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The emergence of data-intensive scientific discovery and machine learning has dramatically changed
the way in which scientists and engineers approach materials design. Nevertheless, for designing
macromolecules or polymers, one limitation is the lack of appropriate methods or standards for
converting systems into chemically informed, machine-readable representations. This featurization
process is critical to building predictive models that can guide polymer discovery. Although standard
molecular featurization techniques have been deployed on homopolymers, such approaches capture
neither the multiscale nature nor topological complexity of copolymers, and they have limited appli-
cation to systems that cannot be characterized by a single repeat unit. Herein, we present, evaluate,
and analyze a series of featurization strategies suitable for copolymer systems. These strategies are
systematically examined in diverse prediction tasks sourced from four distinct datasets that enable
understanding of how featurization can impact copolymer property prediction. Based on this compar-
ative analysis, we suggest directly encoding polymer size in polymer representations when possible,
adopting topological descriptors or convolutional neural networks when the precise polymer sequence
is known, and using chemically informed unit representations when developing extrapolative models.
These results provide guidance and future directions regarding polymer featurization for copolymer
design by machine learning.

Design, System, Application
Machine learning and artificial intelligence are revolutionizing paradigms for materials design, providing powerful and efficient tools
to model materials properties and accelerate discovery. Supplying informative, numerical representations of target systems–a process
known as featurization–is critical to usefully deploying machine learning in this context. Although there are myriad featurization
methods for small molecules, identifying suitable methods of representation and understanding their limitations is less developed for
polymers, particularly systems with more than one constitutional unit. Herein we present, explore, and evaluate the efficacy of multiple
featurization strategies for copolymers in several distinct prediction tasks. By systematic controlled comparisons over multiple datasets,
we identify elements of copolymer featurization strategies that result in predictive machine learning models, which is key to successful
surrogate modeling by machine learning for design. Overall, this work provides examples of multiple copolymer featurization strategies,
baseline expectations for performance, and general guidance that can be leveraged in future copolymer design campaigns.

1 Introduction
Polymers are ubiquitous and versatile materials that can facili-
tate a wide range of complex tasks in biology, industry, and be-
yond.1–4 However, the expansive chemical, sequence, and topo-
logical space that facilitates such diverse applications can obfus-
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cate the design of next-generation, fit-for-purpose polymeric ma-
terials.5–9 For example, using a limited set of just three different
monomer types, there are on the order of 1047 distinct copolymers
that can be generated with degree of polymerization between 10
and 100. Thus, while theory and modeling are invaluable for
understanding the origins of observed phenomena and informing
the design of specific, well-defined polymer systems,10–17 intri-
cate studies may severely limit exposure to unknown but promis-
ing regions of design space.18 In addition, resource limitations
(time, monetary, or computational) likely preclude exhaustive
characterization of combinatorial search spaces.19

Over the last two decades, artificial intelligence and specifically
machine learning (ML), has emerged as a useful tool for accelerat-
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ing materials design by (i) facilitating accurate surrogate model-
ing of quantitative structure-property relationships (QSPRs) and
(ii) providing more efficient ways to explore chemical space.20–27

Using supervised ML, properties of candidate materials can be
cheaply estimated based on known examples. When coupled
to robust optimization algorithms, promising candidate materials
can be efficiently identified, especially when aided by techniques
such as active learning.28 While flourishing in the domain of
“hard” materials and small molecules, applications of ML to poly-
mer design have been relatively limited by comparison for a num-
ber of practical and technical reasons.16,29–34 For example, there
are numerous large, open-access databases for small molecules
and ordered materials, but data availability and accessibility re-
mains a major challenge for polymer ML.29,35,36 Presently, this
challenge is overcome by either (i) laborious, brute-force data
sourcing and curation or (ii) in-house data generation. The for-
mer approach has been largely useful for polymer informatics in
the space of homopolymers,37–40 while the latter has been typ-
ically necessary to design systems with sequence41–44 or com-
positional control45–48 over multiple monomers or constitutional
units49 (CUs). In the near term, advancements in automated
polymer synthesis50 and in hierarchical polymer simulation,33

coupled with efficient data acquisition schemes,34 are likely to
substantially enhance capabilities to generate requisite data for
ML on-the-fly. With evident activity to facilitate acquisition of
suitable polymer data, a fundamental consideration that follows
is how to represent polymer data to ML algorithms.

In the context of ML-guided design, the method of featurization
or representation, i.e., how a molecule or system is converted into
a numerical input, is a fundamental consideration that not only
dictates what information is available for constructing QSPRs but
also what ML algorithms are suitable for the QSPR task.34 In
general, featurization can profoundly impact what patterns are
extracted and exploited by ML algorithms,51–53 which can sub-
sequently affect how much data and time is required to train ac-
curate models. Because featurization also defines the mapping of
system chemistry to a vector space, it has clear implications on the
span of possible solutions for a given optimization task. Conse-
quently, the development and investigation of machine-readable
representations for property prediction is of significant interest.
Although there are numerous viable strategies to facilitate ML on
small molecules and ordered materials,19,54–65 there is compara-
tively little guidance regarding how to effectively featurize poly-
mers for ML.

The featurization of polymers has been mostly dictated by the
source of training data and the scope of intended design space.
One strategy that has enjoyed considerable success is to simply
adapt existing molecular featurization strategies to describe con-
stitutional repeat units49 (CRUs) of the polymer; this approach
has been useful for designing homopolymers.39,66,67 However,
using only the CRU to define QSPR neglects potential hierarchical
and/or topological complexity that may inform property predic-
tion tasks. To partially address this limitation, Ramprasad and
coworkers have described hierarchical polymer fingerprints that
combine atomic-level connectivity descriptors, larger lengthscale
property descriptors, and morphological descriptors;68–70 this ap-

proach has also been recently extended to describe stochastic bi-
nary copolymers.47 Constructing a low-dimensional latent space
embedding of higher-dimensional feature vectors using varia-
tional autoencoders71 (VAEs) is another attractive and comple-
mentary approach to aforementioned techniques. This has been
recently exemplified by Shmilovich et al. to describe the chemi-
cal space spanned by coarse-grained tripeptides for the purpose
of identifying peptides with specific self-assembly behavior.41 Ba-
tra et al. have also demonstrated the use of VAEs to translate
a modified, polymer-based SMILES grammar into a suitable vec-
tor space for constructing Gaussian process regression models to
predict glass-transition temperatures and bandgaps of homopoly-
mers.67

Featurization for sequence-defined polymer systems can be pur-
sued in several ways. For example, feature extraction architec-
tures may be used to learn relevant sequence and topological cor-
relations during supervised ML. In this vein, Webb et al. built ML
models that leveraged recurrent and convolutional neural net-
work (CNN) techniques to predict and later design the radii of
gyration for CG polymers by simply manipulating sequence.43

Mohaptra et al. similarly combined Morgan fingerprints (a molec-
ular featurization strategy) with CNNs to optimize fast-flow pep-
tide synthesis.44 The use of graph neural network architectures71

to represent macromolecular chemistry is also at early stages of
exploration.72 As an alternative to using feature extraction ar-
chitectures, Jablonka et al. generated a hand-crafted vector of
descriptors, which contained descriptions of sequence entropy or
enumeration of sub-sequence clusters, to guide the in silico design
of coarse-grained (CG) polymer dispersants.73 While these devel-
opments are generally promising, it remains unclear under what
circumstances and to what extent any given polymer featurization
strategy outperforms another.

