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Dependence of phase behavior and surface tension on
particle stiffness for active Brownian particles†

Nicholas Lauersdorfa‡, Thomas Kolbb‡, Moslem Moradia, Ehssan Nazockdasta and Daphne
Klotsa∗a

We study quasi two-dimensional, monodisperse systems of active Brownian particles (ABPs) for a
range of activities, stiffnesses, and densities. We develop a microscopic, analytical method for predict-
ing the dense phase structure formed after motility-induced phase separation (MIPS) has occurred,
including the dense cluster’s area fraction, interparticle pressure, and radius. Our predictions are in
good agreement with our Brownian dynamics simulations. We, then, derive a continuum model to
investigate the relationship between the predicted interparticle pressure, the swim pressure, and the
macroscopic pressure in the momentum equation. We find that formulating the point-wise macro-
scopic pressure as the interparticle pressure and modeling the particle activity through a spatially
variant body force –as opposed to a volume-averaged swim pressure– results in consistent predictions
of pressure in both the continuum model and the microscopic theory. This formulation of pressure
also results in nearly zero surface tension for the phase separated domains, irrespective of activity,
stiffness, and area fraction. Furthermore, using Brownian dynamics simulations and our continuum
model, we showed that both the interface width and surface tension, are intrinsic characteristics of
the system. On the other hand, if we were to exclude the body force induced by activity, we find that
the resulting surface tension values are linearly dependent on the size of the simulation, in contrast
to the statistical mechanical definition of surface tension.

1 Introduction
Active-matter systems consist of “active” components (e.g. self-
propelled nanorods, molecular motors) that locally consume en-
ergy to move, exert forces or perform chemical reactions, thus be-
ing inherently out of equilibrium. Properties of active matter such
as adaptation, responsiveness, and self-healing may enable the
development of novel materials and technologies1–12. However,
to develop these next-generation technologies, a deeper theoret-
ical understanding and description of active systems is needed.
In the past two decades both mechanical and thermodynamic ap-
proaches, predicated on our understanding of equilibrium matter,
have provided great insight towards an understanding of active
systems, which are out of equilibrium and violate detailed bal-
ance13–18. However, in its current state, active matter has no
complete theory, no “real gas model” which can predict emergent
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behavior based on system parameters.

Simulations are a useful platform for testing active-matter the-
ories by allowing the calculation of properties inaccessible or dif-
ficult to obtain experimentally, as well as the investigation of a
broad parameter space. Here, we focus on the active Brown-
ian particle (ABP), a model subject to the overdamped Langevin
equations of motion in which a particle propels itself at an in-
trinsic speed while rotating randomly in time19–21. One of the
most surprising and interesting behaviors observed with the ABP
model is motility-induced phase separation (MIPS), where the
system undergoes a first-order phase transition into dense and
dilute (gas-like) phases induced by the activity of the particles in
absence of an attractive potential20,21.

Though it is mainly activity and density that have been shown
to induce MIPS22, there are other parameters that we expect
would influence the resulting structure after a phase transi-
tion. The degree of particle softness has been shown to influ-
ence macroscopic properties of colloidal suspensions in equilib-
rium systems23, with investigations both via theory24 and experi-
ment25–27. Specifically, the influence of particle softness has been
shown to alter the flow of the liquid phase28, the conditions for
glass formation (as well as its aging process29) and requires the
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reconsideration of the relevant driving forces (e.g. the source of
entropy) that determine phase behavior23. Moreover, experimen-
talists have demonstrated a great degree of control in synthesiz-
ing colloids of a specific softness, e.g. by functionalizing colloids
with polymers of different lengths and densities30,31. Thus, a
question arises, how does the rich behavior accessible by varying
softness in Brownian colloidal systems transfer to active matter?

So far, no experimental studies have systematically investigated
the effect of particle softness in active matter. Levis et al. com-
putationally examined the effect of particle softness and obtained
a phase diagram relating activity and softness for four distinct
repulsive strengths32. They found that making particles softer
made the dense phase denser, and increased the threshold ac-
tivity at which phase separation occurred. Additionally, various
types of isotropic potentials have been examined: the Yukawa
potential for soft particles33 or different strengths of the WCA
potential17,34) as well as anisotropic interactions e.g. Janus in-
teractions for Janus particles35.

Most studies focus on different parameters that control the on-
set of MIPS. Here we focus, instead, on the structure of the dense
phase and its interface with the gas phase after MIPS has oc-
curred. The dense phase exhibits two spatial regions with dis-
tinct characteristics: a bulk dense phase and a dense-dilute inter-
face36. The bulk dense phase has constant density, whereas, the
dense-dilute interface exhibits a monotonically decreasing den-
sity from the dense to the dilute phase density36, resembling that
of typical equilibrium liquid-gas interfaces37–39. The stability of
the dense phase is dictated by the balance of incoming and out-
going flux of particles from the cluster’s surface. Incoming parti-
cles from the dilute phase are initially oriented towards the dense
phase until rotational diffusion causes the particle’s body axis
to no longer be perpendicular to the cluster’s surface20. Alone,
this would result in a rough interface lacking orientational align-
ment40. However, particles which bump into a rough interface
will gradually move into convex regions of the surface, smooth-
ing the interface and promoting local alignment41–43. This gives
rise to a dense-dilute interface with a high degree of polarization
of the body axes towards the cluster’s center of mass, resulting
in aligned body forces at the interface. To determine how these
aligned body forces play a role in the mechanical stability of the
steady state, we must first understand the momentum equation
and its components.

In Brownian suspensions and molecular liquids the stress due
to interparticle interactions is computed using virial formulae,
which involves a volumetric integral of interparticle force mo-
ment44,45. This definition of stress recovers the Cauchy stress
in continuum mechanics, σ , defined as a second-rank tensor that
relates the traction vector, F̂ (force per unit area) on a surface
with normal vector n̂ as F̂ = σ · n̂. Similarly the trace of the stress
tensor, defined as pressure, computed from determining the force
per unit area of the surface and evaluating the volumetric integral
yields the same results.

Though the equivalence of interpreting physical processes from
both a mechanical (microscopic) standpoint and a statistical me-
chanical (continuum-level) perspective applies for equilibrium
systems, there has been ongoing debate about the appropriate

microscopic formulation of stress in active suspensions, that is
also consistent with a continuum definition. Brady and cowork-
ers used the virial formulation to compute the average pressure
within a domain containing ABPs and showed that the change in
the direction of swimmers due to interactions with the neighbor-
ing ABPs reduces the effective diffusivity of the swimmers and,
thus, reduces the entropic stress. They referred to this activity-
induced modification to pressure as swim pressure, and used this
quantity to predict the onset of MIPS in ABPs46. Consequent stud-
ies have shown that the pressure defined as the force per unit area
on the boundaries of the computational domain is dependent on
the detailed interactions of the particles with the boundary47,48,
leading to an argument that pressure is not a state variable in
active systems.

