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On the relationship between cutting and tearing in soft
elastic solids†

Bingyang Zhanga and Shelby B. Hutchens∗a

Unique observations of cutting energy in silicone elastomers motivate a picture of soft fracture that
qualitatively and quantitatively links far-field tearing with push cutting for the first time. For blades of
decreasing tip radii, the cutting energy decreases until it reaches a plateau that suggests a threshold
for failure. A super-molecular damage zone, necessary for new surface creation, is defined using the
tip radius at the onset of this threshold. Modifying the classic Lake-Thomas theory, in which failure
occurs within a molecular plane, to this super-molecular zone provides order-of-magnitude agreement
with the cutting energy threshold. Together, the threshold fracture energy and damage length
scale define criteria for failure that, when implemented in finite element simulation, quantitatively
reproduce the increase in cutting energy with increasing blade radius outside of the plateau. The
rate of increase depends on the constitutive response of the material, with more neo-Hookean solids
requiring a larger failure force per incremental increase in blade radius as observed experimentally.
This combination of a geometry-independent failure threshold (from the cutting energy plateau) and
a need to account for the role of material deformability in the stress concentration found at the crack
tip (from the rate of cutting energy increase with blade radius) align with the discovery of a new
dimensionless group. This new parameter proportionally maps cutting energy to the energy required
to tear a sample under far-field loading conditions by using ultimate properties obtained in uniaxial
tension.

1 Introduction
Measurement of a material’s fracture energy aims to provide a
universal window into its failure behavior under a wide range of
loading conditions. Such universality is true for many brittle or
elastic-plastic materials that exhibit small elastic deformations. In
contrast, soft solids’ ability to undergo large deformations and ex-
hibit a wide variety of nonlinearities, internal damage accumula-
tion mechanisms, and highly time-dependent responses can make
generalizations of fracture energy measured under one condition
inapplicable to another. This is true of the comparison between
cutting and tearing.

While modelers and experimentalists alike have often assumed
directly or indirectly that a strain energy release rate measured
from cutting tests directly quantifies that which would be mea-
sured in tearing, this assumption does not hold for elastomeric
materials.1–3 Unless the radius of the blade is sufficiently small,
even measurements obtained during cutting will vary with the tip
radius of the cutting implement.4 A similar behavior for blade
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angle may exist,5,6 though it is as yet unexplored. Here, we
document the discrepancy between cutting and tearing energy
(Fig. 1a) for highly elastic materials using push-cutting energy
determined via a Y-shaped test geometry1,4 that avoids friction
and allows for steady-state crack propagation (Fig. 1b). Cut-
ting, in which a small crack tip radius is dictated by the blade
geometry, differs from pure shear tearing, in which crack blunt-
ing occurs. However, both geometries are predominantly Mode
I and, as we will show, exhibit a similar hierarchy of the length
scales that characterize their response (Fig. 1c-e). In soft elastic
materials, the onset of failure is regulated by both a material’s
deformability, which accommodates the loading conditions, and
its local, intrinsic threshold for rupture.7–10 Observations of the
blade-radius-dependence of cutting provides information on both
of these characteristics. At low radii, the cutting energy reaches
a lower limit that defines a threshold, highly-deformed volume
required for new surface creation. At larger radii, we use these
failure criteria, combined with material constitutive response to
quantitatively predict the sensitivity of cutting energy to increases
in radius. Additionally, both deformability and failure onset play
a role in a new dimensionless parameter discovered via scaling
analysis. This parameter is based on ultimate properties mea-
sured under uniaxial tension and enables the direct, proportional
mapping of cutting energy to tearing energy in the highly elastic,
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Fig. 1 Y-shaped cutting versus pure-shear tearing. (a) Failure energies determined in cutting G∗cut do not scale proportionally with those measuring in
tearing Gtear. The dotted line illustrates proportionality, G∗cut = Gtear. Inset: When a dimensionless equivalency parameter is multiplied by Gtear, failure
energies collapse to proportional relationship. (b) A close-up image of the cut region showing the length scale of a Y-shaped sample relative to the
blade. (c) The region around the crack tip in cutting is divided into three zones with length scales corresponding to the onset of nonlinear elasticity
`e, onset of dissipation effects `d , and the threshold required for surface creation `∗. These zones satisfy small-scale yield for the macroscopic cutting
sample of size L shown in (d). (e) `e and `d are significantly larger under far-field tearing for a sample of equal size L.

minimally hysteretic silicones presented here (Fig. 1a, inset).