We introduce a series of relatively simple featurization strate-
gies for copolymers and evaluate their performance in super-
vised learning regression tasks derived from four distinct datasets.
Following the introduction of the datasets and featurization ap-
proaches, we critically examine the role of polymer size, the ex-
pression and manner of sequence representation, and the impact
of using chemically informed CU descriptions in different predic-
tion scenarios. Through this comparative study, we identify key
attributes amongst successful strategies that can serve as guid-
ance for future ML-guided copolymer design problems.

2 Methodology

2.1 Datasets

To evaluate the efficacy of potential polymer featurization strate-
gies, we consider their performance in several, distinct supervised
regression tasks. These tasks are defined in the context of four
datasets, which will be referenced as Datasets A, B, C, and D.
Dataset A is introduced in the present paper and comprises prop-
erties obtained by CG simulation for a set of intrinsically disor-
dered proteins (IDPs). The remaining three datasets are obtained
from literature sources (Dataset B from Ref. 43, Dataset C from
Ref. 48, and Dataset D from Ref. 74); these datasets feature dif-
ferent property labels, design spaces, and CU metadata.
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2.1.1 Dataset A: Coarse-grained IDPs

Dataset A contains simulation-derived properties for 2,585 IDPs.
The CUs for IDPs correspond to the various amino acids, but
their disordered sequences precludes definition of a single CRU
for each sequence. The IDPs are thus fairly described as lin-
ear, stochastic polymers with known sequence. The IDPs within
Dataset A have a degree of polymerization, denoted as N, be-
tween 20 and 600 CUs (amino acids). The specific sequences
were sourced from version 9.0 of the DisProt database;75,76 upon
initial acquisition, care was taken to eliminate any duplicate se-
quences and ensure that all 2,585 IDPs were unique.

Properties of the IDPs under infinite-dilution conditions (i.e.,
single-chain properties) were computed at 300 K via molecular
dynamics (MD) with the LAMMPS simulation package.77 All IDPs
were modeled using the improved hydropathy scale CG model
from Regy et al.78 Specific properties extracted for use as labels
in regression tasks include the radius of gyration Rg, the heat
capacity Cv, and the end-to-end decorrelation time τN . Dataset
A is provided in the supplementary information (SI) as well as
additional details regarding the simulations and calculations.

2.1.2 Dataset B: Monodisperse Coarse-grained Polymers

Dataset B is sourced from Ref. 43, which used ML and Bayesian
optimization to direct the design of sequence-defined polymers
with target mean-square radius of gyration ⟨R2

g⟩. The dataset
contains 1,540 regular copolymers (i.e., they have a well-defined
CRU) and 200 stochastic copolymers; for each copolymer, the la-
bel is ⟨R2

g⟩ obtained from CG simulation. The copolymers contain
up to four distinct CUs from ten possible CUs, and each CU fea-
tures one of two types of backbone beads and up to two pendant
beads, also of two possible types; all copolymers have N = 400
CUs. Unless otherwise noted, all performance metrics and models
are derived only from the regular copolymers of Dataset B.

There are several notable differences between Datasets A and
B. First, Dataset B features CG polymers that are monodisperse.
Second, Dataset B contains fewer total possible CUs than Dataset
A, and the number of unique CUs in any given polymer is re-
stricted to a subset of that total in Dataset B but not in Dataset
A. Finally, the CG polymers in Dataset B are not necessarily lin-
ear, although the side-chains are small. Like Dataset A, the data
originates from MD simulation, such that the sequences and sim-
ulation metadata are precisely known.

2.1.3 Dataset C: Experimental Methacrylate Copolymers

Dataset C is sourced from Ref. 48, which uses a computer-guided
materials discovery approach to design statistical copolymers of
methacrylates to serve as high contrast 19F MRI agents.48 There
are six possible CUs that can be combined in varying proportions
and degrees of polymerization, but the polymer sequences are
unknown. Of the 397 unique copolymers reported in the study,
we use 271 copolymers that were labeled with the signal-to-noise
ratio (SNR) from NMR experiments; the SNR is always treated
as the target output for our regression task. In addition, the
dataset describes the fractions of incorporation for each possi-
ble methacrylate, the mean number-averaged molecular weight
of the polymers, and the polydispersity. Like Dataset A and in con-

trast to Dataset B, the polymethacrylates are linear copolymers. In
contrast to all other datasets discussed, the data is experimentally
obtained. This dataset is also smallest in size.

2.1.4 Dataset D: Linear Bipolymers with Patterned Surfaces

Dataset D is sourced from Ref. 74, which trains support vector
regression (SVR) models to predict the adhesion free energy of
CG copolymers on patterned surfaces as a function of polymer
sequence; a separate SVR model is developed for each of four
surfaces. The copolymers studied are comprised of up to two
distinct CUs and have N = 20. Considering all four surfaces,
Dataset D contains 80,000 data points with known polymer se-
quence labeled with an adhesion free energy ∆Fad for a given sur-
face. Compared to Datasets A and B, which are also generated by
CG MD simulation, the copolymers in Dataset D are shorter and
have fewer unique CUs. However, ∆Fad is comparatively more
complex than the single-chain properties reported in Datasets A
and B.

Rather than training separate ML models for each of the sur-
faces present in Dataset D, we pursue a different approach that
additionally uses the surface as an input feature. To encode the
identity of the surface for which the ∆Fad label is computed, all
polymer feature vectors are appended with a four-dimensional
one-hot vector prior to being passed to densely connected neu-
ral network layers. For explicit-sequence featurization strategies
(Section 2.3.1), representations of the polymer are first processed
with feature-extraction architectures prior to concatenation with
the one-hot encoding vector that indicates the surface.