Surface tension, γ, similar to stress, is a surface quantity and
is defined as the energy required for creating a unit area of the
interface49. Kirkwood and Buff50 showed that, similar to stress,
the surface tension in molecular liquids can be formulated as in-
tegrals of interparticle forces over both phases and the interface.
This formulation is consistent with the continuum definition for
equilibrium systems51. Other studies have found that using a
pressure formulation that contains swim pressure and deploying
Kirkwood and Buff formulation of surface tension results in ex-
tremely negative surface tension36,52–55.

More recent studies56–58 have argued that these inconsisten-
cies can be resolved if the swim pressure is not included in the
stress calculations and instead the effect of particle activity in
ABPs is modeled through a body force, due to the net alignment of
ABPs at the interface, in the continuum limit. Particularly, Omar
et al showed that ignoring the swim pressure term leads to negli-
gible surface tension in the dense-dilute interface of phase sepa-
rated ABPs.

In this paper, we analytically and computationally investigated
the effect of softness for monodisperse active Brownian particles
across a range of activities (Pe = 3vpτr / σ where vp is the intrinsic
particle velocity, τr is the rotational frequency, and σ is the par-
ticle diameter) and system area fractions, using the ABP model,
see Table 1 for parameters details. We build upon the work of
Levis et al.32 by deriving analytical formulae that predict the re-
sulting steady state structure of soft ABP systems. Focusing on the
dense phase after MIPS has occurred, we describe two analytical
approaches, a microscopic and a continuum one, built from few
assumptions (average interaction between particles, hexagonal-
close packing structure). We derived analytical expressions for
the lattice spacing and the area fraction of both the bulk dense
and dilute phase. Then, in concert with kinetic theory, we ob-
tained formulae for the cluster radius and the interparticle pres-
sure. We found great agreement between analytical predictions
and simulation results. To relate the microscopic pressure to the
macroscopic pressure in the momentum equation, we explored
the effect of particle softness, activity, and area fraction on sur-
face tension. Consistent with the finding of refs. 57 and 58, we
found that the swim pressure should not be included in the defini-
tion of the point-wise stress, and that the particle activity leads to
a body force in the momentum equation near the interface. With
these modifications, we derived a continuum approach for cal-
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Simulation parameters Definition Value

Particle diameter σ 1.0

System size N 105

System area fraction φ = Nπσ2

4Abox
[0.45,0.65]

Interparticle interaction strength ε [10−4,100]

Rotational frequency τr = D−1
r

1
3

Ratio of active to thermal forces (Péclet number) Pe = 3vp
Drσ

[0,500]

Ratio of active to pair potential forces F? = Faσ

24ε
[100, 106]

Table 1 Definitions of important parameters in our analytical derivations in section §2 and the values they take within our simulations in section §3.

culating the pressure arising from the aligned body forces at the
interface (which approximately equals the interparticle pressure
of the bulk dense phase), the interface width (which we find to
be intrinsic to the system irrespective of varying particle softness,
activity, or area fraction), and the surface tension. One important
implication of our results is that across a range of parameters
(softness, activity, system area fraction or size), the surface ten-
sion was found to be nearly zero and, therefore, play a negligible
role in mechanically sustaining the steady state.

The structure of the paper is as follows. In section § 2 we
present our microscopic theoretical framework. In section § 3, we
outline the simulation model and details for the systems studied
here. We describe our results in section § 4 showing comparisons
between our analytical predictions and simulation results. In ad-
dition, we write down a continuum-theory approach and compare
results with microscopic theory and simulations. Finally, we end
with conclusions and outlook in section § 5.

2 Theory
Consider a colloidal particle with a stiff repulsive core that is
functionalized with a weakly repulsive polymer brush. In the ex-
tremely rarified case (a dilute gas), this colloid does not interact
with neighbors and has a ‘resting’ diameter, σ , when only thermal
forces are present. However, upon increasing the system density,
the functionalized colloid deforms due to an increasing number of
interparticle interactions and has an effective diameter (less than
σ) defined by the distance to its nearest neighbor, ||ri||. With this
kind of experimental system in mind we develop our analytical
model of soft ABPs.

Now, consider a system of ABPs which has undergone MIPS
and is at steady-state: there is a dense phase and a dilute (gas-
like) phase (fig. 1a). In what follows, we will be focusing on the
dense phase and will be calculating the lattice spacing, area frac-
tion, cluster radius, interparticle pressure, and the surface tension
based on a small number of assumptions, discussed first.

In the dense phase, the velocity of particles is negligible com-
pared to the velocity of particles in the dilute phase. Thus, we
assume that the particle hydrodynamic drag forces (which are
proportional to the particle velocity) are also negligible. In accor-
dance with the previous and our own findings from simulations,
we also assume that the particles in the dense phase are arranged

in a hexagonally close-packed (HCP) lattice20 (see fig. 1b and
Electronic Supplementary Information (SI), fig. S1). The lat-
tice spacing (a) between neighboring particles will be determined
through a balance of the neighbors’ active forces (which compress
a particle) and the repulsive forces (which resist particle over-
lap). First, we distinguish two regions within the dense phase:
the bulk, which includes the majority of particles in the dense
phase, and whose constituent particles’ body axes exhibit no ori-
entational alignment on average, and the interface between the
dense and dilute phases, where particles possess a high degree
of orientational alignment towards the cluster’s center of mass.
Note that the existence of a bulk dense phase and a dense-dilute
interface is supported by previous works59–61 as well as our own
simulation results presented in section § 4 fig. 5. As such, the
compression of particles within the bulk results from the aligned
particles at the edge of the dense phase, i.e. the interface push-
ing inward towards the center of the cluster. As a result, the bulk
particles’ effective diameter is smaller than the resting diameter.
The effective diameter, which is equal to the interparticle sep-
aration of immediate neighbors, has little variability within the
bulk dense phase. Therefore, we assume that each particle within
the bulk dense phase is a constant distance apart from its nearest
neighbors, equal to the lattice spacing, a.

Based on these assumptions, our first aim is to analytically
compute the different structural and mechanical parameters of
the dense phase, including its lattice spacing, cluster radius and
interparticle pressure, at a variety of activities and stiffnesses
(repulsive strengths). Our particles interact through the Weeks-
Chandler-Andersen (WCA) potential

U(ri,j) =

4ε[( σ

ri,j
)12− ( σ

ri,j
)6]+ ε 0≤ ri,j ≤

6√
2σ

0 ri,j >
6√
2σ ,

(1)

which provides repulsion at distances up to slightly greater than
the resting particle diameter and is zero beyond that distance
(rcut =

6√
2σ). Here σ defines the resting particle diameter when

only thermal forces are present, ε determines the interaction
strength, and ri,j = ||rj− ri|| is the center-to-center separation be-
tween two particles i and j. The interparticle force applied by
particle j on particle i is the gradient of this potential, FWCA(r) =
−∇rU , and is given by:
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Fig. 1 (a) Schematic representation of the cluster with three color-coded regions based upon the distance from the cluster’s center of mass (||r||):
the bulk phase (green), the interface (yellow), and the dilute phase (red) with the cluster radius and interface width labeled (rc and h respectively).
The local area fraction of the bulk of the dense phase (for 0≤ ||r|| ≤ rc−h) is constant (φd). In the interface (rc−h≤ ||r|| ≤ rc), the local area fraction
(φi) decreases from the bulk phase area fraction, φd, until it reaches the area fraction of the dilute phase outside the cluster, φg. (b) Use of the pair
force in computing the total force on a reference particle as a vector sum (eq. 3) over neighboring particles in a HCP structure, where p̂i indicates
the ith particle’s orientation, θi represents the angle between p̂i and the separation unit vector, r̂, and a represents the average interparticle separation
distance in the bulk of the dense phase, the lattice spacing.

