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Abstract

It is inherently difficult to plan water systems for a future that is non-predictive. This paper 
introduces a novel perspective for the design and operation of potable water systems under 
increasing water quality volatility (e.g., a relatively rapid and unpredicted deviation from 
baseline water quality). Increased water quality volatility and deep uncertainty stress water 
systems, confound design decisions, and increase the risk of decreased water system 
performance. Recent emphasis on resilience in drinking water treatment has partly addressed this 
issue, but still establishes an adversarial relationship with change. An antifragile system benefits 
from volatile change. By incorporating antifragility, water systems may move beyond resilience 
and improve performance with extreme events and other changes, rather than survive, or fail and 
quickly recover. Using examples of algal blooms, wildfires, and the COVID-19 pandemic, this 
work illustrates examples of fragility, resilience, and antifragility within physicochemical 
process design including clarification, adsorption and disinfection. Methods for increasing 
antifragility–both individual process options and new system design tools–are discussed. Novel 
physicochemical processes with antifragile characteristics include ferrate preoxidation and 
magnetic iron (nano)particles. New design tools that allow for systematic evaluation of 
antifragile opportunities include artificial neural networks and virtual jar or pilot “stress testing”. 
Incorporating antifragile characteristics represents a trade-off with capital and/or operating cost. 
We present a real options analysis approach to considering costs in the context of antifragile 
design decisions. Adopting this antifragile perspective will help ensure water system improved 
performance during extreme events and a general increase in volatility. 

Water Impact Statement

Raw water quality volatility driven by extreme events presents a grand challenge to potable 
water systems. This work describes a new perspective of antifragility that allows water systems 
to thrive despite an uncertain future. Individual processes that have antifragile characteristics are 
introduced and discussed, as well as new tools for water system design that allow for 
considerations of antifragility. Incorporation of the antifragile paradigm developed here will 
enable a shift towards more sustainable water systems less reliant on stationarity and prediction 
of future conditions. 

Introduction
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Engineered systems that produce and distribute potable water are critically important to public 
health. Potable water systems (PWS) have led to dramatic decreases in waterborne diseases,1 at a 
low cost relative to public value.2 PWS face challenges, especially related to uncertainty and 
volatility. For example, source water quality and quantity may be affected by extreme events and 
phenomena such as chemical spills,3 harmful algal blooms,4 hurricanes,5,6 and wildfires.7,8 Some 
water changes may be driven by climate change, although predictive modeling of this 
relationship is difficult at the watershed spatial scale.9 PWS may also be impacted by complex 
socioeconomic processes such as economic globalism, leading to population loss (e.g. “shrinking 
cities”) and corresponding water age increases,10 and possible water quality problems.11These 
processes generally contribute to volatility, uncertainty, complexity and ambiguity (VUCA). 
This combination of stressors contributes to a “deep uncertainty” that confounds the design and 
planning of water systems.12

Water treatment processes have historically been designed using a deterministic approach.13,14 In 
the deterministic approach, modeling efforts intended to assist in process optimization have 
tended to assume that the influent water quality conditions, water demands, and model 
parameters are fixed and known. This assumption has proven dubious as new types of 
contamination (e.g. perfluorinated compounds, pharmaceuticals) have emerged, and surface 
water quality variability has increased.15 More recently, researchers have advocated for the 
incorporation of variability and uncertainty of source water quality in water treatment plant 
design and operation, but have continued an optimality paradigm with regard to water treatment 
plant effluent.16–18  The deterministic approach remains the current dominant paradigm in water 
treatment process design and operation, and is enshrined in published process selection guidance 
(see [13] as an example). 

An example consequence of the optimality paradigm is the exclusion of clarification from some 
PWS treatment trains (e.g., direct filtration). Given source water of sufficient average historical 
quality (i.e., the constraint), water treatment plants have been designed to minimize lifetime 
construction and operation costs (i.e., the objective). This model has been generally successful; 
however, a loss of (perceived) stationarity undermines the optimality paradigm, with accelerating 
rates of change and more numerous extreme events projected.19,20  The optimality paradigm is 
highly constrained and fragile to baseline water quality deviations, and is not appropriate for 
cases of deep uncertainty, as is now faced by water treatment plant operators and planners.21 
Also, it is highly dependent upon the quality of simulation models representing the water 
treatment system; unfortunately, we know the quality of the available models to be relatively 
poor.16,22 Further, common physical models such as jar testing and pilot testing informing PWS 
decision making provide no information about future water conditions or performance. Elements 
of the outcome for the optimality paradigm approach therefore contain stochastic elements, 
making the outcomes also inherently stochastic.23 An alternative decision making analytical 
approach is needed. 

PWS decision making has been shifting to the incorporation of robustness, resilience and 
adaptation.24,25 In the United States, The National Infrastructure Advisory Council (NIAC) 
defined resilient infrastructure as able to anticipate, adsorb or adapt to, and/or recover from a 
disruptive event, and encourages planners and designers to aim for resilience in designs for 
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infrastructure.26,27 Similarly, America’s Water Infrastructure Act requires most PWS to conduct a 
risk and resilience assessment by the end of 2021.28 Common design changes to increase 
resilience in PWS include additional redundancy and capacity. 21 These changes have decreased 
risk of water system failure; however, this approach is still somewhat dependent on prediction of 
future events, and limiting service disruptions, not improving service in the face of volatility. If 
volatility is increasing, then the adversarial relationship with it inherent in resilience is 
unsustainable. 