2.2 Overview of Featurization Strategies

Fig. 1 illustrates the origins and relationships amongst the various
polymer featurization strategies explored in this paper. Common
to all strategies is the essential characterization of a polymer as
a set of bonded or topologically connected CUs (Fig. 1, left top
and middle); the CUs can be numerically described via a vector
that distinguishes its chemical characteristics from other CUs via
what is colloquially referred to as a “fingerprint” (Fig. 1, left bot-
tom). Across Datasets A-D, the CUs are respectively amino acids,
sets of CG polymer beads, methacrylate monomers of differing
chemistry, and CG beads; the specific fingerprints employed to en-
code these CUs are described in Section 2.2.1. From this starting
point, we explore two broad paradigms of featurization strate-
gies: those that explicitly represent sequence information (Fig.
1, top in blue) and those that do not (Fig. 1, bottom in green).
While the latter may be considered for most prediction/design
tasks, the former may not be viable, depending on data source or
synthetic limitations.

2.2.1 Fingerprints

2.2.1.1 One-hot encoding. We view one-hot encoding
(OHE), which is commonly used to represent categorical vari-
ables, as the simplest of chemical fingerprints. In this approach,
CU fingerprints are NT -dimensional vectors where NT is the num-
ber of distinct CUs in the dataset. For notational convenience,
we will assume here and in subsequent sections that CUs of type
A, B, C, . . . , T are numerically indexed by 1, 2, 3, . . . , NT . The
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Fig. 1 Diagrammatic depiction of the relationships amongst various polymer featurization strategies used in this study. All strategies have a common
conceptual starting point of a polymer being a set of N topologically connected constitutional units (CUs); the constitutional units are assigned types
A, B, C, . . . ,T , depending on their chemistry. The chemistry of the various CUs can be numerically represented via fingerprints, denoted as f K for a
CU of type K. We consider featurization strategies that either explicitly represent the polymer sequence (blue) or those that do not (green). In the
figure, quantities subscripted with alphabetic characters are associated with CU types, quantities subscripted with arabic numerals are associated with
indexed CUs within the polymer, and quantities with no subscript are associated with the polymer.

elements of the OHE fingerprint for a CU of type K are thus given
by

f K [i] = δki, for i = 1, . . . ,k, . . . ,NT (1)

where k is the numerical index for the CU of type K, f k [i] provides
the value of the fingerprint in the ith dimension, and δki is the
Kronecker delta. The result is that the kth element of f k is equal
to one, and all remaining are equal to zero. Therefore, the di-
mensionality of OHE fingerprints are 20, 10, 6, and 2 for Datasets
A, B, C, and D, respectively. Notably, the OHE fingerprint simply
identifes CUs and does not encode chemical relationships. Within
this representation, one may view the different CUs as being or-
thogonal in chemical space.

2.2.1.2 Molecular fingerprints. For Datasets A and C, we also
make use of conventional molecular fingerprinting techniques as
applied to each of the various CUs. In particular, we use RD-
Kit79 to obtain Morgan fingerprints for each CU.54 The Morgan
fingerprint, like other extended-connectivity fingerprints,55 gen-
erally denote the presence or absence of chemical substructures.
The uniqueness and information content of the Morgan finger-
print depends on both the vector dimensionality as well as the
radius of the substructure search. We find that the mean pair-

wise geometric similarities amongst CUs approximately plateaus
at 2048 dimensions and 4 Å for Dataset A and 2048 dimensions
and 5 Å for Dataset C. Therefore, we choose these as the hyperpa-
rameters for CU fingerprint generation. Following generation of
fingerprints for all CUs in a given dataset, we remove dimensions
that possess only zeros or only ones. This yields a final dimension-
ality of 152 and 66 for the Morgan fingerprints used for Dataset A
and C, respectively. This approach is not used for Datasets B and
D as there are no underlying chemical structures to represent the
CUs.

2.2.1.3 Descriptor vectors. Describing molecules or systems
using a vector of physiochemical descriptors is another common
strategy in molecular featurization when constructing QSPR. We
adopt a similar strategy here as applied to CUs.

For in silico-derived datasets (Datasets A, B, and D), we use sim-
ulation metadata by formulating vectors of force-field parameters
(FFP) that are specific to each CU. Because the force-field param-
eters express information such as the CU size or its interaction
with other moeities, they are somewhat similar to common de-
scriptors like accessible surface area, partitioning coefficients, or
properties derived from quantum chemical calculations. The de-
scriptor vector for the kth CU formed from simulation metadata
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is given by

fK =



(mK ,qK ,σk,1, . . . ,σk,n,λk,1, . . . ,λk,n) for Dataset A

flatten



(εk0,1 . . . ,εk0,4)

(εk1,1 . . . ,εk1,4)

(εk2,1 . . . ,εk2,4)

(σk0,1 . . . ,σk0,4)

(σk1,1 . . . ,σk1,4)

(σk2,1 . . . ,σk2,4)


for Dataset B

(εk,1,εk,2,rk,1,rk,2) for Dataset D

. (2)

For Dataset A, mK is the mass of the kth CU, qK is its charge,
σk,i and λk,i respectively represent the pairwise Lennard-Jones in-
teraction diameter and strength of hydrophobic interactions be-
tween the kth and ith CUs; in the HPS model,78 arithmetic means
are used to define cross interactions. For Dataset B, εk j ,i and
σk j ,i are the energy minimum and diameter for the interaction
between the CG bead in position j of the kth CU and bead type i;
there are four dimension in each row to account for the four dis-
tinct CG bead types that make up the ten possible CUs. Here, j is
0 for the backbone position, 1 for the first pendant position, and
2 for the second pendant position. For CUs that do not feature CG
beads in one or both of the pendant positions, the entries are zero.
In Ref. 43, Lorenz-Berthelot combination rules define cross inter-
actions. For Dataset D, εk,i is the minimum pairwise interaction
energy between the kth and ith CUs and rk,i is the cutoff distance
for their interaction. Cross interactions are defined as specified
in Ref. 74. In all cases, properties that do not vary amongst CUs
(e.g., the bead size for Dataset B and D) are excluded from fK
as they would represent constants to the ML algorithm, but they
could be included if required for extensibility. Lower-dimensional
forms of the descriptor vectors in Eq, 2 that exclude cross interac-
tions are also considered.