FWCA(ri,j) =

 24ε

σ
[2( σ

ri,j
)13− ( σ

ri,j
)7]r̂ 0≤ ri,j ≤

6√
2σ

0 ri,j >
6√
2σ ,

(2)

where ri,j = rj−ri and r̂ = ri,j/||ri,j|| is the relative separation unit
vector. Note that particle stiffness is modulated via the interac-
tion strength, ε, where larger ε corresponds to stronger repulsive
forces and, in turn, stiffer particles.

Let us begin by computing the active force exerted by an iso-
lated pair within the dense phase; see fig. 1b. The average force
applied by particle 2 on particle 1 can be generally expressed as

〈Fpair〉=
∫

FpairP(p̂1, p̂2)dp̂1dp̂2, (3)

where P(p̂1, p̂2) is the probability density function of observing
particles 1 and 2 at orientations p̂1 and p̂2, respectively; see
fig. 1b. We know that in the bulk dense phase the orientations
of the particles are independent of each other and are uniformly
distributed: P(p̂1, p̂2) = P(p̂1)P(p̂2) = (1/2π)2. The pair force is
nonzero only when the relative motion of the pair causes over-
lap. Therefore, since the large active force (Fa) dominates over
translational Brownian fluctuations, the pair force, Fpair, is only a
function of activity and interparticle forces. In the absence of any
orientational anisotropy, the pair force acts only along the line of
centers of the particles, r̂, and is equal to the projection of the
pair relative velocity in the r̂ direction:

Fpair
1 = Fa

{
[r̂ · (p̂2− p̂1)] r̂ r̂ · (p̂2− p̂1)< 0,

0 r̂ · (p̂2− p̂1)≥ 0
(4)

Substituting P(p̂1, p̂2) = (1/2π)2 and eq. 4 into eq. 3, we simplify

to find the average pair force experienced by an isolated pair of
particles in a dilute system

〈Fpair〉= 4Far̂(
1

2π
)
2 ∫ π

0

∫
θ1

0
(cosθ2− cosθ1)dθ2dθ1 =

4
π2 Far̂.

(5)
This calculation, however, ignores the effect of surrounding
“bath” particles on 〈Fpair〉, which may dominate the pair interac-
tions at large area fractions. Thus, instead of using the prefactor
4/π2, we assume the general form 〈Fpair(a)〉= βFar̂.

Since the dense phase particles are assumed to be static, the
pair active force (〈Fpair〉) and the repulsive interparticle force
(FWCA) must be equal, giving a force balance equation that en-
ables the determination of the lattice spacing in the dense phase
(a):

βF? = 2
(

σ

a

)13
−
(

σ

a

)7
, (6)

where F? = Faσ

24ε
is the ratio of active to interparticle forces. We,

then, proceed to use simulation results to compute β . Fig. 2
shows the simulation values of a vs F? using eq. 6 for a wide
range of Pe and ε. The data collapse into a single curve. The
dashed lines shows the fit from eq. 6 for β = 2.0, which is in ex-
cellent agreement with simulation results (discussed in detail in
the SI, see section §1). To simply things further, we neglect the
second term on the RHS of eq. 6 and compute σ/a as

σ

a
≈
(

βF?

2

)1/13
. (7)

.
We find the simplified eq. 7, plotted as a dotted line using

β = 2.0 in Fig. 2, is in almost equally strong agreement with our
simulation data as eq. 6. Note that β = 2 is approximately 5 times
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Fig. 2 Lattice spacing (a) of the HCP phase for variably soft ABPs at
distinct, constant, potential well depth (ε, evenly spaced on log-scale,
see legend) for both simulation (points of varying shape and color, see
legend) and with the best fit using β = 2.0 (discussed in detail in the
SI, see section §1) with eq. 6 (dashed lines) and eq. 7 (dotted lines).
Increasing activity (Pe ∝ F∗) or softness (decreasing ε) corresponds to a
shorter lattice spacing. Varying system area fraction (different hatching,
see legend) has negligible effect on the lattice spacing at constant softness
and activity. Furthermore, all data collapses to a single curve in log-log
scale. We find the simplified eq. 7 with β = 2.0 reliably agrees with that
derived analytically in eq. 6 and measured via simulation.

larger than the computed value, when the effect of bath particles
is neglected (4/π2), indicating the dominant role of bath parti-
cles in determining the effective pair interactions; this is to be
expected in this range of area fractions (discussed in detail in the
SI, see section §1).

Knowing the lattice spacing a enables us to determine the area
fraction of both the dense and dilute phases, which allow for the
calculation of three important quantities: i) a binodal of the dense
and dilute phase area fractions, ii) the number of particles in the
dense phase and iii) the radius of the cluster at steady-state. The
dense phase area fraction can be calculated from:

φd =
φcpσ2

a2 , (8)

where φcp = π/(2
√

3) is the area fraction of disks in a HCP lat-
tice. Note that because our particles are soft they can compress so
that the lattice spacing (a) is smaller than the particle diameter
(Fig. 2) and the dense phase area fraction is greater than close
packing, φcp. In order to obtain the area fraction of the dilute
phase we follow Redner et al.20 and define rates of adsorption on
to (kin) and desorption from (kout) the dense-phase cluster:

kin =
ngvp

π
kout =

κDr

a
, (9, 10)

where ng is the number density of the dilute phase, νp is the swim
velocity of a single particle, Dr is the rotational diffusion rate,
and a is the lattice spacing of the dense phase, as predicted by

eq. (6). Redner et al.20 used the fitting parameter κ = 4.5 explain-
ing it stems from the observation that particle desorption occurs
in avalanche-like events. At steady state, the rate of adsorption is
equal to the rate of desorption, kin = kout, which gives

ng =
πκDr

νpa
. (11)

Multiplying eq. 11 by the area of a particle (Ap = πσ2), we can
present this quantity in terms of typical input parameters, namely
the area fraction and activity,

φg =

(
3π2κ

4

)( a
σ

Pe
)−1

, (12)

where Pe = 3vp
Drσ

is the ratio of active to thermal forces.
So far, we have calculated the area fraction of both dense

(eq. 8) and dilute (eq. 12) phases. We can also compute the num-
ber of particles in the dense phase in terms of φ , φg, and φd given
the system size (N), simulation box area (A), and the system area
fraction (φ = NAp/A), which are all known inputs for our simu-
lations. Further simplification using eqs. 8 and 12 enables us to
calculate Nd (Lever rule) based upon our physical input param-
eters of φ , Pe, and ε, (discussed in detail in the SI, see section
§2),