This paper describes a novel perspective for achieving an antifragility paradigm in PWS design 
and operation, including cost trade-offs. The antifragile concept was popularized in the financial 
domain,29 but has been applied in other fields, such as computer science and transportation 
planning,30 as an approach to risk. In the antifragility paradigm, a system benefits from volatility, 
rather than being harmed by it.29 In this way, antifragility extends resilience/robustness 
frameworks. Robust infrastructure resists failure, often through the adoption of conservative 
designs that include excess capacity. Resilient infrastructure systems fail, but not 
catastrophically, and recover somewhat quickly. The key benefit of antifragility is that 
performance actually improves in volatile periods. It also is less reliant on prediction of the 
future. The overarching objective of this paper is to introduce the antifragility paradigm across 
domains into PWS, and frame raw water quality volatility and extreme (e.g., “black swan”) 
events in the water supply sector that may be better managed with via antifragility. We also 
include examples of novel physicochemical processes that have antifragile characteristics and 
summarize new design tools that allow for systematic consideration of antifragility in the field of 
water treatment.

Black Swan Events 

We define volatility as the (relatively) rapid and unpredicted deviation from a baseline (i.e., 
“normal”). Specific instances of volatility can be labeled as a Black Swan Event. The term Black 
Swan Event (BSE) was also popularized in the financial domain, and is generally taken to mean 
a low probability event, with casual opacity, that is difficult to predict.31 Quantitively, this can be 
summarized as an event more than a few standard deviations away from the mean of prior data; 
an outlier. Casual opacity may also be a characteristic, leading to uncertainty in what initiated the 
low probability event. These characteristics of BSEs ultimately make them impossible to predict 
with confidence. Often, insufficient data (e.g. sample size) make the nature of the event 
probability unknowable, and leave it unclear if a system follows as Gaussian distribution, or 
another distribution with skewness (e.g. gamma family), or fat tails (e.g. Cauchy). 32,33

Here, we take this concept cross domain into the environmental engineering context, focused on 
PWS. Water systems are exposed to BSEs. Examples receiving recent attention include lake 
recovery,34 and forest fires.35 Both of these BSE examples have impacts to source water quality 
that are an extreme departure from historical averages.36 Also, the cause of these events is 
difficult to determine. Lake recovery is a relatively rapid increase in organic productivity or 
“browning” of a surface water driven by a complex combination of nutrient loadings, warming 
air temperatures (e.g. climate change),37 and decreases in sulfur deposition from upwind 
sources.38 In Atlantic Canada, decreases in sulfur deposition followed the amendments of the US 
Clean Air Act, illustrating the causal opacity and deep complexity of secondary effects in PWS 
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design. Similarly, large-scale forest fires may form via anthropogenic or natural phenomena and 
are likely exasperated by climate change, invasive insect activity, and forest management 
policies. The total annual acreage burned by wildfires in the US more than tripled from 1983 to 
2016.35 Wildfires are known to cause changes in watersheds that impact water quality including 
increases in turbidity, nitrate, phosphate, and disinfection byproduct precursors that may persist 
for several years postfire.39,40 

The problem caused by exposure to a BSE by a PWS often presents in difficulty achieving 
treatment goals following dramatic changes in raw water quality. These source water shifts may 
exceed the design capacity of any physicochemical process that comprises a given drinking 
water treatment plant. Two examples of this situation are presented in Figure 1, which includes 
raw water organics (color or total organic carbon) and turbidity for two different source waters: 
(1) A reservoir before and after lake recovery–Pockwock Lake,34 and (2) a river draining an 
alpine forest before and after a major wildfire–Poudre River.8 Figure 1 also includes regions of 
recommended clarification design from Valade et al., 2009 based primarily on American Water 
Works Association survey of utilities.41 Gaussian distributions were assumed for both organics 
and turbidity. 

DAF or SettlingDAF

DF

Settling

Figure 1. Results of 365 statistical resamplings of distributions based on average raw water 
quality from Pockwock Lake (PL) in 1999 (gray circle) and 2015 (green circle) and from the 
Poudre River (PR) from 2008-2011 (gray triangle) and 2013 (red triangle). PL plots are Color vs. 
Turbidity; PR plots are TOC vs. Turbidity. Regions of typical particle removal designs include 
direct filtration (DF), dissolved air flotation (DAF) and conventional sedimentation from Valade 
et al., 2009. Relative scaling of color and TOC within design regions also taken from Valade et 
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al., 2009. Raw water quality statistical information from PL and PR taken from Anderson et al., 
2017 and Hohner et al., 2016, respectively. 