Elastomers exhibiting a larger viscous response and/or
hysteresis-producing damage mechanisms (e.g., Mullins effect11

or double-network structure12) may not be described without fur-
ther modification of the approach we employ. This may be due
to the fact the measured fracture toughness G of a material is
thought to be comprised of both a threshold value associated with
new surface creation and a dissipation component in the bulk,
G = Gt + Gd , respectively. The dissipation energy contribution
can be amplified in soft materials by crack tip blunting,13 which
gives rise to larger highly deformed volumes during tearing.8,9

As we will show, the highly deformed volume in cutting is signif-
icantly smaller and subject to different loading conditions. When
the energy dissipated within that zone is large (due to viscous
interactions or damage accumulation), it contributes markedly to
the measured failure energy. When energy dissipation is minimal,
as is the case for the materials tested here, we find that tearing
and cutting may be related. Understanding the contribution of
the former viscous and dissipative effects likely requires stress-
gradient-dependent damage and viscosity models that are outside
the purview of the current work.

Although dissipative effects are minimal, a dissipation zone still
exists (illustrated schematically in Fig. 1c-e). The length scales
defining this zone and the onset of nonlinearity under far-field
loading conditions (i.e., tearing) have been recently described by
Long, et al.9. The interplay of these length scales are found to
characterize the type of failure typically observed in elastomers,
namely soft, ductile failure. The length scale for the onset of
material nonlinearity, also known as the elastocohesive length,8

scales as `e ∼ Γ/E, where Γ is the toughness of the material and
E is the Young’s modulus. In soft failure, `e is larger than the
fractocohesive length, the scale over which dissipative processes

occur `d , defined as Γ/w∗, where w∗ is the critical energy per unit
volume for material failure.9,10,14,15* Γ appears in both length
scales and is typically estimated from experimental measurement
by equating it with the critical energy release rate G at the onset of
fracture. This approximation is only realistic for highly elastic ma-
terials whose stress concentration does not change during prop-
agation,12 an assumption we make throughout the manuscript
in interpreting the experimentally-measured tearing energy. In
such cases, Γ ≈ G ≈ Gt as well, which means that the observed
or effective strain energy release rate does not include sizeable
contributions from dissipative effects, i.e., energetic contributions
away from the crack tip that are not directly involved in surface
creation.

This paper is organized as follows. We begin with the meth-
ods used to gather cutting, tearing, and uniaxial ultimate tensile
property data followed by the results of these tests. Next, we use
finite element analysis to verify that soft, ductile failure charac-
terizes cutting-induced fracture, just as in tearing for these ma-
terials. The similarity of these failure modes justifies the search
for a dimensionless cutting-tearing equivalency parameter, which
we obtain via scaling analysis. Next, we closely describe the
radius-dependence of cutting energy. First, Lake-Thomas theory
is modified to describe the plateau observed in the cutting energy
for sufficiently small blade radii. The modification, consisting of
a larger-than-molecular-plane damage zone, is implemented as
new failure criteria in finite elements. These criteria correctly pre-
dict the increase in apparent cutting energy when using blunted
blades. Finally, we discuss additional questions related to mi-

* Hypothetically, w∗ is quantifiable by determining the area under the force-
displacement curve up to catastrophic failure and dividing by the sample volume,
assuming a flaw-free sample.
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crostructural contributions to failure response raised by tests on
bimodal PDMS formulations.

2 Materials and Methods
2.1 Materials
We fabricate nine elastomer formulations: five commercially
available polydimethylsiloxane (PDMS)-based elastomers and
their variations, and five synthesized, end-linked networks hav-
ing either a unimodal or bimodal chain-length distribution.