While Datasets B and D stem from properties of phenomeno-
logical CG polymers of no specific chemistry, the polymers in
Datasets A and C have CUs with underlying chemical structures.
Consequently, we also consider descriptor vectors of nearly 1600
descriptors derived using the Mordred python package.58 For a
given set of CUs, we remove any descriptors with zero variance.
We also remove descriptors that exhibit significant correlation
with other descriptors in stepwise fashion. Specifically, we com-
pute the number of instances for which a descriptor exhibits a
Pearson correlation coefficient > 0.85 with the set of all current
descriptors, and then we greedily remove the descriptor with the
greatest number of instances and repeat until all descriptors pos-
sess pairwise Pearson correlation coefficients less than 0.85. Al-
though this process is not guaranteed to provide the maximum
number of uncorrelated features, it is a reasonable approximation
to the NP-hard problem of vertex cover. This process yields a 257-
dimensional descriptor vector for Dataset A and a 47-dimensional
descriptor vector for Dataset C for use as CU fingerprints.

2.3 Featurization Paradigms

We consider featurization strategies that both explicitly repre-
sent polymer sequences as well as those that rely more on
composition-based or “scaled” representations. The different ap-
proaches are shown in Fig.1. In all cases, property predictions
are ultimately made based on the output of a densely-connected
deep neural network (DNN), and predictions are made only for
global polymer properties. The polymer representations do not
utilize or depend on the coordinates of the CUs or their relative
distances with respect to other CUs in the polymer. For Datasets A,
B and D, we have sequence information and expect the “reversed”
sequences to have identical properties as the forward sequence;
accordingly, predictions from the DNN should ideally be invariant
to sequence inversion. However, invariance to sequence inversion
is specific to the coarse–grained representations of our polymers
and does not universally hold. For example, the asymmetry of
amino acids or nucleotides as CUs imparts directionality to the se-
quence, such that the forward and reverse sequences do not have
the same bonding connectivity or geometric structure; therefore,
those sequences are not expected to exhibit the same global poly-
mer properties. Property invariance to sequence inversion may
be handled during construction of the feature vectors themselves,
enforced by use of specific ML algorithms and architectures, or
approximately addressed via data augmentation.

2.3.1 Explicit Sequence Representation

2.3.1.1 Sequence graph The sequence graph featurization
approach explicitly represents the polymer sequence and connec-
tivity amongst CUs. Specifically, the polymer is represented as
a graph G = (V,E). V is a set nodes that contain fingerprint-
embeddings of each CU within the polymer, and E is a set of
edges that indicate how CUs are topologically connected. To pro-
cess this representation, a graph convolutional network (GCN) is
used to update the CU-fingerprint embeddings, which are then
aggregated and passed to a DNN for final property prediction.
We generally hypothesized that this approach would encode use-
ful sequence information for the property prediction task and
tested this strategy for Dataset A. We considered two graph con-
volutional architectures: the graph convolutional layer80 and the
graph attention layer.81 Both layers aggregate and utilize neigh-
bor embeddings when updating a node embedding; however, the
graph attention layer possesses additional parameters that allow
neighbors to have differing levels of importance when perform-
ing the update. After a maximum of two graph convolutions, the
node embeddings are aggregated and passed as input to a DNN.

A potential benefit of the sequence graph representation strat-
egy is that the outputs from both the graph convolutional and
graph attention layers are permutationally equivariant, meaning
the output of per-node features is not sensitive to the order of
graph nodes. Therefore, when paired with subsequent sum or
average pooling layers, the final polymer property prediction is
invariant to sequence inversion. Accordingly, Datasets A, B, and
D did not require data augmentation when training graph neural
network models.
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2.3.1.2 Sequence tensor We additionally consider represen-
tations for which the CU fingerprints are stacked to form a tensor.
In this approach, one dimension tracks the ordering of CUs within
the polymer sequence, and the remaining dimensions relate to the
CU fingerprint. For dataset A, where polymers have varying de-
grees of polymerization, all sequences are padded with zeros in
to match the length of the longest polymer.

To process the sequence tensor, we employ two approaches. In
the first, a one-dimensional convolutional neural network (CNN)
architecture leads into a DNN; this strategy is analogous to the
“property-coloring” scheme discussed in Ref. 43. The essential
premise is that convolution operations performed over windows
of the sequence can extract high-level, hierarchical feature corre-
lations that may be useful for polymer property prediction. The
CNN works by sliding a kernel over the numerical representation
of the polymer and extracting sequence-level features. This op-
eration, paired with pooling and subsequent convolutions, allows
the model to directly construct hierarchical features. Inspired by
demonstrated utility in modeling polymer sequences,43 we also
test long-short term memory (LSTM) architectures. The LSTM
is a type of recurrent neural network (RNN) that processes a se-
quence in a unit-by-unit fashion, with model-specific parameters
and operations that retain relevant information from previously
processed units. Similarly to CNNs, LSTMs can facilitate algorith-
mic identification and extraction of sequence features that could
relate to polymer properties.

Notably, the sequence tensor representation does not natively
retain invariance to sequence inversion as processed by our cur-
rent RNN and CNN architectures. While the intermediate outputs
of the CNN and pooling operations are equivariant to sequence
inversions, the subsequent flattening operation and feeding into
a DNN preserves the order of CU features. Thus, the final output
is not invariant to sequence inversion. To address this, we take
a two-fold approach when training models that takes a sequence
tensor as input. First, we augment training data with inverted
sequences labeled with the same property value as the forward
sequence. Second, we average the output of the forward and re-
verse sequence to make predictions during testing. The former
strategy acts as a form of regularization, whereas the latter en-
sures invariance to sequence inversion and can be seen as a type
of test-time augmentation.71 Dataset B is further augmented with
sequences constructed from cyclic permutations of the four CUs
comprising the repeat pattern of the polymer, as previously de-
scribed.43

2.3.2 Scaled fingerprints

The scaled fingerprint approach can be employed in settings when
precise polymer sequence is known as well as when such informa-
tion is absent or ambiguous. Here, the representation effectively
constitutes a weighted average of CU fingerprints f̄ = ∑k xk f k
where the weight associated with the kth CU is determined based
on, e.g., its fraction of incorporation in the polymer xk; this repre-
sentation is effectively the same as that described by Kuenneth et
al.47 This representation can be derived from the sequence ten-
sor by simply summing along the sequence axis and dividing by
N. In theory, it can also be obtained from the graph of CU em-

beddings if there are no node update operations and instead the
embeddings are pooled together using fractions of incorporation
as attention-like parameters. The lack of any graphical operations
in this analogy highlights a potential limitation of such a polymer
fingerprint: it lacks information regarding polymer connectivity
or CU patterning. Nevertheless, one advantage is that it can be
constructed in most experimental and in silico design problems.
For the polymers in Dataset C, this is the only viable option be-
cause no sequence information is present.