Figure 1 demonstrates that shifts in raw water quality from BSEs can change the optimal design 
of a DWTP. Optimal clarification design guidance is summarized in Valade et al., 2009 and 
Gregory and Edzwald, 2011 (see Table 9.9 in that work).42 Utilizing raw quality data from 
Pockwock Lake (PL) in 1999, a designer using the optimality paradigm may recommended 
direct filtration (DF) to save costs by excluding any clarification step.13 Similarly, an optimality-
based designer presented with PR data in 2011 may consider DAF clarification in an attempt to 
save space and capital costs. DAF systems can be operated at a loading rate 10-20 times greater 
than conventional gravity sedimentation.43 However, a DAF design may struggle post wildfire, 
as resampled turbidities are significantly greater than the pre-fire condition. The J.D. Kline 
Water Supply Plant (JDKWSP) utilizing PL was designed as a direct filtration facility. This 
design was optimal at the time; in 1999 water quality was within the DF design region in 92% of 
simulations. However, JDKWSP is now straining to meet treatment goals due to lake recovery as 
the raw water typically exceeds the recommended limits for a DF facility. Figure 1 shows raw 
water quality exceeding the recommended color limit of the DF design region 58% of 
simulations. As a DF facility, few mitigative options are available. For the first time in 35 years, 
the JDKWSP recently increased its coagulation (alum) dose by 50%,44 which may have negative 
higher-order effects associated with increased levels of effluent aluminum and subsequent 
changes on distribution system corrosion.45 Recent pilot-scale research at JDKWSP has also 
examined cationic polymers, and larger filter media. Neither mitigation approach was completely 
successful and now physical plant upgrades are being considered. To what conditions the plant 
might be optimized in the future remains unclear.44 The situation at JDKWSP exemplifies 
difficulties presented by BSEs to drinking water systems. The Fort Collins Water Treatment 
Facility, which treats surface water from the Poudre River watershed, rapidly constructed a 
presedimentation basin as a response to observed turbidity volatility following a major wildfire.39

Fragile, Resilient, and Antifragile

Future BSEs and general volatility are difficult to predict, so it is more profitable to define a 
system based on relative impact from stress. This approach has again been popularized in 
financial markets through stress testing.46 The three primary relationships to stress may be 
described as fragile, resilient, and antifragile. A fragile system has severe negative outcomes 
from volatility, a resilient system has minor negative outcomes from volatility with relatively 
quick recovery, while an antifragile system has positive outcomes from volatility. Mathematical 
expressions of all three terms exist;47 however, model-free and probability-free heuristics can 
also be used to assess fragility, resilience, and antifragility based on a convex relationship to 
volatility.48 Fragile and antifragile systems have negative and positive convex relationships with 
volatility, respectively, while resilience has a linear relationship with volatility. Here, we apply a 
heuristic approach to identifying fragile, resilient, and antifragile PWS based on convexity using 
data from full-scale DWTPs, 

Fragility, resilience/robustness, and antifragility are currently present in contemporary full-scale 
DWTPs. Examples of each include the Lake Major Water Supply Plant (#1 Fragile); the 
Providence Water System (#2 Resilient) and for two surface water sourced DWTPs in New 
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England (#3 Antifragile). The Lake Major Water Supply Plant and the Providence Water System 
are also both surface water sourced systems.

Fragile. The Lake Major Water Supply Plant (LMWSP) was commissioned in 1999 as a 
conventional sedimentation facility treating a high-quality source, Lake Major (LM). The 
LMWSP serves the same general population as JDKWSP: Halifax, Canada. Similar to Pockwock 
Lake, Lake Major has also experienced lake recovery since commission, resulting in an increase 
in raw water algal organics, as noted by color measurements, shown in Figure 2. Algae challenge 
conventional sedimentation-based DWT plants in two ways: the algal organic matter exhibits an 
increased coagulant demand, and algal particles settle quite slowly due to specific gravities ≤ 1.49 
The LMWSP has few mitigative operational controls, and has increased alum dosing in response 
to increased water color. Figure 2 shows an exponential (e.g., convex) relationship between raw 
water color and required alum dose. This indicates accelerating problematic fragility to further 
increases in water color. For example, an increase in color 5 units from 25 to 30 resulted in an 
alum increase of 20%, while the same 5 unit increase from 42 to 47 resulted in an alum increase 
of almost 50%. Results indicate accelerating problems and risk of system failure with further 
increase in raw water color, even if only incremental. Significant increases in alum dose carry 
the potential for numerous negative second-order effects, such as increased chemical costs, 
decreased filter run times, increased solids handling stress, and increased distribution system 
corrosion.44

y=x

y = y0+(a*exp(b*x))
R2 = 0.86

1999-2004
2005-2010
2011-2015

Figure 2. Yearly mean raw water color and corresponding coagulant dose at the Lake Major 
Water Supply Plant from 1999 through 2015. Data from Anderson et al., 2017. Note the non-
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linear (e.g., convex) relationship between color and required alum dose demonstrating fragility. 
Incremental increases in color above 40 CU led to exponential increases in alum dose.  