Sylgard 184. Two silica-nanoparticle-filled PDMS composites
(Sylgard 184, Dow Corning) having different cross-link densities
are prepared by controlling the crosslink density. A pre-polymer
base to the curing agent ratio of 10:1 is used for both materials,
Syl-10:1 and Syl-d10:1), but the latter dilutes the network with
30 wt% linear non-reactive PDMS chains (350 cSt, Gelest, Inc.).
Details of fabrication are documented in previous work.4

Solaris. Two Solaris elastomers (Smooth-On, Inc.) with differ-
ing cross-link density are fabricated by mixing part A and part B
pre-polymer chains as received in 1:1 (Sol-1:1) and 4:1 (Sol-4:1)
ratios (w:w), followed by degassing (∼20 min), molding, and
curing at 70◦C for 1.5 h.

Unimodal. An end-linked unimodal PDMS network (UP-
DMS) combines vinyl-terminated PDMS chains (17200
g/mol, Gelest, Inc., DMS-V25R) and a silane cross-linker
(tetrakis(dimethylsiloxy)silane, Gelest, Inc., SIT7278.0) in a
stoichiometric ratio of 1:1.4 (Si-vinyl groups to Si-H groups)
using a centrifugal mixer (SpeedMixerTM) at 2000 rpm for 30 s.
Platinum-based catalyst (platinum-divinyltetramethyldisiloxane
complex in xylene, Gelest, Inc., SIP6831.2) diluted in toluene
(1:100, w:w) is added at 0.5 ppm of platinum (by weight) into
the mixture before mixing again at 1500 rpm for 30 s. The final
mixture is degassed for 1 min if necessary and cast into a mold.
The samples cure in approximately 2-3 h, then set overnight to
remove residual toluene.

Bimodal. The four end-linked bimodal PDMS networks are
fabricated following the formulations tabulated below. They
are labeled according to the corresponding molar concentra-
tion of short chains (ms): The silane cross-linker (Gelest, Inc.,

Table 1 Chemical compositions of bimodal PDMS networks

Material Ml (g/mol)∗ Ms (g/mol)∗ ωs (%)∗∗ ms (%)
BPDMS-80s 9400 500 18 81
BPDMS-90s 17200 500 20 90
BPDMS-95s 28000 500 25 95
BPDMS-98s 43000 500 34 98
* Molecular weight of long (short) chains
** Weight percentage of short chains

SIT7278.0) is added into and mixed with the vinyl-terminated
PDMS long chains (Gelest, Inc.) and short chains (Gelest, Inc.,
DMS-V03) in a stoichiometric ratio of 1:1.2 (Si-vinyl groups to
Si-H groups) in one pot using the centrifugal mixer at 2000 rpm
for 1 min. Toluene-diluted platinum catalyst (1:100, w:w) is then
added at 1 ppm of platinum (by weight) followed by mixing at
1500 rpm for 30 s and degassing for 1 min if needed. Samples

are then cast into a mold and cure overnight after a working time
of approximately 12 h.

2.2 Mechanical Characterization

Y-Shaped Cutting. The cutting fracture responses of the se-
lected elastomers are characterized using a Y-shaped geometry
detailed previously4. Fig. 2b illustrates Y-shaped cutting in which
two preloaded sample ‘legs’ are separated by a fixed angle, in-
troducing a crack-opening, tearing component while minimizing
the contact friction.1,4 An orthogonally-mounted razorblade cuts
the sample at a constant, controlled speed (10± 0.1 mm/min)
while the required cutting force is measured by a load cell (M7-
05, Mark-10TM, range: ± 2.5 N, resolution: 5× 10−4 N). Two
key improvements to the test geometry are: 1) The number of
low-friction pulleys is increased to four (Fig. S1, ESI†). The new
configuration of stringing enables a more stable cutting phase,
a wider adjustable range for the leg angle, and a longer maxi-
mum cutting distance; 2) The applied average pre-stretch is now
determined at a higher accuracy (λ̄ = 1.04± 0.01 for all materi-
als tested, unless otherwise stated) using a video extensometer.
Technical information and nomenclature for both commercially-
available and manually-blunted razorblades are listed in ESI†,
including tip radii measured via scanning electron microscopy
(SEM).

Pure-Shear Tearing Test. Tearing energies are determined us-
ing a pure-shear, single-notched tearing test. The detailed testing
procedures are documented elsewhere.4,16 In this manuscript, we
adopt a rectangular sample geometry (2 mm ×60 mm ×10 mm,
t×w×h) with a ∼ 10 mm pre-cut length. A strain rate ∼ 0.002 1/s
ensures quasi-static loading.