The scaled fingerprint f̄ can be modified in several ways, de-
pending on the availability of other descriptors. One common
descriptor may be the size of the polymer, which is observed to
vary amongst polymers in Datasets A and C, for example. We
consider two approaches to encoding the information on polymer
size. In the first, we simply multiply f̄ by the measure of poly-
mer size (e.g., N) to obtain a final polymer fingerprint f ; we refer
to this as a size-implicit scaled fingerprint. We note that when
the representation of size is the degree of polymerization and the
weights for computing f̄ are fractions of incorporation, the re-
sulting feature vector is effectively a “Bag-of-features” or possibly
“Bag-of-words” representation. For example, if a dimension in the
CU fingerprint contains its average charge, then the size-implicit
scaled fingerprint will report the net charge of the polymer. If
the CU fingerprint is given by OHE and the CU is a monomer,
then one obtains an enumeration of how many monomers of each
type are present in the polymer, or a “Bag-of-monomers.” In the
second approach, we add another dimension to f̄ to include the
polymer size; we refer to this as a size-explicit scaled fingerprint.
In addition to these (optional) modifications, we also consider
augmenting scaled fingerprints with additional descriptors of the
polymer. This approach can be used to partially address the lack
of connectivity information in the scaled fingerprints by adding
dimensions for sequence-level or topological descriptions. We re-
fer to this approach as an augmented fingerprint and test it for the
simulation-derived datasets (Datasets A, B, and D). For Dataset
A, we consider sequence charge decoration (SCD), which cap-
tures the spacing of charge along a polymer chain, and sequence
hydropathy decoration (SHD), which captures information about
the spacing of hydrophobic components along a polymer chain.82

For Datasets B and D, we compute blockiness parameters for each
polymer as

b j = 1− 1
N

N−1

∑
k=0

1( f j(k), f j(k+1)), (3)

with 1( f j(k), f j(k+1) as an indicator function that is equal to one
if and only if all dimensions of the CU fingerprints fk and fk+1

related to position j of the CU are identical; it is zero otherwise.
In the context here, 1( f j(k), f j(k+1) = 1 implies that the CG bead
at position j in the kth CU is the same as the CG bead at position j
in the (k+1)th CU. For polymers in Dataset B, j = 0, 1, or 2, such
that the scaled fingerprint is augmented by three dimensions. For
polymers in Dataset D, j=0 (they are linear polymers), such that
the scaled fingerprint is augmented by a single dimension.

Because scaled fingerprints are constructed by summation of
CU descriptors and augmentation with sequence-level descriptors
that are permutationally invariant, the polymer representation it-
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Fig. 2 Comparison of size-explicit versus size-implicit scaled fingerprint strategies for various fingerprints as applied to property prediction tasks
for (A) coarse-grained intrinsically disordered proteins in Dataset A and (B) stochastic methacrylate copolymers as 19F MRI agents in Dataset C.
Both panels illustrate the percent decrease in mean absolute error (MAE) for a simple scaled fingerprint compared to that with either size-explicit
representation (plain bars) or size-implicit representation (hatched bars). In (A), results are shown for ML models trained to predict the radius of
gyration Rg, the heat capacity Cv, and the end-to-end decorrelation time τN . In (B), the property label is an experimentally determined signal-to-noise
ratio (SNR) as reported in Ref. 48. Both panels examine the effect on MAE using one-hot encoding (purple), molecular fingerprints (green), and
descriptor vector (orange) approaches to CU fingerprinting. In (A), three descriptor vectors are used. The first two are vectors of force-field parameters
(FFP); FFP1 excludes cross interactions while FFP2 additionally uses cross interaction parameters; the third is obtained from the chemical structure
using Mordred.58

self is invariant to sequence inversion. Thus, the output of any
model using this featurization strategy will also retain this prop-
erty.

2.4 Model training and evaluation

The performance of each featurization strategy is obtained by av-
eraging performance metrics obtained using a nested, five-fold
cross-validation procedure. In particular, each dataset is initially
split into five outer folds. For each outer fold, a set of optimal
hyperparameters for the ML model is obtained by an inner five-
fold cross-validation. The hyperparameter optimization is facil-
itated by using the tree-structured Parzen Estimator (TPE) ap-
proach as implemented in Hyperopt83 to minimize the average
mean-squared-error (MSE) across inner folds. The hyperparam-
eter search is conducted in a staged fashion wherein 100 ran-
dom sets of hyperparameter combinations and evaluations are
followed by 100 Bayesian optimization steps with the TPE algo-
rithm. For ML models using LSTMs, hyperparameters were iden-
tified only using random search due to the computational expense
associated with their training. Using the best set of hyperparam-
eters, a model is trained and evaluated on the outer test fold.
This process is repeated until every fold has served as a test fold.
Care is taken to ensure augmented data variants do not simulta-
neously appear in both the train and test splits. The coefficient
of determination, r2, and mean absolute error, MAE, are used to
assess model performance over all test sets. Through exploratory
analysis, we find that the predictive performance of a model built
with a particular featurization strategy can be sensitive to changes
in hyperparameters. Thus, to best target comparisons between
different featurization strategies, all models are hyperparameter-
optimized before being tested for prediction. Additional details
and discussion can be found in section 2.5 of the SI.

All reported metrics represent the average values across test
sets, and errors indicate the standard error of the mean. To rep-
resent variation of MAE over consistent scales, we also introduce

a normalized MAE, which corresponds to MAE divided by the av-
erage property value in the given dataset. The hyperparameter
ranges, performance metrics, and other training settings are pro-
vided in the SI. All neural networks were trained using Tensor-
flow,84 and Spektral85 was used to implement graph convolu-
tional network layers.

3 Results and Discussion

3.1 Representation of Polymer Size

Many polymer properties directly depend on the degree of poly-
merization or molecular weight of a polymer,86,87 which make
it an important candidate descriptor in polymer featurization.
While the notion of polymer size is seemingly already expressed
in the explicit-sequence featurization strategies, we sought to first
quantify the impact of size representation by comparing the per-
formance of ML models trained with scaled fingerprints (SFP),
size-implicit SFPs, and size-explicit SFPs for Datsets A and B (Fig.
2).

Figure 2A shows that fingerprints that use either size-explicit or
size-implicit representations of the polymer significantly improve
ML models trained to predict properties in Dataset A. In particu-
lar, we observe in excess of a 50% decrease in MAE compared to
using a simple scaled fingerprint for all prediction tasks. In the
case of the properties tested (Rg, Cv, and τN), these results are
overall expected because polymer size has clear implications for
each. However, for a given fingerprint type, we generally do not
observe a statistically significant advantage to using size-explicit
versus size-implicit representations. Thus, for polymers in Dataset
A, the inclusion of N is crucial to a successful polymer featuriza-
tion, but there is flexibility in the method of representation.