Resilient. The Providence Water Supply Board (PW) operates the largest conventional DWTP in 
the Northeast USA. PW has a history of providing safe water service but recent, occasional 
issues with disinfection byproducts (DBPs), especially total trihalomethanes (TTHMs), have 
occurred including an maximum contaminant limit (MCL) violation in 2018.50 One particular 
DBP monitoring site tends to control MCL compliance; a large elevated storage tank in a remote 
part of the system. PW had recently installed a THM-stripping aeration system in the tank, just 
prior to the BSE of the COVID-19 pandemic. Changes in commuting and other behavioral 
patterns led to changes in water usage within the service area’s urban core. Water ages increased, 
and thus the THM formation also increased. Trihalomethane formation potential (THMFP) is a 
function of several drivers including precursory organic carbon, residual chlorine concentrations, 
temperature, and water age.51 Methods exists for estimating site-specific THMFP based on 
dissolved organic carbon (DOC), UV absorbance, and other water quality parameters.52,53 Using 
an approach outlined in [52] the THMFP for PW effluent is estimated to range from 100 to 150 
µg/L, significantly greater than the 80 µg/L MCL for TTHMs.

The increase in water age created stress on the PW system to meet the MCL. Results in Figure 3 
show rapidly increasing THMs in March 2020, with one sample above 70 µg/L. Aeration was 
initiated in April. Aeration within the storage tank was effective at decreasing THMs in the 
delivered water, and THM values decreased to well below the MCL. The impact of aeration is 
also noted in July 2020 when aeration was temporarily ceased. The use of aeration represents a 
form of resilience for PW. Given serious stress from the COVID-19 BSE (increase in THMs), 
the system was able to mitigate the damage, and continue to meet treatment goals, after a 
temporary increase in delivered water THMs. There is a linear (non-convex) relationship 
between volatility and THMs as the presence of aerators provides a switch-on recovery option 
that can be utilized as needed. This THM mitigative approach generally meets the NIAC 
definition of resilience: “the ability to reduce the magnitude and/or duration of disruptive events 
through the ability to anticipate, absorb, adapt to, and/or rapidly recover.”27 
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Figure 3. Total trihalomethane (TTHM) concentrations measured as at an elevated storage tank 
within a problematic water age area of the Providence Water (PW) system from December 2019 
through November 2020. Shaded regions represent periods when an aeration system inside the 
elevated storage tank was in operation. PW THM formation potential estimated to be 100 to 140 
µg/L. 

Resilience may also be considered at the system level. In general, the more diverse a system is 
(e.g. multiple sources and/or production) the more resilient it is to a particular disruption; while a 
highly centralized system is more fragile.29 The relationship between centralization and fragility 
has been commonly explored in a financial context (e.g. “a diversified portfolio”), however, 
recent work has advocated for water supply systems to not be reliant upon a single source of 
water.54 A comparison between the water systems of Rhode Island, USA and Singapore 
demonstrates this difference. The PW system, consisting of one conventional water treatment 
plant, provides water to approximately two-thirds of Rhode Island residents, as many 
communities outside of Providence are wholesale customers through interconnections. While 
this is efficient, it also fragile as any BSE or other disruption at the PW treatment plant would 
impact potable water access to much of the state. Contrastingly, the Singapore Four National 
Taps approach includes water imports, direct potable reuse (i.e., NEWater), desalination, and 
runoff from local catchments. These four sources, each with different treatment processes, 
represents a semi-decentralized system with much less fragility from a BSE that might disrupt an 
individual component of the PWS. Decentralized water infrastructure has been described as a 
distinguishing characteristic of the “Water Sensitive City”,55 with the aim of reducing the harm 
from extreme events and ensuring service security for residents.56  
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Decentralized systems also support intergenerational equality and environmental justice.56 In the 
electricity planning field, one tool to accomplish this is “islanding”, whereby decentralized 
energy suppliers are managed in a way to protect consumers from blackouts, ensuring the 
security of supply.57–59 Within water networks, infrastructure that can be disconnected from the 
main centralized water system if it is compromised would continue as a source of clean water 
when in island mode, promoting public health and safety, supply security, and overall regional 
livability.55

Antifragile. Options for incorporating antifragility in PWS are available. For example, 
Manganese (Mn) is a contaminant of concern in the drinking water field, based on emerging 
health risks, aesthetic concerns, and recent regulation by Health Canada.60 Current USEPA non-
enforceable guidance on Mn is through a secondary maximum contaminant level (SMCL) of 50 
µg/L, although there is no scientific basis for this SMCL, and aesthetic concerns still commonly 
occur at this level.61 The typical treatment goal for finished water Mn is 20 µg/L.62 Mn presents 
challenges to surface water systems, as raw water Mn concentrations can be highly variable; 
changing an order of magnitude or more within days.63 This volatility challenges chemical 
oxidation treatment, such as meeting stoichiometry.64 However, auto-catalytic Mn(II) (e.g. 
“greensand”) adsorption and subsequent free chlorine regeneration has been successful Mn 
removal approach. This auto-catalytic process exhibits antifragile characteristics, as the adsorbed 
Mn from the source water is rapidly converted by free chlorine to MnOx sites for additional 
Mn(II) adsorption.65 Thus, increases in raw water Mn produce increased adsorption capacity of 
subsequent raw water Mn(II), creating a positive, reinforcing cycle. 