Constitutive Characterization. Uniaxial tension tests are per-
formed using ‘dogbone’-shaped samples following ASTM test
standards for elastomer tension (ASTM D412-16, die type C). The
samples are molded in a milled aluminum mold with polished sur-
faces to reduce superficial defects. Each sample is stretched quasi-
statically (strain rate ≈ 0.02 1/s) to the point of rupture. A load
cell (M7-10, Mark-10TM, range: ±50 N, resolution: 0.01 N) mea-
sures force while stretch is determined via a video extensometer
and fiducial markers (Fig. 2b).

3 Results
In Y-shaped cutting, the energy required to produce a steady-state
cutting response derives from the combination of an applied cut-
ting contribution C primarily due to the force on the blade fcut

and a tearing contribution T due to the combination of a finite
angle θ between the legs and the applied pre-load fpre that pre-
vents the sample from buckling. For a sample of thickness t, the
applied strain energy release rate is4

Gcut =
2 fpreλ̄

t
(1− cosθ)︸ ︷︷ ︸

T

+
fcutλ̄

t︸ ︷︷ ︸
C

, (1)

where λ̄ is the average pre-stretch in the sample legs. In the
limit of very low T , Gcut reaches a limit termed pure cutting.1
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Fig. 2 Y-shaped cutting and material constitutive responses (a) Gcut versus blade radius R obtained via Y-shaped cutting (open symbols, θ = 32◦±1◦,
λ̄ = 1.04± 0.01). All materials except UPDMS exhibit a plateau at low blade radii (dotted lines, G∗cut) that intersects with a power-law fit (dashed
lines) having exponent nstiff at larger blade radii. The intersection of these regimes occurs at length scale L∗ (closed symbols). UPDMS is fit with the
expression log10[a+ 10b(R−c)] where a, b, and c are fit constants and we take G∗cut = a. Colors match the legends in (c) and (d). Error bars are the
maximum and minimum values of three or more samples at each R. (b) Left: A schematic of the Y-shaped cutting geometry. fpre is applied on each of
the sample legs to maintain a constant leg angle, θ . Gcut is determined from the maximum fcut measured during steady-state cutting as shown by the
subplot of typical data (Sol-4:1). Right: A dog-bone sample with fiducial markers to measure the stretch is used for uniaxial tensile tests to failure.
The shear modulus is determined from a neo-Hookean fit to the stress-stretch curve (fit range: λ = 1−1.1). Ultimate properties wb, σb, and λb are
illustrated schematically. (c) Engineering uniaxial tension responses for all elastomers (solid lines). Each Arruda-Boyce fit shown (lighter dashed lines)
is averaged between three samples (d) Constitutive responses of four BPDMS samples exhibit identical elastic responses but different λb.

Table 2 Mechanical and failure characteristics of elastomers

Material µ [MPa] σb [MPa] λb wb [MPa] Gtear [J/m2] G∗cut [J/m2] L∗ [nm] nstiff ECT
Sol-4:1 0.39±0.03 4.01±0.78 2.05±0.07 1.08±0.22 182.7±23.9 144.7±2.4 136.3 0.34±0.06 0.127±0.005
Sol-1:1 0.13±0.02 1.37±0.07 2.90±0.05 0.86±0.04 50.8±9.6 127.7±3.3 128.4 0.53±0.11 0.316±0.028
Syl-10:1 0.37±0.05 3.33±0.78 1.97±0.04 0.90±0.17 165.9±9.0 132.9±3.4 137.1 0.34±0.04 0.141±0.019
Syl-d10:1 0.09±0.01 0.93±0.14 2.44±0.06 0.43±0.06 43.0±2.7 77.5±2.9 161.1 — 0.261±0.025
UPDMS 0.17±0.02 0.74±0.24 2.19±0.32 0.44±0.26 29.7±3.1 61.3±6.0 . 37.4 0.83±0.23 0.384±0.086
BPDMS-80s 0.44±0.01 0.76±0.09 1.50±0.05 0.18±0.04 33.2±7.2 39.0±3.3 117.0 — 0.163±0.013
BPDMS-90s 0.48±0.08 1.74±0.31 1.94±0.07 0.70±0.16 28.2±5.4 44.8±1.3 111.9 0.36±0.04 0.243±0.008
BPDMS-95s 0.47±0.07 1.14±0.11 1.70±0.03 0.35±0.05 37.2±4.0 39.4±1.2 112.4 0.19±0.04 0.190±0.001
BPDMS-98s 0.48±0.08 0.75±0.35 1.49±0.17 0.19±0.14 39.0±3.8 41.2±1.1 144.7 0.18±0.03 0.145±0.031
Error corresponds to the standard deviation of three or more samples.
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In this limit, T +C no longer depends on T (θ , λ̄ , or fpre); fur-
ther decrease in T is exactly balanced by an increase in the mea-
sured C. This suggests that an excess tearing contribution is no
longer being applied and that only the minimum energy required
to propagate a crack is being input. Unfortunately, the leg angle
and applied pre-load to reach this limit is practically challenging
as frictional effects can begin to play a role at low θ for very soft
solids.4 In this work, we use θ = 32◦±1◦ to approach pure cutting
while avoiding frictional effects for all materials tested. (See ESI†