By comparison, Figure 2B shows that there is no clear ad-
vantage in providing a measure of polymer size in the polymer
fingerprint for ML prediction tasks over Dataset C. In this case,
the representation of polymer size is the mean number-averaged
molecular weight, and we do not observe statistically significant
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reductions in MAE compared to models trained using only scaled
fingerprints, irrespective of the CU fingerprinting technique. We
speculate that the SNR property label is not especially sensitive
to polymer size over the size-range explored in Dataset C: the
standard deviation of molecular weight is 1,100 g/mol compared
to the mean of 7,770 g/mol across the dataset. In contrast, the
range of polymer sizes in Dataset A spans from N = 20 up to 600.
In addition to the lack of variability in molecular weight, other
factors may include the overall dataset size and statistical noise
associated with SNR, such that any potential effect of molecular
weight is obfuscated by measurement noise. Nevertheless, inclu-
sion of polymer size does not remarkably decrease the perfor-
mance of ML models compared to the simple scaled fingerprint.
Therefore, for most design tasks, it seems generally advisable to
include either an implicit or explicit description of polymer size
in the polymer feature vector.

3.2 Effect of Explicit Sequence Representation

Many polymer materials systems may have the opportunity to
exploit the sequential or topological arrangement of CUs to tai-
lor properties or enhance figures-of-merit. Previous studies have
variously explored both recurrent neural networks and CNNs in
polymer property prediction tasks, presumably to extract and
correlate sequence patterns with property labels; however, such
strategies are rarely compared. To provide some guidance re-
garding polymer featurization when sequence is known, we con-
structed and compared the performance of three ML models that
use explicit-sequence representation for the IDPs in Dataset A to
predict their radius of gyration Rg. In particular, models are de-
veloped using sequence tensors with one-dimensional CNNs, se-
quence graphs with GCNs, and sequence tensors with long-short-
term memory (LSTM) networks. To control for any potential
role of different CU fingerprinting strategies, all comparisons are
made between models that use OHE for the CU fingerprints.

Fig. 3 summarizes the performance for the different sequence-
processing strategies, with panels A-C providing correlation plots
between ML predictions and the “ground truth” results obtained
from MD simulation and panel D comparing the normalized MAE.
We find that all architectures perform respectably in predicting
Rg, with coefficients of determination r2 in excess of ∼0.9. Among
the various strategies compared in Fig. 3, the CNN exhibits statis-
tically lower MAE compared to both the GCNs (22% lower) and
the LSTM (18% lower). Interestingly, comparison of Fig. 3B and
Fig. 3C suggests that the use of sequence graphs with GCNs is
superior to using sequence tensors and LSTMs, although Fig. 3D
illustrates slightly lower MAE for the LSTM architecture. The rea-
son is clear from inspection of Fig. 3C, which reveals that process-
ing sequence tensors with LSTMs provides reliable predictions for
short chains while systematically underestimating Rg for larger
chains. This suggests that the LSTM architecture may not encode
an effective representation of polymer size, which was shown to
have significant impact for Dataset A prediction tasks in Section
3.1. While we expected similar performance between CNN and
GCN, we believe that the GCN performance was somewhat lim-
ited by the lengthscale of node embeddings and the the number

Fig. 3 Comparison of explicit-sequence featurization strategies for Rg
prediction tasks in Dataset A. Note that the axes labels are shared for
panels (A)-(C); all data points in the correlation plots correspond to
when the given polymer is in the held-out test fold during corss valida-
tion. Panel (D) reports the normalized MAE for sequence models in the
prediction task. Standard errors and means for all quantities are obtained
from the results of five-fold cross-validation. In the labels, ⟨·⟩ denotes an
ensemble average (obtained from statistical sampling from simulation)
and ·̄ denotes an average over the dataset.

of allowable graph convolutions in our architectures. Conversely,
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the CNN could aggregate features over much larger length scales
by utilizing larger kernel windows, which were found to span ∼20
CUs after hyperparameter optimization.

Based on the overall success of the explicit-sequence represen-
tations, we also examined performance for Dataset B, for which
similar architectures were examined in Ref. 43. In that study,
Webb et al. developed an ML model that used a two-dimensional
CNN (labeled as property-coloring) to process regular copolymer
sequences; the performance of that model for a simple 80/20
train/test split was reported as r2 = 0.958 and MAE = 106 σ2,
where σ is the characteristic size of a CU with a single CG bead. In
the present paper, we find similarly good performance with a one-
dimensional CNN over OHE CU fingerprints (r2 = 0.946 and MAE
= 111 σ2 obtained using five-fold cross-validation). Additionally,
Webb et al. reported r2 = 0.895 and MAE = 130 σ2 for an LSTM
model that predicts ⟨R2

g⟩ for stochastic copolymer sequences us-
ing training data only from regular copolymer sequences. Inter-
estingly, for the same task, we find somewhat better performance
( r2=0.926 MAE of 110 σ2) using an ensemble model obtained
from the five-fold cross-validation procedure, i.e., the predicted
labels are an average of predictions generated by five separate
models. Although hyperparameter optimization was not reported
in Ref. 43, the present results indicate that the CNN model can
capture sequence correlations and generalize these patterns to
non-regular sequences somewhat better than the LSTM approach.

3.3 Sequence and Topology Representations

The results of Section 3.2 demonstrate explicit-sequence repre-
sentations can be effective; however, it is not clear to what extent
the ML regression task efficiently leverages this sequence-level in-
formation in its predictions. To assess the importance of sequence
information on property prediction, we compared three featur-
ization strategies that utilize different levels of sequence informa-
tion; we considered prediction tasks on the simulation-derived
Datasets A, B, and D because the sequences are precisely known.
The first strategy (CNN) uses a sequence tensor processed by a
one-dimensional CNN. The second strategy (SFP) uses a scaled
fingerprint, such that there is no explicit sequence information.
The third strategy (aug. SFP) uses the same feature vector as the
second strategy but the polymer fingerprint is additionally aug-
mented with some descriptors (see Section 2.3.2) that provide
some characterization of sequence and/or topology. All strate-
gies use a OHE fingerprint to distinguish the CUs. The results are
provided in Fig. 4.