Nd = N
(

φd(φg−φ)

φ(φg−φd)

)

= N

(
φcpσ2

φa2

)
φ − 3π2κσ

4
( a

σ
Pe
)−1

φcpσ 2

a2 − 3π2κσ

4
( a

σ
Pe
)−1

. (13)

The area of the dense phase cluster, Ad can be expressed as
a function of the effective particle diameter (a), the number of
dense-phase particles (Nd), and the packing fraction of the HCP
lattice (φcp):

Ad =
Ndπa2

4φcp
. (14)

Next, we compute the cluster radius (rc) as a function of activ-
ity (Pe), softness (via a), system area fraction (φ), and resting
particle diameter (σ):

rc =

√
Nd

4φcp
a. (15)

We now seek to compute the interparticle pressure within the
dense phase using the virial formulation,

Π
P
d = ndΠ̂

p
d = nd

1
2

N=6

∑
i=1

ri ·FWCA(a), (16)

where ri is the position vector between the centrally-tagged refer-
ence particle and its ith neighbor, nd = Nd

Ac
is the number density of

the dense phase, Π̂P
d is the interparticle pressure on a single par-

ticle in the dense phase, the superscript P denotes interparticle
interactions. Using eq. 14 and FWCA(a) = 2Fa simplifies eq. (16)
to

Π
P
d =

2β
√

3Fa

a
. (17)
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The form of pressure in eq. 17 is not immediately intuitive. The
difficulty arises since we are studying the system after MIPS,
where the particles are forming a crystalline phase. Our simu-
lations and theory show that the pressure (and other variables)
of the crystalline phase is independent of the initial area fraction
for φ ≥ 0.45, even though φ is a determinant of the onset of MIPS.
Below this area fraction, we did not observe the transition to the
crystalline phase. Thus, the dimensionless pressure in our system
is only a function of activity (Fa) and interparticle interactions (ε,
σ). To make eq. 17 more intuitive, we now explicitly present the
pressure in its dimensionless form. To do so, we substitute eq. 7
in for a in eq. 17,

ΠP
d

Π0
= 2β

√
3
(

βF?

2

)1/13
(18)

,

where Π0 = Fa/σ . This equation is only a function of Fa, ε, σ

and independent of kBT and φ .

Recall that we are interested in the limit of Pe� 1, beyond
the MIPS critical point. Considering this limit in eq. 12 and 13
gives φg→ 0 and Nd→ N i.e. all particles will be adsorbed to the
dense phase. Similarly, taking Pe� 1 and writing eq.14 in terms
of rc, we find that the radius of the dense phase scales linearly
with the lattice spacing and the dimensions of the simulation box
(Lbox ∝

√
N):

rc

a
=

√√3
2π

√N. (19)

To sum up, we have given analytical expressions for the macro-
scopic mechanical variables, including interparticle pressure in
the dense phase, as well as microstructural variables, including
the lattice spacing, a, and the radius of the dense phase, rc, in
terms of activity Pe, softness ε, resting particle diameter σ and
area fraction φ . Our only assumptions were that the dense phase
forms an HCP lattice, that the activity is high and dominates over
Brownian motion, and the only interparticle forces we consider
are from immediate neighbors. To test the validity of our ana-
lytical calculation, next we compare our predictions against the
results from Brownian Dynamics simulations.

3 Simulation Methods

We simulate N = 105 spherical active Brownian particles (ABPs),
of diameter σ , confined to a two-dimensional simulation box
Lbox ∝

√
N and subject to periodic boundary conditions. Each par-

ticle’s activity is modulated by varying the active force (Fa = ξ vpp̂
with drag ξ from an implicit solvent*), which is applied along
a body axis, or swim direction, defined through unit vector p̂ =

(cosϕ,sinϕ), where ϕ is the angle between the body axis and the
positive x-axis. The active force is varied via the intrinsic parti-
cle velocity (vp). A particle’s motility, or activity, is quantified by
the (dimensionless) Péclet number (Pe = 3vpτr / σ). We ensure
our results are not influenced by finite-size effects from the peri-
odic boundary conditions by testing different system sizes, see SI,

Fig. 3 Force at varying interparticle separation distance (ri,j for the
WCA potential (eq. 1, black) for constant repulsive well-depth (ε = 0.1),
showing sensitivity to activity. For a head-on collision of active particles
(Pered < Peblue < Pegreen) points indicate the maximum particle deforma-
tion while lines indicate range of interparticle distance available in other
types of collisions. Colored spheres demonstrate the maximum deforma-
tion at each activity and wire mesh overlay shows the extent of particle
overlap (for particle diameter σ = 1.0).

figs. S5,S9.
Particles translate and rotate in accordance with Brownian dy-

namics,

ṙi =
1
ξ

(
FWCA

i +Fap̂i

)
+
√

2DtΛi (20)

ϕ̇i =
√

2Dr Γi , (21)

where, ri provides the ith particle’s position in two dimensions,
Λi, and Γi represent zero-mean unit variance Gaussian noise,〈

Λα

i (t)Λ
β

j (t
′)
〉
= δijδαβ δ (t−t ′),

〈
Γi(t)Γj(t ′)

〉
= δijδ (t−t ′), where α

and β denote Cartesian coordinates, and Fi
WCA = −∑j6=i ∇iU(rij)

is the repulsive interparticle force from the WCA potential (eq. 1).
Drag (ξ = 3πησ) and translational/rotational noise (Dt = kBT /ξ ,
Dr = 3Dt / σ2) are set according to system temperature (T ) and
particle size (resting particle diameter σ) for a given fluid with
dynamic viscosity (η). In addition to sudden orientation changes
from collisions, the body-axis reorients randomly over time ac-
cording to a characteristic timescale τr = D−1

r = 1/3. Note that
our implementation and results apply also to systems where ran-
dom translational and rotational motion do not stem from the
system temperature. That is to say, the emergent phenomena we
observed result from the relationship between a particle’s velocity

* Note that the drag is dependent on the effective particle area which varies with
a particle’s effective diameter and, in turn, softness. Despite changing the kinetics,
variations in drag (and, in turn, the rotational and translational diffusion coefficients
indirectly) would negligibly influence our predictions as the structure of the dense
phase is static and, hence, independent of hydrodynamic interactions.
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and rotational frequency (τr = D−1
r ), which is encoded in the per-

sistence length (lp = vpτr). Thus, the rotational frequency need
not be explicitly thermal in origin (and could be set to any reori-
entation rate that reflects a particular system).

Interaction between particles is described through a WCA po-
tential (eq. 1). We implement several values of the repulsive well
depth (ε) to study the effect of softness on the structure and me-
chanics of the dense phase. Recall that at a fixed interparticle
distance, a larger value of ε produces a greater repulsive force i.e.
hard particles have a larger value of the repulsive well depth than
soft particles (εhard > εsoft). For a constant repulsive strength (ε),
increasing the activity (and therefore the active force) results in
greater particle overlap (fig. 3). Despite using a constant value of
softness for particles in a given simulation, there is a distribution
of effective particle diameters resulting from a different degree
of particle compression. Depending on the environment of any
given particle, the degree of compression will vary according to
its neighbors’ orientations and the resulting compressive forces
acting on it. An experimental analogue to this implementation of
the interparticle potential could be a colloid functionalized with
a polymer brush where distinct repulsive strengths can be viewed
as a brush of different length and density23.