for experimental T and C values.) Previously, we found θ ≈ 15◦

to be the pure cutting limit for Syl-10:1.4 However, Gcut for the
larger angle used here is only 1.4 times the pure cutting value.
Even for leg angles up to 48◦, Gcut is only twice the pure cut-
ting value.4 Thus, we believe that the measured cutting energy
we report here, though not exactly the pure cutting value for all
materials, likely differs from pure cutting by much less than an
order of magnitude. Such a difference will have little effect on
the discussion and interpretation to follow.

We characterize elastomer samples using the Y-shaped cutting
technique at varying blade radius and compare the response to
standard failure tests: pure shear tearing and uniaxial tension to
failure. In the cutting response, two cutting energy regimes ex-
ist for a broad range of silicone elastomers as shown in Fig. 2a,
a plateau at low blade radii and a material non-linearity gov-
erned response at larger blade radii. The materials include a uni-
modal network UPDMS (in which the chains between crosslinks
are nominally identical), bimodal networks BPDMS (in which two
chain lengths are used), and the multi-modal commercial net-
works Sylgard 184 and Solaris, with and without silica filler, re-
spectively. Previously, we observed that outside of the plateau,
the sensitivity of the cutting energy to an incremental increase in
blade radius correlated with the large-strain nonlinear response
of the material — a material with a stronger strain-stiffening ef-
fect exhibits less sensitivity for the same increment of the crack tip
radius.4 In the discussion to follow, we concretize this observation
by correlating the radius sensitivity to the material’s deformability
in Section 4.3.

At a sub-micron characteristic transition length scale, the cut-
ting energy reaches an observable plateau (L∗ . 100 nm) for all
of the silicone formulations we tested with the notable excep-
tion of the unimodal formulation UPDMS (Fig. 2a). In this lat-
ter case, it appears that the data trend toward a plateau, but
that the transition likely occurs at a blade radius lower than ex-
perimentally achievable. Presumably, the onset of this transi-
tion L∗ is smaller than the experimentally available blade radii
(< 37 nm).† We determine L∗ for all other materials using a two-
sample Kolmogorov-Smirnov test17 for data at differing blade
radii and then refine the estimate using the intersection of a
power law fit of the radius-sensitive region (exponent nstiff) with
the average value of the all the points that lie within the plateau.
We call this minimum required energy the threshold cutting en-
ergy G∗cut. L∗ is marked by a closed symbol in Fig. 2a.

† For UPDMS, we take L∗ as the smallest blade radius in Fig. 6.

3.1 Ultimate properties from uniaxial testing
Ultimate properties are functions of both the constitutive re-
sponse of a material and its failure onset. We measure these
properties for each silicone formulation using quasi-static uniax-
ial tensile tests performed on dogbone samples made in smoothed
molds (to minimize defects). The test geometry, definition of the
ultimate properties extracted, and stress-stretch results are given
in Figs. 2b-d. From their responses, we categorize the materials
into three types:‡

• High modulus elastomers with strong strain-stiffening ef-
fects, e.g., Syl-10:1 and Sol-4:1;

• Lower modulus elastomers with weaker or vanishing strain-
stiffening effect approaching a more neo-Hookean response,
e.g., Sol-1:1, Syl-d10:1, and UPDMS;

• Elastomers whose overall behavior approaches linear, e.g.,
all BPDMS’s.