Figure 4 includes raw and combined filter effluent (CFE) Mn concentrations for two surface 
water sourced DWTPs in New England. For both facilities, CFE Mn levels were lower as raw 
water Mn increased. In other words, treatment improved as contaminant concentrations 
increased. There is a positive convex relationship between raw water Mn and CFE Mn. Plant S 
more consistently achieved CFE Mn treatment goals when influent Mn was ≥ 50 µg/L, and met 
the treatment goal despite raw water Mn far exceeding 100 µg/L. This process is clearly beyond 
resilient and improves as raw water conditions deteriorate. Adequate Mn treatment does not 
require precise prediction or measurement of raw water Mn, nor a full understanding of the 
causes of raw water Mn fluctuations. Loss of MnOx coating from media surfaces is a likely cause 
of CFE Mn exceeding raw water Mn in the case of both facilities in Figure 4. This coating loss is 
a function several parameters including free chlorine residual across the media, backwashing 
practices, and filter run times.66 MnOx coating loss can be controlled by balancing these 
operational parameters with other water quality objectives on a case-by-case basis.62 
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Typical Treatment Goal

Figure 4.  Combined filter effluent manganese (Mn) concentrations as a function of influent raw 
water Mn concentration for two surface water treatment plants with seasonal manganese 
problems. Data from Goodwill, 2006. 

The use of coagulation for the removal of DBP precursors (e.g., “enhanced coagulation” but 
perhaps best called “multi-objective coagulation”)67 is another example of an antifragile process 
common in water treatment systems. Aromatic, hydrophobic, higher molecular weight (MW) 
carbon compounds are more preferentially addressed by coagulation with metal salts due to 
charge interactions between cationic metal hydrolysis products and anionic humic 
macromolecules with carboxyl and phenolic groups.68,69 This is fortunate, as these same fractions 
of NOM also tend to have higher halogenated DBP yields due to the same unsaturated and 
aromatic moieties that have relatively high electron-donating capability.70,71 Therefore, as 
concentrations of higher DBP-forming compounds in raw water increases greater removals via 
enhanced coagulation are expected. This antifragile characteristic is acknowledged in The 
USEPA Stage 1 D/DBP Rule which requires higher removals of organic matter as aromatic and 
hydrophobic portion increases, as quantified by specific ultra-violet absorbance (SUVA).67 

Incorporating the Antifragility Paradigm into Potable Water Systems 

Antifragility can be incorporated into a PWS by applying physicochemical processes that are 
known to do well under a given set of raw water quality volatility. This process requires two 
general steps: (1) knowledge of individual processes that increase antifragility and (2) a design 
evaluation approach that enable antifragile process selection under a given volatility parameter 
(e.g., what processes have positive convexity to this volatility parameter?). We present two 
examples of emerging antifragile treatment processes and describe new design tools and how 
they may be used. Diverging from the optimality paradigm will inherently lead to increased 
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costs, and we also present opportunities to include real options analysis for the assessment of 
antifragile and financial trade-offs. 

Individual Processes. Two examples of emerging, individual processes that may increase 
antifragility of PWS include: (1) ferrate (Fe(VI)) preoxidation and (2) magnetic (nano)particulate 
iron oxides.  

Fe(VI), a high-valent oxo-anion of iron,72 has been considered and evaluated as a potential 
preoxidant (i.e. occurring before the primary particle removal step) in DWT.73 Preoxidation is 
sometimes utilized as a response to BSEs, such as chemical spills,74 wildfires,75 and algal 
blooms76 to mitigate organic contaminants and/or improve downstream performance. Fe(VI) has 
a high reduction potential that is comparable to other strong oxidants in DWT such ozone (O3) 
and chlorine dioxide (ClO2).77 Similar performance in oxidative transformation of organic and 
inorganic targets between Fe(VI) and O3 has been noted, including DBP precursors,78 
manganese,79 arsenic,80 and algal toxins.81 Unlike O3 and ClO2, however, Fe(VI) does not require 
on-site generation. A production method for stable, high-purity K2FeO4(s) salts has been 
developed,82 which forms the basis for recent commercial applications. Also Fe(VI) generally 
leads to lower yields of active bromide and bromate than O3,83 due to the simultaneous in situ 
formation of H2O2 during Fe(VI) decay,84 which reduces HOBr to Br-.85 Fe(VI) does not form 
chlorite or chlorate, unlike ClO2, and is not known to directly from any other regulated 
byproducts.72

This difference in generation between O3/ClO2 (on-site) and K2FeO4 (off-site) makes Fe(VI) a 
way for increasing antifragility of a water system. K2FeO4 can be acquired as needed, stored 
onsite as a stable salt, and added as conditions dictate. In this way, use of K2FeO4 is similar to 
powdered activated carbon usage for managing urgent events. However, Fe(VI) leads to benefits 
to multiple water treatment physicochemical processes including (pre)oxidation, coagulation, 
clarification, and disinfection.73,86 These multimodal benefits enable production of water quality 
better than baseline, in spite of a sudden deterioration in raw water quality. For example, bench-
scale testing has demonstrated lower post-clarification water turbidities following an algae spike 
than was otherwise achievable.87 Similar results related to ferrate use in natural disaster 
emergency contexts have been noted at the point-of-use (POU) scale.88,89  