Fig. 4A-D compare the performance of the three featurization
strategies for predicting Rg for the polymers in Dataset A. Sur-
prisingly, we find that the ML model that uses size-implicit SFPs
(effectively a “Bag-of-Amino Acids”) statistically outperforms the
sequence tensor/CNN model both in terms of r2 (0.952 for the
CNN in Fig. 4A versus 0.972 in Fig. 4B) and MAE (see Fig. 4D).
Meanwhile, using aug. SFPs enables the most accurate models.
In fact, simply adding these descriptors reduces the MAE by 32%
compared to the simple SFP approach. Thus, while comparing
Fig. 4A and Fig. 4B suggests that Rg in Dataset A is primarily
driven by CU composition and polymer size, comparing Fig. 4B

and Fig. 4C indicates that there are sequence-level effects that
can influence Rg within the dataset. In theory, both the model
derived from the simple scaled fingerprint as well as that aug-
mented with sequence descriptors are within the function space
of the sequence tensor/CNN model, which performs the worst
of the three. We speculate that this primarily due to data lim-
itations. In particular, the properties examined are principally
governed by composition and polymer size, such that sequence
variation is perhaps a perturbative or noise-level effect. Conse-
quently, it is difficult to extract meaningful sequence patterns on
Rg (or other properties in Dataset A) from the sequences in the
DisProt database. Thus, it is more data-efficient to directly encode
descriptors of sequence in the feature vector.

Fig. 4E-H compare the performance of the three featuriza-
tion strategies for predicting ⟨R2

g⟩ for the polymers in Dataset
B. The CNN strategy is comparable to the aug. SFP strategy in
terms of its performance metrics. Both are statistically superior to
the SFP strategy, reducing MAE by 14% and 11% upon including
sequence-level information via the CNN and sequence descrip-
tors, respectively; the r2 improves from 0.932 to 0.946 and 0.949.
We attribute the relative success of the sequence tenosr/CNN
strategy, which is not encountered for Dataset A, to several fac-
tors. First, the properties of polymers in Dataset B likely exhibit
amplified sequence effects compared to those in Dataset A. In
particular, the polymers in Dataset B experience variations to in-
tramolecular bonding potentials due to sequence,43 while this is
not the case for the HPS model for CG IDPs.78 Secondly, there
are relatively fewer unique non-bonded interactions amongst CG
beads for polymers in Dataset B compared to those for polymers
in Dataset A. Thirdly, by construction, there are well-defined, sys-
tematic sequence patterns in Dataset B, while the origin of se-
quences in Dataset A is comparatively uncontrolled. We believe
the combination of these factors facilitate feature extraction from
polymers in Dataset B.

Fig. 4I-L compare the performance of the three featurization
strategies for predicting ∆Fad for the polymers in Dataset D. Anal-
ogously with the discussion surrounding Dataset B, we find that
explicitly representing the sequence or providing sequence-level
descriptors statistically improves the predictive capabilities of ML
models compared to models that do not possess sequence infor-
mation. In particular, there is a 34% reduction in MAE when
using the CNN strategy versus SFP and a 39% reduction when
using aug. SFP versus simple SFP. Notably, both the CNN strat-
egy and the aug. SFP strategy exhibit r2 that rival the highest
reported r2 in Ref. 74, although here we develop a single model
for all surfaces based on DNN whereas Shi et al. develops sep-
arate SVR models for each surface, such that direct comparisons
are difficult. The sequence tensor/CNN strategy likely again per-
forms well due to the relatively small number of CUs and a com-
paratively abundant number of training examples, which enables
facile extraction of relevant sequence patterns. Another con-
tributing factor may be the monodispersity of sequence length
in Dataset C compared to that of Dataset A.

Considering all the data in Fig. 4, ML models built with aug.
SFPs are consistently good across prediction tasks. This suggests
that this simple fingerprinting approach may be preferred or at
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Fig. 4 Comparison of featurization strategies with varying levels of sequence information. Note that the axes labels are shared for panels (A)-(C),
(E)-(G), and (I)-(K). The coefficients of determination are reported with standard errors for the last digit in parentheses. All data points in correlation
plots correspond to when the given polymer is in the held-out test fold during cross validation. Panels (D,H,L) report the average normalized MAE
for CNN models, scaled fingerprint models, and scaled fingerprint models augmented with topological descriptors for prediction tasks associated with
Datasets A,B, and D, respectively. Standard errors and means are obtained from the results of five-fold cross-validation.

least a viable alternative to more complicated strategies that use
CNNs or GCNs, even when precise sequence or topological in-
formation is known. From a practical standpoint, such models
would also be cheaper to optimize. One potential advantage to
the aug. SFP approach is the opportunity to leverage domain-
specific knowledge or make use of well-known descriptors as we
have here. On the other hand, this may also bias the ML mod-
els and limit the information content of feature vectors to only
human-crafted descriptors. In principle, using sequence tensors
or graphs with convolutional networks provides an overall more
flexible, unbiased approach to featurizing polymers. Because we
do not observe remarkably poor performance with this approach
for any prediction task here, using explicit-sequence featurization
strategies are still likely viable, but they may not immediately
provide the most accurate property predictions.

For design tasks, both explicit-sequence featurization or aug.
SFPs would be reasonable for use in surrogate modeling dur-
ing property optimization. A potential advantage of the explicit-
sequence featurization is that optimization to identify a specific

polymer is well defined. By contrast, additional effort would be
required to chemically invert the optimal descriptor vectors into
a sequence were one to optimize directly in the feature space
of an aug. SFP. Optimization could be used in sequence space
with surrogate evaluations performed with the aug. SFP featur-
ization strategy, but this may undesirable due to degeneracy in
the sequence-to-aug. SFP mapping.

3.4 Impact of Constitutional Unit Fingerprints

In previous sections, we simplified comparisons by using only
OHE fingerprints of the CUs, achieving overall excellent predic-
tive accuracy. Still, OHE is a limited representation that is defi-
cient in any notion of chemical relationships amongst CUs, such
that all CUs are equidistant in the chemical feature space. In addi-
tion, the dimensionality of OHE fingerprints scales with the num-
ber of possible CUs, which may be problematic for less restricted
design spaces. Both factors limit the transferability of ML models
constructed with OHE fingerprints of CUs. We hypothesized that
using chemical fingerprints or descriptor vectors would enhance
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Fig. 5 Comparison of CU fingerprints combined with different featurization strategies. Model performance given by the coefficient of determination
r2 and the normalized mean absolute error (MAE) for prediction tasks on (A) Datasets A, (B) Dataset B, and (C) Dataset C. Standard errors are
obtained from the results of five-fold cross-validation. The insets on all graphs range over the same intervals (0.5 to 1.0 for the abscissa and 0.0 to
0.2 for the ordinate) for visual reference across panels. (D) The extrapolative ability of models using different CU fingerprints to make predictions
on polymers with previously unseen CUs. Each bar corresponds to a different featurization strategy; the analysis is based on Dataset B. (E) The
correlation of extrapolation error with chemical dissimilarity of the unseen CUs in the test set to CUs present in the training set (Pearson’s correlation
coefficient = 0.86) The chemical dissimilarity is quantified as the sum of Euclidean distances of a CU descriptor vector to all others in the chemical
space. The color and symbol legends apply to all panels, as relevant.

the predictive capabilities of ML models by allowing for a bet-
ter expression of chemical similarity. To investigate the utility of
these chemically-informed encodings, different representations of
CUs were used in conjunction with the SFP and explicit-sequence
featurization strategies for regression tasks across Datasets A, B,
and C (Fig. 5). Because Datasets A and C have CUs that can be
described by real chemical structures, despite Dataset A featuring
CG polymers, Fig. 5A and C compare OHE, molecular finger-
prints, and descriptor vectors for use as fingprints of the CUs. For
Dataset B, the comparison is limited to only OHE versus descrip-
tor vectors as there are no underlying chemical structures for the
CUs. We do not investigate this comparison for Dataset D since
the two representations are identical for this simple system: rep-
resentations using OHE are related to representations in the basis
of force-field parameters by a linear transformation.