Their constitutive response is captured by the approximated in-
compressible Arruda-Boyce model18,19 (ESI†). Ultimate tensile
failure is described by maximum strain energy density wb, stretch
at break λb, and stress at break σb. As Fig. 2b illustrates, wb is
obtained from the area under the true stress versus stretch curve.
λb is the maximum value of the recorded stretch. σb is the true
stress at break, σengλb. The shear modulus µ is determined for all
materials using the low stretch (1≤ λ ≤ 1.1) portion of the curve.
All data are provided in Table 2.

3.2 The stress concentration in cutting: determining length
scales

Upon first glance, it is clear that the stress field for a crack tip
propagating in cutting differs from that during tearing. The blade
contact imposes a crack tip geometry,4,20 which suppresses the
crack blunting typically observed in elastomer failure while also
introducing a compressive stress not found in tearing. Less ob-
vious, however, is the relationship between the length scales
thought to govern fracture. The relative size of these length scales
are associated with the type of failure that occurs; we are pri-
marily interested in the soft ductile behavior characterizing elas-
tomers under far field tearing. A larger nonlinear elastic zone
than dissipation zone, `e� `d ,9 defines this regime, with a crack
size c on the same order as or smaller than the dissipation zone
size, c . `d . The previously used scaling relations for these length
scales `d ∼Γ/w∗ and `e∼Γ/µ,8,9 are derived for asymptotic stress
fields in far-field tearing and not for cutting, and therefore cannot
be used directly. To determine whether the soft ductile regime still
applies in cutting, analogous relations must first be determined
for Y-shaped cutting.

Analysis of the asymptotic stress field at crack tips in highly
deformable solids has undergone significant recent develop-
ment,21–24 however in steady-state cutting or the related needle
insertion, asymptotic fields are still calculated using finite element
methods5,25–28 or in some cases experimentally.4,20,29 Like cracks

‡ Fig. S3 in ESI provides modulus normalized stress-stretch responses for comparison.
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under far-field loading, a stress concentration in cutting depends
on a given cutting geometry and material response. For the Y-
shaped geometry, we find that the stress concentration combines
both the tearing component from the pre-load and the contact
with the blade tip.

To compute the asymptotic stress field in cutting, we carried out
finite element analysis (FEA) of cutting indentation. We model
the Y-shaped experimental geometry in ABAQUS using a hypere-
lastic material (CPS8 quadrilateral plane stress elements) having
fit coefficients matched to those obtained from uniaxial deforma-
tion (Arruda-Boyce). A pre-load equal to the experimental condi-
tions is applied to the legs at an angle of 32◦ from the plane of
symmetry. A rigid analytical surface with the geometry of a sharp
razorblade indents with a force equal to that observed within the
plateau cutting regime for each material simulated (Sol-4:1, Sol-
1:1, and BPDMS-90s). (See ESI† for further technical detail.)

In the asymptotic limit near the crack tip, the stress field can
be approximated by the superposition of fields from a compres-
sive line load31 on a half-plane and a V-shaped notch under
tension.30 For a compressive line load on a neo-Hookean half-
plane (non-linear Flamant problem), σ11 ∼ 1/r and σ22 ∼−1/r.31

(This singularity changes little for a strain-stiffening, Arruda-
Boyce half space as evidenced by FE simulations, see ESI†.) For
a V-shaped notch in a hyperelastic solid, σ11 ∼ r(2θ/π−1) ∼ 1/r0.64