K2FeO4 dissolves in water to produce Fe(VI) which is a relatively strong oxidant, leading to the 
transformation of various reduced targets stemming from a BSE including algae and algal toxins, 
90,91 chemical spills (e.g. Methyl tert-Butyl Ether).92 This Fe(VI) can also be activated using 
common shelf-stable reductants, such as sulfite, forming radicals Fe(V) and SO4

•- in situ that are 
capable of transforming recalcitrant organics.93,94 Following oxidation, Fe(VI/V) is reduced to 
Fe(III) which is insoluble in most water treatment contexts. These in situ formed iron particles 
have unique characteristics including polydisperse diameters,95 magnetism,96 and core-shell 
architecture.97 Ferrate resultant particles then participate in coagulation,98 flocculation,91 
clarification, and adsorption processes.97,99 This multimodal action enables antifragility in 
response to volatility. For example, a water utility experiencing an unforeseen chemical spill 
could deploy ferrate as needed to oxidize the pollutant, while simultaneously decreasing 
disinfection byproducts, and improving coagulation beyond typical baseline operations. Thus, 
the as needed deployment of shelf stable K2FeO4 as represents a step towards antifragility. In 
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contrast to MnOx, Fe(VI)-derived benefits are from the use of the technology itself,  not a 
synergistic effect of the degraded water quality. Fe(VI), in several forms, could also be 
conducive to consistent use as part of baseline operations.  

Iron oxide nanoparticles (IONPs), exclusive of the ferrate context, also provide antifragility to 
PWS through the combination of adsorption and magnetic separation.100 Iron oxide nanoparticles 
comprised of magnetite (Fe3O4) or maghemite (-Fe2O3) exhibit superparamagnetic properties 
and relatively high adsorption capacities for various drinking water contaminants. These IONPs 
can be synthesized off site, stored and used as needed by a PWS, like powdered activated carbon. 
However, unlike PAC, IONPs can be selectively recovered via magnetic separation, and 
reused.101 IONPs were found to decrease the concentration Rhodamine B dye in aqueous solution 
by > 60% with no significant decrease in adsorption capacity after five cycles of magnetic 
separation and chemical regeneration. Magnetic-based separations have demonstrated 
effectiveness of > 95%, using commercially available permanent magnet systems.101,102 The use 
of magnets may also improve flocculation and separation of non-magnetic particles assuming 
attachment to an IONP. Magnetic attraction between superparamagnetic IONPs in a magnetic 
field would serve to increase aggregation rate, from a DLVO perspective. Therefore, addition of 
IONPs in response to an algal bloom, forest fire, or chemical spill could enable improved water 
quality more than if the BSE had not occurred. For example, modeling magnetic filtration of 
activated sludge particles comprised of 10% IONPs by volume with stainless steel wool (M = 
0.2T) indicate filtration performance 100-times more effective than a conventional gravity filter 
with media collectors.103 In this way, IONPs represent a “switch on” method for achieving 
antifragility (similar to K2FeO4); however, they may also be used outside of periods of volatile 
water quality and provide benefits during more typical periods.   

Design Tools. A water system designer interested in incorporating antifragile processes into a 
drinking water plant requires new tools for guidance and evaluation. Current and historical 
process design under the optimality paradigm follows a multistep deterministic approach: (1) 
characterization of raw water quality and establishment of treatment goals; (2) jar testing and 
pilot studies and (3) selection of treatment processes optimized to conditions during jar testing 
and piloting. This approach produces treatment facilities that are generally minimized for cost 
given a required baseline performance. However, a six-month pilot test has a low probability of 
evaluating a BSE, and the system design has opacity to what future conditions a particular 
process might need to be antifragile to. In other words, incorporation of antifragile processes 
requires a lens to systematically evaluate weakness prior to picking antifragile processes. This 
establishes a potentially beneficial relationship with future volatility that is a key characteristic of 
an antifragile system.29

Artificial neural networks (ANNs) are a biologically-inspired computational model generally 
consisting of an input layer, hidden layer(s), and an output layer.104  There are many different 
forms of ANNs and their corresponding models are trained and built using multiple methods and 
calibrated using large data sets such that the weights between different neurons and hidden layers 
can be estimated.105 ANNs offer several advantages over traditional modeling approaches and 
are well-suited for drinking water treatment applications because: (1) associations between 
inputs and outputs are “learned” from historical data without having to specify the form of the 
model; (2) results of ANN runs are robust to noisy or discontinuous data; (3) a detailed 
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understanding of the processes (i.e. treatment process) is not necessary, only an understanding of 
the factors that influence the processes; and (4) they are fast (increases in computer processing 
speeds have reduced the time needed to train and evaluate these models).106,107 For example, 
Shariff et al. 2004 used an ANN for modelling a full-scale drinking water treatment facility lime 
clarification process and reported r-squared value of 0.92 for the ANN model versus 0.41 for the 
USEPA Water Treatment Plant Model. ANNs have been used for simultaneous prediction of 
turbidity and DOC removal for a conventional surface water treatment plant configuration as a 
function of source water quality parameters and chemical use.108 Results from Kennedy et al., 
2015 indicate that ANNs can be used to provide an evaluation of the impact on DOC changes (as 
measured by individual parallel factor analysis components) on the coagulation process and 
turbidity removal. This enables virtual jar testing of future water quality scenarios that were not 
present during the original experiments. Coagulation of the turbidity and/or DOC event caused 
by a BSE (e.g., wildfire, accelerating lake recovery, or hurricane) can be evaluated prior to 
occurrence, allowing for development of antifragile elements into the physicochemical 
processes. In other words, shifts in water quality presented in Figure 1 could be simulated to 
“stress test” and assess impact on coagulation/clarification performance before they occur, and 
identify potential chemical combinations and operational settings that perform better as the same 
shifts occur. 