Fig. 5A reveals that most SFP-based strategies with size rep-
resentation perform similarly, irrespective of the type of CU fin-
gerprint and the prediction task for Dataset A. Meanwhile, there
is no evident systematic advantage for any given CU fingerprint
when used along with explicit-sequence featurization strategies.
In fact, the models utilizing the OHE CU fingerprints are either

the best or within statistical error of the best-performing mod-
els (controlling for a given model type and prediction task). The
most noticeable result is that graph-based models have generally
larger errors, but overall, all models exhibit high accuracy.

Examination of Fig. 5B, which considers OHE and descriptor
vector CU fingerprints in both SFP and sequence graph/GCN fea-
turization strategies for polymers in Dataset B, provides some-
what similar conclusions. In this case, however, using descrip-
tor vectors does consistently enhance predictive capabilities com-
pared to using OHE for the CU fingerprints. While the advan-
tage is more striking when using SFPs than when using explicit-
sequence featurization, the differences remain overall modest
when considering the proximity of all points for generally accu-
rate models.

In stark contrast, Fig. 5C clearly demonstrates relative success
of OHE fingerprints for CUs compared to either molecular finger-
prints or descriptor vectors. Between molecular fingerprints and
descriptor vectors as the CU fingerprints, molecular fingerprints
seem to provide overall more accurate models, but the advantage
is not always statistically significant. We note that the error bars
are larger here than in either Fig. 5A or B due to the dataset be-
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ing smaller and the labels being more prone to statistical noise.
Consequently, we expect that the low-dimensionality of SFP-based
models with OHE is an advantage in data-scarce regimes and in
prediction tasks with larger measurement uncertainties.

To probe the utility of using chemically informed CU feature
vectors when constructing extrapolative ML models, models were
retrained and tested for the prediction task in Dataset B using
alternative train-test splits. Specifically, train-test splits were con-
structed such that a single CU type is missing from all polymers
in the training data but present in all polymers in the test set.
Only Dataset B was used for this investigation as it was the only
dataset with data composition such that reasonably sized train-
test splits could be constructed for all CUs. Fig. 5D shows that
models trained on polymer representations constructed using de-
scriptor vector CU fingerprints extrapolate to polymers with “un-
seen” CUs significantly better than those constructed from simple
OHEs. We hypothesized that the model MAE would be closely
related to the chemical dissimilarity of the unseen CU to those in
the training data. To investigate this, we defined chemical dissim-
ilarity as the Euclidean distance of a chosen CU to all other CUs
in the chemical space and examined its correlation with MAE; the
results are shown in Fig. 5E. Together, these results support the
idea that representing a CU in a chemically informed vector space
can allow for the ML model to extrapolate to new chemical sys-
tems by encoding relationships between nominally distinct units.
Thus, when design tasks allow exploration outside of the chemi-
cal space of the training data (e.g., in a generative approach), we
recommend the use of chemically specific CU fingerprints.

4 Conclusions
In this paper, we introduced, examined, and compared the per-
formance of various polymer featurization strategies for diverse
ML regression tasks derived from four distinct datasets. We con-
sidered polymer featurization from the perspective that polymers
are comprised of constitutional units, which may be described in
numerous ways, and that the precise sequence or topology of CUs
may or may not be known, depending on the design space or syn-
thetic capabilities. Therefore, we outlined a series of approaches
that invoked varying degrees of sequence-level information. We
additionally considered the special role of polymer size in prop-
erty prediction when it is a known variable in the dataset.

Our results indicate that the “best” polymer feaurization strat-
egy is context-dependent, and its performance may also be degen-
erate with other featurization strategies. For example, in regres-
sion tasks associated with Datasets A and B, descriptor vectors
performed as well as, if not better, than models that use OHE.
However, for the lone experimental dataset, OHE CU represen-
tations definitively outperformed molecular fingerprinting or de-
scriptor vector strategies, although we expect this advantage to
diminish for larger datasets. Matching our intuition, we find that
featurizing polymers with chemically informed representations of
chemical units, as opposed to simple OHEs, facilitates extrapola-
tion, which may be useful in some design paradigms.

In situations where sequence information is known, we found
consistent advantages to leveraging sequence information com-
pared to relying solely on composition. On the other hand,

explicit-sequence representations coupled with feature extrac-
tion architectures did not outperform simpler models built using
fingerprints augmented with sequence descriptors. Because se-
quence descriptors are derivable from explicit sequence represen-
tations, this result likely stems from data limitations. Here, scaled
fingerprints augmented with sequence descriptors seemingly pro-
vide a data-efficient approach to encode essential sequence char-
acteristics for ML models, which is advantageous for polymer de-
sign tasks. Finally, we find that some representation of polymer
size is either necessary to achieve accurate ML models or, at worst,
inconsequential, depending on the property prediction task.

The current work also points to several interesting questions
for polymer featurization that can be considered for future poly-
mer design problems. For example, while we found that pro-
cessing sequence information through CNNs was generally more
effective and computationally expeditious compared to GCNs or
LSTMs, the performance limitations or applicability of all these
approaches are still not fully understood. We also did not as-
sess the performance or viability of low-dimensional polymer em-
beddings achieved using unsupervised ML techniques88 or vari-
ational autoencoders.41,67 Another consistent theme uncovered
by exploration of multiple datasets is the potential sensitivity
of polymer featurization to dataset construction. For example,
we believe that the comparatively poor performance of explicit-
sequence models for Dataset A is because sequence effects must
be ascertained from random occurrence of sequence motifs across
the dataset, and any relevant effects are small by comparison to
those arising from composition or polymer size. This highlights a
need to carefully consider dataset construction, if one aims to use
explicit-sequence representations.
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