We used the molecular dynamics package HOOMD-Blue62–64

to simulate N = 105 monodisperse active particles for a sim-
ulation time interval of τ = 300τr ensuring that steady state
had been reached. We varied: system area fraction (φ =

0.45,0.55,0.65), particle activity (Pe = 50− 500 in steps of 50),
and the potential well depth resulting in different softness (ε =

1,10−1,10−2,10−3,10−4kBT ). We focus on systems that phase sep-
arate via MIPS into dense and dilute phases (see fig. 4). To over-
come kinetic limitations of cluster formation, we instantiate small
circular clusters (discussed in detail in the SI, see section §3). We
note that the steady-state composition of a cluster is independent
of its initial seeded size (see SI, fig. S1 and S2). As in the analyti-
cal approach, the steady-state dense phase is comprised of a bulk
domain in the interior and an interface that separates the bulk
dense phase from the gas phase.

4 Results

4.1 Properties of the dense phase: gas, bulk, interface

The dense phase cluster is highly dynamic, i.e. it frequently
changes size (see SI, fig. S3-6) and shape (see SI, fig. S7-10), with
some parts breaking up into smaller clusters and merging back,
similar to references [ 20,22]. As the activity is increased the fluc-
tuations of the interface are decreased leading to a more stable
shape (see SI, fig. S7). In the analysis that follows, we are con-
cerned with the dynamics of the largest length-scale/wavelengths
(i.e. cluster radius) and sufficiently large activities that lead to
crystallization of the dense phase. Specifically, we are not con-
cerned with interface fluctuations at shorter wavelengths (the
amplitude of these fluctuations is less than 1% of the cluster ra-
dius, see SI, fig. S7-10).

How do the properties of the dense phase, such as cluster size
and pressure, change when the particles become softer? Levis et
al. computationally calculated the phase diagram for ABPs at vari-

Fig. 4 (a) Corresponding local area fraction of the dense phase from
simulation data is computed as a local bin and shows sound agreement
with analytical approach. The dense phase becomes more densely packed
(and, in turn, the gas phase becomes more dilute) via increasing particle
softness or activity (at constant softness). (b) Analytically computed
cluster radius from eq. 15 at system area fraction of φ = 0.65 with simu-
lations at various softness (color). Strong agreement between the simu-
lation values and the analytical results are seen for all other system area
fractions tested (φ = 0.45 and φ = 0.55).
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Fig. 5 Orientational alignment towards the cluster’s center of mass (α(r) = −p̂(r) · r > 0) (a-c), local area fraction (d-f), and interparticle pressure
(g-i) calculated using the virial formulation of pressure (eq. 16). Data is radially binned and measured over twenty 18◦ conical surfaces per time step.
As evident in the x-axis, the radial location (||r||) is normalized by the measured cluster radius (rc) of each conical surface, and all data is averaged
over time at steady-state (for at least 50τr) and all conical surfaces (twenty conical surfaces per time step). Similarly, the measured local area fraction
and pressure are normalized by dividing through by their analytically predicted values (eqs. 8 and 17), respectively. Data shows the effect of both
system area fraction (a,d,g, see legend), softness (b,e,h, see legend), and activity (c.f.i, see legend). For each column, the parameter being varied is
in the above legend while the other two system parameters are held constant (Pe = 350, ε = 1.0, or φ = 0.65).

ous particle softnesses and found a softness-dependent binodal32.
They showed that soft particles undergo MIPS at a smaller criti-
cal cluster size than hard particles; however, due to a lower nu-
cleation barrier, softer clusters could more easily destabilize and
break apart, necessitating larger activities or area fractions for
sustained phase separation32. Here, we explore a broader range
of repulsive strengths (ε), activities (Pe) and system area frac-
tions (φ) and compare both with our analytical predictions and
the observations of Levis et al.32.

Our simulation results, in agreement with Levis et al32, show
that softer particles pack more densely and therefore shift the
dense phase of the binodal to higher densities at constant activity,
(fig. 2). At fixed softness, increasing particle activity also makes
the dense phase denser and reduces the lattice spacing (fig. 2).
Increasing the system area fraction (φ) at values greater than the
critical area fraction has negligible influence on the area fraction
of the dense phase, as we see nearly perfect overlap of points with

constant activity (Pe) and softness (ε) (fig. 4a). Note that the the-
oretical predictions of φd from eq. 8 are in good agreement with
the simulation results, as we would expect given that the lattice
spacing, a, was computed accurately in our theoretical model (see
fig. 2).

The cluster radius at each softness changes little with activity,
see fig. 4b, and remains roughly unchanged with system concen-
tration at high activities (Pe > 150), see SI, fig. S11 for rc vs Pe
of φ = 0.45 and 0.55. The theoretical predictions of cluster radius
given by eq. 15 are in good agreement with simulation results
(fig. 4b).

Our analysis of simulations has thus far treated the cluster as
a single entity. But as mentioned earlier, it is useful to distin-
guish two regions within the dense phase: a bulk and an inter-
face. We define the interface as the region, where particles are
orientationally aligned (pointing towards the center of mass of
the cluster), and the bulk as everywhere else in the dense phase
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(where there is no orientational alignment), see Fig.5 (a-c). The
interface width shows a weak dependence on softness (Fig.5(e))
but is mostly found to be constant over all activities (see SI, fig.
S12), area fractions (see SI, fig. S12), and simulation box sizes
(see SI, fig. S13) signifying that this measured interface width is
an intrinsic quantity of the system. We will approximate the re-
gions as a function of the distance from the center of mass (||r||):
bulk ||r||/rc ≈ [0,0.8] and interface ||r||/rc ≈ [0.8,1.0].

The bulk maintains a constant average local area fraction,
φ̄local, approximately equal to that predicted by our theory, φtheory
in eq. 8, see fig. 5d-f. Therefore, the area fraction is nearly con-
stant for the majority of the dense phase, supporting the assump-
tion of a constant lattice spacing for our analytical approach.
In addition, the bulk phase exhibits no orientational alignment,
α(r) = −p̂(r) · r ≈ 0, of the body forces, p̂, towards the cluster’s
center of mass, r, where r = ||r||, see fig. 5a-c. Utilizing the virial
formulation of pressure, we can calculate the interparticle pres-
sure (eq. 16) where we see a non-spatially varying pressure expe-
rienced throughout the bulk (fig. 5g-i), signifying an equal degree
of compression among bulk particles. Similarly, as softness (fig. 5)
or activity (fig. 5) increases, so too does the interparticle pressure
within the bulk, enabling a greater degree of particle compression
(a trend that is captured, through a, in our analytical formulation
of pressure as well, eq. 17).