Beyond bench-scale, pilot testing can also be improved with digital tools to achieve antifragility, 
primarily by simulating performance during extreme events prior to their occurrence. 
Developments in pilot-testing have led to the development of “proven perfect” pilot-scale 
systems that closely replicate their full-scale counterparts, as demonstrated by paired t tests to 
confirm the production of statistically equivalent water quality.109 Knowles et al., 2012 describes 
this process for the JDKWSP. This particular pilot system has been used to established possible 
physicochemical solutions to lake recovery, albeit after the negative impacts from lake recovery 
were realized.44 Pilot-scale systems that are proven to represent full-scale performance can be 
combined with digital twins to “stress test” a proposed process system design before problems 
arise, and proactively select and incorporate antifragile processes. A digital twin is a dynamic 
simulation model that visually integrates system components, and can be combined with data 
variations to understand the sensitivity of a physical system to input perturbation.110 

Essentially, these digital twins enable the typical process design question to be flipped: what 
types of future BSEs is the system fragile (e.g., negative convexity)? Curl et al. 2020 refers to 
this approach as “failure analysis”. In this application the failure is virtual, and information 
generated can be used to select processes that would perform better when the same BSE occurs 
(e.g., positive convexity). In this way the designer is empowered to systematically increase the 
antifragility of a water treatment system. The drinking water treatment space is currently 
experiencing early adoption of digital twins. For example, the City of San Diego (California, 
USA) is developing a digital twin of its North City Pure Water Facility, a component of their 
water reuse program.110  This digital twin operates via one-second time steps, and fully replicates 
system hydraulics and process performance. The city intends to employ the digital twin to 
improve future performance to operational challenges. 

Investment Considerations. Investments in antifragility may require capital cost outlays, 
behavioral changes and localized downtime or inconvenience as systems are altered from the 
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original deterministic designs. Investment in antifragility therefore requires demonstration of 
benefits that outweigh the costs – benefits such as improved performance, increased long-term 
(i.e., intergenerational) water security. Tradeoff analysis such as this is the realm of decision 
science, and the application to antifragility investment follows.

Tradeoff analysis is the analytical core of Decision Making under Deep Uncertainty.111 Figure 5 
summarizes one approach. For the sake of illustration, we select four desired attributes of the 
proposed water treatment system: 1) low capital cost; 2) low operating costs; 3) high baseline 
performance; and 4) low fragility. The three design options in this case, as presented in Figure 1, 
are direct filtration (DF), sedimentation (Sed.), and dissolved air flotation (DAF). In the 
illustration, DF has the lowest capital costs and sedimentation has the highest capital costs. Why, 
then, would one choose to build sedimentation over DF? One motivating factor might be the 
higher baseline performance offered by sedimentation. But that baseline performance is 
calculated, as discussed in the Design Considerations section above, with reference to the 
particular raw water characteristics observed in the historical case, and it changes depending on 
whether the designer believes that those historical raw water characteristics will continue into the 
future or shift in some anticipatable fashion. Shifts in raw water characteristics will affect 
estimates of operating costs, and the system fragility.

Page 14 of 25Environmental Science: Water Research & Technology



15

baseline perform.

capital cost

capital cost

operate. cost fragility

capital cost

operate. cost

Fore
st 

mgm
t.

x%
 lik

ely

No forest mgmt.

1-y% likelyHigh
 cl

im
ate

 ch
an

ge

x%
 lik

ely

Fore
st 

mgm
t.

y%
 lik

ely

No forest mgmt.

1-x% likely

Low climate change

x% likely

H

M
L

H

M
L

H

M
L

capital cost
H

M
L

operate. cost

operate. cost

baseline perform.

baseline perform.

baseline perform.

fragility

fragility

fragility

Design 
Decision

DF

Sedimentation

DAF

Figure 5. Real options analysis decision tree framework for the comparison of three clarification 
designs: Direct filtration (DF), gravity sedimentation (e.g., conventional settling), and dissolved 
air flotation (DAF). Capital and operational costs, and baseline performance taken from Gregory 
and Edzwald, 2011. 