(θ = 32±1 degrees) and σ22 ∼
√

r.30 In Fig. 3 we plot these sin-
gularities using dash and dashdot lines. The magnitudes of the
crack opening stress, σ11, and longitudinal stress, σ22, are given
along a line through the sample’s plane of symmetry as a func-
tion of the distance from the crack tip, r as points which vary in
color based on the constitutive model used. High saturation and
low saturation colors correspond to tensile (+) and compressive
(−) stresses, respectively. In the direction of load application by
the blade, σ22, the superposition of the two analytical fields yields
σ22 ∼−1/r when taking the dominant asymptote as r→ 0. As an-
ticipated, σ22 is compressive rather than tensile as in far-field tear-
ing. In the crack opening direction, the σ11 ∼ 1/r0.64 asymptote
arising from the V-shaped notch dominates, with σ11 ∼ 1/r con-
tributing to a small upturn in the slope nearest the crack tip. On
average the power-law dependencies in the region r∼ 0.1−1 mm
from the crack tip for all three materials equal r−0.67±0.04, cer-
tainly weaker than the 1/r dependence for far-field tearing. A
similar, sub-inverse power-law dependence has been reported for
blade penetration into a hyperelastic substrate.5 For comparison,
the crack-opening (σ11) singularity for an initially parallel crack
in a nonlinear, highly deformable solid subjected to far-field load-
ing is 1/r,9,21,22, indicated by the lower gray dash-dotted line in
Fig. 3a.

The discrepancy between the stress concentration in Y-shaped
cutting and that observed in far-field tearing changes the length
scales `e and `d . Here, we numerically approximate both length
scales for Y-shaped cutting in a subset of our materials using our
finite element results in Fig. 4. We take as the threshold of the
onset of strong nonlinearity, the stretch λe at which the uniax-
ial stress becomes comparable to the Young’s modulus E for each
material (λe ∼ 2− 3 in all cases). In the crack opening direction
(Fig. 4a), this threshold λ11 = λe corresponds to a given distance

r = `e from the crack tip. The resultant `e values are listed in Ta-
ble 3. The specifics of these numerical estimates are unimportant,
however the `e obtained in this way (≈ 2−7 µm) are at least an
order of magnitude smaller than those estimated from the elasto-
cohesive length of far-field tearing, Gtear/E (`e,tear ≈ 20−154 µm)
(Table 3). Similarly, the dissipation length scale `d estimated for
far-field tearing using the strain energy density at break Gtear/wb

9

yields a value of `d,tear ∼ 40− 169 µm. We numerically approxi-
mate the corresponding dissipation length scale for Y-shaped cut-
ting by determining the distance from the crack tip r at which
the strain energy density at break is reached, w = wb (Fig. 4b).
We find that `d ≈ 1− 4 µm (Table 3), again at least an order of
magnitude less than that encountered in tearing. Both of these
dissipation values are upper bounds since wb measured experi-
mentally is likely reduced from the threshold energy density for
material failure w∗ due to the unavoidable presence of flaws in
the sample. Taking the blade radius R as the length scale defining
crack size c, it follows that despite the constraints on crack tip
deformation provided by the blade (resulting in less blunting),
silicone elastomers still behave as soft ductile materials under Y-
shaped cutting since `e > `d , and c . `d . The most significant dif-
ference between the two failure geometries is the greatly reduced
magnitude of both `e and `d during cutting, which suggests that
the Y-shaped geometry satisfies small-scale yield conditions even
when performed on highly deformable materials.

Table 3 Fracture relevant length scales for selected elastomers (unit:µm)

Material `e `e,tear `d `d,tear
Sol-4:1 3.0 153.8 1.1 168.7
Sol-1:1 6.9 131.5 4.2 58.8
BPDMS-90s 1.7 19.5 1.0 40.3

Outside of the asymptotic region near the crack tip, the stress-
state in the sample along the axes of symmetry behaves as antic-
ipated, with a few small anomalies attributed to the plane stress
constraint of the simulation. As their presence does not affect
the deformation and failure length scales near the crack tip, their
discussion is left to the ESI.†

4 Discussion
In this section we discuss the two primary characteristics govern-
ing macroscopic failure onset in highly elastic, elastomeric solids:
1) deformability and 2) local, threshold rupture criteria. The for-
mer is embodied by a material’s constitutive response and the
latter, ideally, by its rupture in the absence of flaws. We validate
this picture of soft fracture through the identification of a dimen-
sionless group that induces proportionality between cutting and
tearing. We also identify these failure characteristics in the radius
dependent response of Gcut presented in Fig. 2. At small radii, we
interpret the plateau as the minimum energy required to activate
a threshold damage zone with characteristic size `∗ ∼ L∗. Evi-
dence for this assertion is provided by agreement between this
minimum energy and the general framework originally postu-
lated by Lake & Thomas.32 For larger radii, we implement the
idea of a critical minimum damage zone in finite element simula-
tion, which leads to an increase in cutting energy with increasing
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radius that is quantitatively consistent with experimental obser-
vation. Qualitatively, more deformable, neo-Hookean-like mate-
rials require a larger cutting energy increment per given increase
in blade radius. Together this combination of observation and
modeling point provide a description of the interplay of factors
governing failure in elastic, highly deformable polymer networks.

