−1 =

(
∞

∑
k=0

k

∑
m=0

(
k
m

)
(1−ω)k−m

ω
m Kk+m

)
(I+ωK) (45)

=
∞

∑
k=0

k

∑
m=0

(
k
m

)
(1−ω)k−m

ω
m Kk+m

+
∞

∑
k=0

k

∑
m=0

(
k
m

)
(1−ω)k−m

ω
m+1 Kk+m+1. (46)

We now examine the coefficients of Kn on the right-hand side
of equation (46). In the first term, we must have n = k +m or
m = n− k. Since we must also have m ≤ k, the values of k can be
n,n−1,n−2, . . . , [(n+1)/2], where [p/2] is the integer part of p/2.
Similarly, in the second term on the right-hand side of equation
(46), we must have m = n− k− 1 with k taking values between
n−1 and [n/2]. Combining gives the coefficient of Kn as

Rn(ω) =
n

∑
k=[(n+1)/2]

(
k

n− k

)
(1−ω)2k−n

ω
n−k

+
n−1

∑
k=[n/2]

(
k

n− k−1

)
(1−ω)2k−n+1

ω
n−k,

which can in turn be written as

Rn(ω) =
n

∑
k=[n/2]

ω
n−k (1−ω)2k−n

[(
k

n− k

)
+(1−ω)

(
k

n− k−1

)]

≡
n

∑
k=[n/2]

[
Y k

1

]
n

(47)

with the convention that
(k

m
)
= 0 if m < 0 or m > k.

It should also be noted that if the series expansion for (I −
ΠΠΠ1)

−1 is truncated after Ns + 1 terms, the largest power of K in
the series (44) will be 2Ns + 1, while the summations over k in
(47) should be truncated at min(n,Ns). For example, truncating
the expansion after ΠΠΠ

2
1 (Ns = 2) gives:

(I−K)−1 ≈
(

I+ΠΠΠ1 +ΠΠΠ
2
1

)
(I+ωK)

=
(

I+(1−ω)K+(1−ω +ω
2)K2 +2ω(1−ω)K3

+ω
2K4

)
(I+ωK)

= I+K+K2 +ω(3−3ω +ω
2)K3

+ω
2(3−2ω)K4 +ω

3K5.

This also illustrates that the ΠΠΠ1 renormalization scheme truncated
after ΠΠΠ

Ns
1 reproduces the Taylor series for (I−ΠΠΠ1)

−1 up to order
Ns, followed by correcting terms for powers of K from Ns + 1 to
2Ns +1.
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