One method for navigating uncertainty in future raw water characteristics when designing a 
water system is to enumerate a decision tree.112 This approach, sometimes referred to (especially 
in applications to financial decision making) as real options analysis (ROA, see for example 
Ranger et al. (2010)),113 involves stepping through branches of distinct uncertainties. Each 
uncertainty is discretized into easily understood categories of exogenous variable such as “high”, 
“medium”, or “low”. Endogenous variables (such as “build this” or “build X amount of that” or 
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“don’t build”) are decision points at the left-hand side of decision trees. In higher-order complex 
decision trees, endogenous decision points can be interspersed throughout the branches of the 
tree to represent decision staging and adaptive design. Figure 5 includes only a single 
endogenous decision point (build DF or Sedimentation or DAF), and two exogenous variables to 
which the performance of the treatment plant is sensitive: climate change, discretized into 
“high”, signifying rapid global warming over the treatment plant’s design life, and “low” 
signifying less rapid global warming; and forest management, discretized into “yes” or “no”. 
Climate change increases ambient air temperatures and speeds the hydrologic cycle, resulting in 
lower base flows during dry periods and higher velocity flow during wet periods. Each condition 
creates raw water quality challenges, as described in the introduction. Forest management is 
costly (and controversial), but has potential to reduce evapotranspiration, reduce forest fire risks, 
and improve soil retention. Forest management also benefits source water protection,114 which 
can be considered the first step in water treatment,115 from a multiple barrier perspective by 
decreasing contaminant load in source waters. For the sake of illustration, these two variables are 
presented as independent, i.e., forest management policy has no bearing on climate change 
magnitude, and climate change magnitude has no bearing on forest management policy.

Scenarios are formulated as combinations of the fully enumerated decision tree, in this case: high 
climate change and forest management, high climate change without forest management, low 
climate change and forest management, low climate change without forest management. Once 
the scenarios are enumerated, variable values (e.g., water temperature, sediment load) are 
assigned to represent each condition, and the performance of each treatment option is simulated 
for each variable setting. Simulations might be accomplished with an ANN, a physically based 
model, or a “digital twin”, as discussed earlier. As shown in Figure 5, the baseline performance 
of each treatment option is differently responsive to the altered conditions. In the case of low 
climate change and forest management, DF might be the preferred choice as it is lowest in cost 
with comparable baseline performance, and only slightly elevated fragility. However, in the case 
of high climate change and no forest management, sedimentation might be the preferred choice, 
with its high baseline performance and relatively low fragility. DAF appears the best option in 
the case of low climate change without forest management, with its moderate costs, high baseline 
performance and very low fragility. Probabilistic weighting and risk hedging is needed before a 
final decision can be made.

Climate change carries deep uncertainty. The Intergovernmental Panel on Climate Change 
(IPCC) Sixth Assessment Report presents possible climate futures as a function of potential 
reductions in carbon dioxide and other greenhouse gas emissions. The extent of realized global 
warming will affect the climate system in numerous ways, including precipitation extremes, and 
more intense tropic cyclones.116 It is impossible to know whether “high” climate change or “low” 
will occur, and it is impossible to know whether the next set of politicians will opt for forest 
management or not. However, in order to overcome the paralysis created by the uncertainty 
regarding future watershed conditions, we weight possible future conditions by likelihood of 
occurrence and calculate the expected value of each performance metric across the uncertainty 
space as shown in Equation 1. 

(Equation 1)𝜉 = ∑
𝑠 ∈ Ω𝑝𝑠𝜉𝑠           ∀𝑠
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Where s is the value of the realization of the particular performance metric under consideration 
in some future aggregate scenario (climate change level and forest management condition) s, and 
p is the probability of that aggregate scenario.  is the expected value of the performance metric 
across the likelihood-weighted future conditions.

Expected values are not the only metrics of interest and depending on the risk aversion (or 
relative optimism) of the particular decision maker, there might be more or less focus placed on 
extreme values – best-case and worst-case performance of each water treatment plant design 
option. Finally, likelihoods could be assigned in this case, for example, by consulting the most 
up-to-date science on global climate change produced by the Intergovernmental Panel on 
Climate Change, and local experts on the history and likely future management of local forests. 
The process of likelihood weighting is inexact, and best subjected to sensitivity analysis (i.e., 
repeated evaluation changing likelihoods and re-determining the preferred decision). See Ray et 
al. (2012) for an example exploration of the sensitivity of staged climate change adaptation 
decisions to changes in scenario likelihoods.117

Conclusion
The deterministic approach to drinking water system design has served society well and led to 
safe supplies of water at low costs; however, these optimized water systems carry the indirect 
cost of fragility. This fragility has become increasingly problematic as source water volatility and 
other extreme events have increased. This increased variability makes reliance on stationarity 
unsustainable. Water system design has begun to increase emphasis on resilience, although this 
paradigm still has an adversarial relationship with volatility. Pursuing antifragility in water 
systems creates a different relationship with change, whereby system processes are placed in a 
position to perform better as conditions change with less reliance on future forecasts. Processes 
conveying antifragility can be included into PWS designs by new tools powered by ANNs, 
including virtual jar and pilot testing, that allow for systematic evaluation of convexity. 
Including antifragile components into a PWS will inherently cost more than an option optimized 
for lowest cost. Therefore, developing antifragile characteristics represents a trade-off between 
performance and cost. Real options analysis is one way for water system designers to consider 
this trade-off. Ultimately, more research on antifragile designs and costs is required to ensure 
long-term performance and sustainability of public water systems in an era of increasing 
volatility. 
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