However, still within the dense phase cluster, we find a thin sur-
face layer where the local area fraction begins to decrease from
the bulk phase area fraction, φtheory, until reaching that of the
dilute phase, φg, see fig. 5d-f. The decreasing area fraction at
the interface results in a drop in the interparticle pressure (as
particles are now at distance greater than a from one another,
fig. 5g-i).This monotonically decreasing area fraction between
two phases resembles the density profiles of typical equilibrium
liquid-gas interfaces37–39, thus we will henceforth label this sur-
face layer as the dense-dilute interface. The body axes of parti-
cles becomes aligned within the interface (pointing towards the
interior of the dense phase, fig. 5a-c). As the body-axis simply
dictates the direction of a particle’s active force, we find that the
interface exhibits an inwardly aligned active force density (fig. 5a-
c), compressing the bulk particles and giving rise to the opposing,
outward interparticle pressure from the bulk of the dense phase.
We claim this region of both sharply decreasing area fraction and
large inwards orientational alignment is a thin dense-dilute inter-
face layer of width h (see SI, fig. S12), motivating us to create
a mathematical definition to accurately identify the start (rc−h)
and end (rc) of the interface (discussed in detail in the SI, see
section §4).

4.2 Surface tension and momentum transport within dense-
dilute interface.

We showed in section § 2 that the pressure in the dense phase is
ΠP

d = 4
√

3Fa

a . Also, we know that the pressure in the dilute gas
phase is negligible compared to the pressure in the dense phase.
The transition from dense to dilute phase properties –including
pressure, surface tension, and particle alignment– occur through
a thin, dense-dilute interface. Force balance dictates that the

jump in force per unit area (traction) across the interface must
balance against the force induced by the interface itself. Assum-
ing that the interfacial forces are entirely due to surface tension,
the equation describing this force balance reduces to

∆F̂I = 2γκmn̂+(I− n̂n̂) ·∇γ, (22)

where ∆F̂I = F̂d − F̂g is the jump in force per unit area across
the interface, n̂ is the normal unit vector of the surface point-
ing outwards that is separating the dense and dilute phases, γ

is the surface tension and κm = 1/rc is the mean curvature of the
interface. The first and second terms on the right hand side repre-
sents the force jumps along the normal and tangential directions
of the surface, respectively. Note that the tangential component
becomes negligible, compared to the normal direction, in our
system. The ABP model predicts that phase separated domains
coarsen with time, ultimately leading to a single cluster that scales
with the dimension of the simulation box, rc = κ−1

m ∼
√

N, as de-
rived in eq. 19. On first examination, one may think of using
Young-Laplace equation, which is the form eq. 22 takes in sta-
tionary drops, to determine the surface tension of the active drop
as γactive =

(
Πd−Πg

)
rc/2, (discussed in detail in the SI, see sec-

tion §5). Here, we assume that the gas pressure is negligible and
so γactive ≈ Πdrc/2. Substituting eqs. 17-19 to compute a positive
surface tension at high activities, Pe� 1:

γactive = 4

√
3
√

3
2π

√
NFa.

The computed surface tension through this formulation is inde-
pendent of, ε, φ and Pe. Within this formulation, the predicted
active surface tension (γactive) is linearly increasing with the di-
mensions of the simulation box (

√
N) without limit. However,

the surface tension should be an intrinsic property of the system
and, thus, must be independent of system size.

A closer examination of this formulation reveals why it can-
not be used to measure surface tension. First, note that in this
treatment the surface forces arise from the the net inward ori-
entation of active particles normal to the cluster boundary (see
fig. 6), leading to a pressure jump across the surface. This is true
whether the interface is flat or curved. In contrast, in mechanical
and thermodynamic formulations of the surface tension for gas-
liquid interfaces of passive systems49, we have the pressure co-
existance condition i.e. the pressures in the gas and liquid phase
are equal. The surface tension arises due to tangential interfacial
forces along the boundary that resist the increase in the surface
area50. In other words, the net alignment of particles at the in-
terface of ABP clusters are not acting to minimize surface area;
instead they arise in response to normal stress gradients between
two phases, including pressure gradients.

To resolve these inconsistencies, we separate this alignment
term from the calculations of surface tension and explicitly in-
clude it in the momentum equation (eq. 22) as a body force,
n(r)Fap̂(r), while still maintaining the term modeling force jump
due to surface tension, ∆F̂I. Given that the particles within the
dense phase move as a rigid body with no relative motion with
respect to the fluid, we can neglect the hydrodynamic forces and
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stresses. In this limit the momentum equation in a liquid-gas in-
terface reduces to

n(r)Fap̂(r)+ fI−∇Π = 0, (23)

where Π is the macroscopically consistent (true) pressure of the
system. Note that we have rewritten the interfacial force (∆F̂I) as
a body force in the momentum equation: fI = ∆F̂Iδ (x−Γ), where
δ (x−Γ) is the Dirac delta function ensuring the surface tension
term is localized to the interface region, defined by Γ. †

Assuming that the thickness of the interface is much smaller
than the radius of the dense phase, h/rc � 1, and that surface
tension is spatially constant, the momentum equation in the ra-
dial direction across the interface simplifies to

−n(r)Fa
α(r)+2γκmδ (r− rI)−

dΠ

dr
= 0, (24)

where r = 0 and r = h specify the boundaries of the interface re-
siding at the end of the bulk phase and at the cluster radius, re-
spectively, 0 < rI < h is the approximate position of the interface;
and α(r) = −p̂(r) · r > 0 is the projection of the active force in
the radial direction (see fig. 5a-c), signifying the net orientational
alignment towards the cluster’s center of mass.

Multiplying both sides of eq. 24 by dr and integrating across the
interface gives an expression for computing surface tension:

γtrue =
1

2κm

(∫ h

0
n(r)Fa

α(r)dr−Πd

)
(25)

Fig. 7 shows the computed value of surface tension from eq. 25,
utilizing simulation data for α(r) (fig. 5a-c), n(r) (fig. 5d-f), Πd
(total interparticle pressure calculated by eq. 17 in fig. 8), and h
(see SI, fig. S12). Note that the surface tension is made dimen-
sionless through dividing by γactive = rcΠd/2. As it can be seen,
the computed surface tension fluctuates around zero without any
apparent dependency on softness, activity, and area fraction (dis-
cussed in detail in the SI, see section §4). This finding is in line
with those of Omar et al. who also found the surface tension to be
nearly zero58. In addition, we find the surface tension is approx-
imately independent of simulation box size (See SI, fig. S13).

Now that we have established that interfacial forces are negli-
gible compared to gradients of stress normal to the boundary, we
can substitute γtrue ≈ 0 into eq. 25 and compute the pressure in
the dense phase by evaluating the following integral:

Πd = Fa
∫ h

0
n(r)α(r)dr (26)

where the values of α(r) (fig. 5a-c) and n(r) (fig. 5d-f) are pro-
vided by simulations.

† Note that while we have presented the interface in the continuum limit as a sur-
face with no volume (line in 2D), in simulations these variations in properties occur
over an interface with finite thickness. This is, in practice, similar to approximat-
ing Dirac delta function with a smooth and differentiable function with finite, yet
small, spreading length, as done in numerical techniques such as immersed bound-
ary method 65. The alignment term n(r)Fap̂(r) is analogous to the gravitational body
force that appear in the formulation of the pendant drop experiment for determining
surface tension 66.

Fig. 6 Steady-state ABP system with Pe = 500, φ = 0.55, and ε = 1.0
corresponding to a simulation frame at τ = 186τr. The bulk (green),
interface (yellow), and dilute (red) phases are labeled according to the
average interface width for the system, h≈ 25. Particles are binned and
the average orientation per bin is plotted as the arrows. It is evident that
there is essentially zero alignment in the bulk while the interface is highly
aligned towards the interior of the cluster. The orientation of the gas is
highly random as particles are freely moving with minimal interactions.
Our observations for the general alignment trends are in agreement with
fig. 5a-c.

Having discussed both the virial formulation for calculating the
interparticle pressure within the bulk dense phase and the con-
tinuum formulation for calculating the pressure arising from the
aligned body forces at the interface, we proceed by calculating
the total pressure experienced by each region in addition to the
resulting pressure equivalence. We start by measuring the total
interparticle pressure experienced by each particle in the bulk
dense phase (Hollow circles in fig. 8) from its nearest neighbors
using the virial formulation of pressure (eq. 16). The total in-
terparticle within the bulk dense phase agrees excellently with
our analytical predictions (dashed line in fig. 8), which are lin-
early increasing with activity and have a slope that increases with
softer particles, signifying the greater degree of compression for
softer particles in the bulk dense phase. Secondly, using data
from fig. 5a-f and eq. 26, we obtain the total pressure from the
aligned body-forces in the interface (Plus markers in fig. 8), which
we found to be approximately equal to the interparticle pressure
of the bulk dense phase (Hollow circles in fig. 8) at every activ-
ity and softness. As the pressure of the gas phase is negligible,
this finding satisfies a steady-state force balance: the aligned ac-
tive body-forces at the cluster interface are offset by compressing
the particles in the cluster interior to an equilibrium separation,
providing an outward interparticle pressure which balances this
directed active body-force.

The agreement of interparticle pressure with the true pressure
of the system in the macroscopic scale strongly supports the ar-

10 | 1–15Journal Name, [year], [vol.],

Page 10 of 15Soft Matter



Fig. 7 The non-dimensional surface tension, (2γtrue)/(Πdrc), calculated
via eq. 25 using values for α(r) (fig. 5a-c), n(r) (fig. 5d-f), rc (fig. 4b),
and Πd (Hollow circles from fig. 8) measured from simulation. At all
activities, γtrue remains approximately constant near zero with a slight
bias in the positive direction (Discussed in detail in the SI, §6). The
inset shows the normalized surface tensions averaged over softness (ε)
and area fraction (φ) at each activity with error bars corresponding to a
single standard deviation. In the inset, all surface tension measurements
(colored) are fitted (dashed line) such that we do not bias low activity
where fewer systems undergo MIPS. The line of best fit is found to
be approximately constant near zero while being encompassed in the
standard deviation at most activities.

gument given by Omar et al. that the swim pressure, introduced
in earlier studies by Takatori and coauthors67, should not be in-
cluded in point-wise definition of the true stress in the contin-
uum scale and the true stress can be computed using the same
processes as in passive systems. Of course, particle activity does
change the stress indirectly through generating a body force due
to the net alignment of particles and density gradients across the
interface.

Next, we ask what determines the thickness of the dense-dilute
interface. Our simulations at the same φ , ε and Pe at different
simulation box sizes show that, unlike the cluster radius, the in-
terface thickness, h, remains unchanged. Previous studies show
that the thickness of the boundary layer that forms by accumula-
tion of ABPs near the walls scales inversely with Péclet number56.
In contrast, the interface thickness in our case is independent of
Pe, as shown in fig. 9.

What, then, determines the interface thickness? Moving radi-
ally outwards from the center of mass of the dense phase, the
start of the dense-dilute interface is marked by a decrease in the
pressure (fig. 5g-i) and density (fig. 5d-f), and an increase in
the alignment, α (fig. 5a-c); whereas, the end of the interface
is marked by the pressure dropping to nearly zero and α under-
going a sharp decrease from its maximum to match the dilute

Fig. 8 Interparticle pressure computed from the analytical pair-force
approach (dashed lines, eq. 17) at distinct particle softness (color) and
averaged over the steady state lasting for τ ≥ 50τr. Simulation data
calculated via the microscopic approach (eq. 16, hollow circles) at
φ = 0.65 demonstrates good fit for stiff interparticle potential. The quality
of fit decays with decreasing stiffness. Simulation data calculated via
the continuum approach (eq. 26, plus markers) at φ = 0.65 show good
agreement with both eq. 17 and eq. 16, demonstrating the possibility to
accurately calculate pressure using either a microscopic or a continuum-
based approach. In addition, increasing particle activity and softness
correspond to smaller clusters (see fig. 4b) with a higher interparticle
pressure.

pressure. Following these observations, we rewrite eq. 25, using
the following change of variables:

φ̃ = φ/φd , α̃ = α/αmax, r̃ = r/h,

where αmax≈ 0.45 is the maximum value of α(r) from simulations
(see SI, fig. S15). Applying these change of variables, dropping
the surface tension contribution and integrating eq. 25 across the
interface gives an expression for the interface thickness in terms
of the pressure in the dense phase:

hcont =

( √
3

2αmax

)(
Πd
Fa

)
a2I (27)

where the term, hcont (see SI, fig. S16), denotes calculation of the
interface thickness using the momentum equation in continuum
length-scale, and

I=

(∫ 1

0
φ̃(r̃)α̃(r̃)dr̃

)−1
.

Given that the integral term I only contains scaled variables,
φ̃ < 1, α̃ < 1, we expect it to be independent of Pe, ε and φ . The
numerical evaluation of this integral using simulation results (see
SI, fig. S17) confirms this assumption where I ≈ 3.0 for all Pe, ε,
and φ . Similar to the surface tension (γtrue), the interface width
(hcont) is found to be approximately independent of the simula-
tion box size (see SI, fig. S18).
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Fig. 9 The ratio (h/hcont) of the interface width (h, see SI fig. S12)
calculated via the method described in section §4.1 and the interface
width (hcont, see SI fig. S16) calculated through the continuum method
(eq. 27). At all activities, h is less than hcont by at most ≈ 15%. The
inset shows the width of the interface measured via simulation (h). When
considering the dimensionless interface thickness (h/a. See SI, fig. S12),
where a decreases with both activity and softness (see fig. 2), the in-
terface width consists of more particles for both more active systems at
constant particle stiffness (ε) and softer particle systems at constant ac-
tivity (Pe). The system area fraction (φ) has a negligible influence on
the interface width, similar to its role in the surface tension.

Fig. 9 shows the ratio of the interface thickness measured from
simulation, h as detailed in section §3, to the calculated value of
interface thickness from eq. 27, hcont, vs Pe for different values
of ε and φ . As can be seen, the ratio remains close to 0.9 for
all values of Pe, φ and ε. The close agreement between the con-
tinuum calculations and simulation results is yet another observa-
tion in agreement with formulating the pointwise true pressure in
the continuum scale as the pressure that arises from interparticle
forces and negligible surface forces.

5 Conclusions
A lot of studies have focused solely on the process of phase separa-
tion but not the resulting steady-state dense phase. Therefore, in
this paper, we characterize and predict the properties of the dense
phase itself, such as the area fraction, lattice spacing, and size. To
do so, we developed a simple, microscopic analytical approach
which relies on (1) the approximation of an HCP dense phase
and (2) that each particle interacts with each of its neighbors
with an average pair force. The microscopic, analytical approach
demonstrates reasonable accuracy in reproducing the trends in
simulated data for area fraction of the dense and dilute phases
and size of the dense phase. These results generalize to ABP sys-
tems at any particle softness, activity, simulation box size, or area
fraction. Though we utilized the WCA potential to determine in-
terparticle interactions, we fully expect our construction to apply

to other short-range repulsive potentials. An experimental valida-
tion of these results is certainly viable. We expect that similar syn-
thetic principles to induce phoresis in hard-sphere colloids, e.g.
decomposition of oxygen in a hydrogen peroxide solution at the
particle surface68, can be extended to soft particles, such as poly-
mer functionalized colloids. Alternatively, motility can be induced
via polymer chains as is evidenced within cells69 and which has
caused the theoretical examination of phoretic polymer chains70.

Though much progress has been made in understanding how
this nonequilibrium phase separation gives rise to a dynamic
steady-state, one looming question remains: how does the pres-
ence of activity influence stress/force generation in the contin-
uum scale and how are these stresses/forces linked to the col-
lective behavior of the system? Many studies have tried to ex-
plain this nonequilibrium phenomenon from a thermodynamic
perspective via a mechanical equation of state; however, these
theories give disagreeing results for important physical proper-
ties, such as surface tension. The main difference between these
studies is whether activity gives rise to a stress that acts as either
a spatially uniform state variable (the swim pressure42,67,71,72) or
a spatially varying body force density57,58. In the former group of
studies the stress is defined as a volume-averaged quantity within
the container such that there are no spatial gradients, and it is
shown, through theory and simulation, that the activity induces
an extra term referred to as swim pressure67. Upon utilizing the
swim pressure to describe the system, one can accurately predict
many emergent, macroscopic properties, such as determining the
onset of MIPS32,73 and explaining how active pressure being non-
monotonic with activity and area fraction gives rise to a phase
transition32,67,73 .

However, problems arise when we seek answers to localized
phenomena. Omar et al. recently showed that including the swim
pressure in the description of total pressure results in extremely
negative values of surface tension36,52–55, in contrast to passive
systems. Extension of the statistical mechanics derived for pas-
sive systems to its active counterparts is reliant on the system be-
ing homogeneous with no concentration or alignment gradients.
However, our active systems demonstrate a monotonically de-
creasing area fraction at the highly aligned dense-dilute interface,
which gives rise to this negative surface tension term when treat-
ing the volume-averaged swim pressure as the active analogue to
the osmotic pressure. Though a volume-averaged treatment of
pressure fails to explain surface tension, it does work on a macro-
scopic scale where the volume-averaged body forces cancel out,
giving rise to the swim pressure in the momentum equation.

Therefore, accurate characterization of localized phenomena,
like surface tension, requires a point-wise treatment of pressure
as we cannot define a swim pressure at an interface where there
is no volume-averaging involved. As a result, we no longer treat
activity’s contribution to pressure as a spatially independent vari-
able but instead as a spatially varying body force. Activity pro-
duces aligned body forces acting on the boundary around the con-
tainer or between phases, not a stress, which is reserved for that
as defined in a passive system in order for our definition to always
be correct. By always, we mean that though a volume-averaged
approach (utilized commonly in traditional, equilibrium thermo-
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dynamics) works as an exception47 for determining macroscopic
properties in our ABP systems, a point-wise approach to pressure,
specifically by treating activity as a body force to account for gra-
dients in density and alignment at surfaces, satisfies a mechanical
force balance on both the microscopic and macroscopic scale, en-
abling us to explain and predict emergent behavior. Omar et al.
showed that if only the stress due to passive forces in ABP sys-
tems are considered in the definition of pressure while activity is
treated separately as a spatially varying body-force density, the
predicted surface tension, which relies on gradients of properties
across the interface49, becomes negligible.

The results presented here confirm that of Omar et al., demon-
strating that the point-wise mechanical effect of activity is to gen-
erate the gradients in concentration and alignment of particles,
resulting in a body force (not stress), α(r)n(r)Fa, in the contin-
uum level. Using the virial formulation of pressure, we have de-
rived an analytical expression for the interparticle pressure in the
bulk of the dense phase that agrees strongly with simulations. We
also derived a second, continuum approach that utilizes the radial
alignment, radial area fraction, and dense phase pressure from
simulation to calculate the stress from aligned body forces at the
interface, which approximately equals the interparticle pressure
of the dense phase. As a result, the surface tension is approxi-
mately equal to zero for all softnesses, activities, area fractions,
and simulation box size, demonstrating how the surface tension
is an intrinsic property of the system. As such, we similarly con-
firmed that the interface width was an intrinsic quantity of the
system, as similarly predicted by a local free-energy approach in
equilibrium liquid-vapour interfaces74–77, with both the analyt-
ical interface width and that measured via simulation agreeing
within 10% for all activities, softnesses, area fractions, and sys-
tem box sizes.

While our results demonstrate the complex behavior that is
accessible to monodisperse active mixtures of varying stiffness,
the work presented here is only the first step. A number of in-
teresting future directions are evident that will help us further
understand the mechanism behind nonequilibrium steady states,
namely those characterizing the dense-dilute interface. Although
we found surface tension plays a negligible role in mechanically
maintaining the steady state, it could play a role in other im-
portant physical properties, such as controlling fluctuations and
particle flows at the dense phase surface.

If the interface is disturbed by an external force, there will be a
local displacement of interfacial particles in the immediate vicin-
ity that continues to travel tangentially across the interface while
decaying in the process, like a wave78. These surface fluctua-
tions give rise to long-range correlations in density across the in-
terface, which are consistent with a description of the surface in
terms of capillary waves that are thermally excited against sur-
face tension or an external force79, enabling us to characterize
the fluctuations similarly80 and understand their role in stability,
like cascading, avalanche events20,81. Surface tension could also
mitigate long-term surface instabilities through surface flows in
ABP systems as seen in other liquid-gas interfaces82. In ABP sys-
tems, curvature-dependent surface tension drives sustained local
tangential motion of particles on either side of the interface, sug-

gesting a redirection of particles to heal local fluctuations and pro-
mote stability54, potentially maintaining the aligned body forces
at interface that stabilizes the cluster. In addition, many other
interfacial properties of ABP systems have been connected to that
of equilibrium phases60,83–87, necessitating deeper study of the
interface and surface tension’s role in mechanical stability of non-
equilibrium steady states.
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