4.1 Mapping Cutting and Tearing
Unlike tearing energy which can obtained from a variety of sam-
ple geometries,33 the characteristic energy required to cut a sam-
ple must be carefully chosen. The Y-shaped geometry minimizes
frictional effects and avoids failure initiation through steady-state
operation. Additionally, the cutting energy plateau in Fig. 2a sug-
gests that for sufficiently small radius, the stress increase from
sharper tools occurs within a volume that is too small to in-
clude the microstructural features necessary for fracture.34 Thus
within this plateau, the cutting energy G∗cut represents a charac-
teristic threshold cutting energy. For this reason, we compare the
threshold cutting energy value with the tearing energy taken from
pure shear tests Gtear. This comparison finds that in some cases,
threshold cutting energy is less than the tearing energy (below
the dashed line in Fig. 1a) and in others, it is greater (above
the dashed line in Fig. 1a). A closer look reveals that materi-
als exhibiting higher cutting energy exhibit a tendency toward a
neo-Hookean response (Fig. 2c). Those exhibiting higher tearing
energy appear to be more highly non-linear and strain-stiffening.
The most brittle materials, whose overall behavior approaches lin-
ear, lie closest to a one-to-one correspondance between cutting
and tearing energy. In quantitatively converting between the cut-
ting and tearing energies for all three classes of material response
we must account for both intrinsic failure onset and constitutive
response.

In addition to cutting and tearing, ultimate strength tests of
un-notched samples provide an additional measure of a material’s
failure response. They have the added benefit of simultaneously
characterizing information about a material’s finite deformability.
The quantities wb, σb, and λb are the toughness, stress at break,
and stretch at break and their relative proportions to one another
reflect a material’s constitutive response while their magnitudes
provide an indication of its intrinsic failure response (Fig. 2b-d).
Using Rayleigh’s method of dimensional analysis, we find that the
introduction of a dimensionless pre-factor that is a function of
these ultimate properties and the shear modulus µ quantitatively
and proportionally maps G∗cut and Gtear (Fig. 5a). This cutting-
tearing equivalency parameter ECT is defined as

ECT ≡
√

wb

µ

(
wb

σb(λb−1)

)2
. (2)

The powers 1/2 and 2 corresponding to each of the two dimen-
sionless terms along with a constant α = 7.2 arise from numerical
fitting§ subject to a constraint of linear proportionality between

§ Similar scaling is observed from a generic fit of the form Gcut = αwn1
b µn2 σ

n3
b (λb −

1)n4 G
n5
tear, where α and ni are fit parameters. We note that this more general fit con-

tains six fit parameters and we have fit only six major types of materials responses,

G∗cut and Gtear. Thus the relation

G∗cut = αECT Gtear, (3)

collapses on the line in Fig. 5a. This collapse is not possible for
other arbitrary combinations of parameters we tested. For highly
elastic silicones, Eqn. (3) enables estimation of the threshold cut-
ting energy from experimental tearing energies and ultimate ten-
sile properties or vice versa. It will be important to test the gen-
erality of this expression on more constitutive response types and
failure behaviors.

The cutting-tearing equivalency parameter is determined
heuristically, but can be better understood through its evaluation
using several classic constitutive models. In the limit of a lin-
ear material response, ECT is proportional to the strain at break,
εb = λb− 1. That is, for a linear material under uniaxial tension,
wb/µ ≈ 3

2 ε2
b = 3

2 (λb−1)2 and wb/(σbεb) = wb/(σb(λb−1)) = 1/2.

Thus ECT =
√

3
32 (λb − 1) (Fig. 5b, dark blue dotted line). For

a neo-Hookean solid, ECT differs little from the linear response
(Fig. 5b, teal solid line), but becomes non-monotonic in λb in the
case of a strain stiffening material as stretch approaches a limiting
value (Fig. 5b, solid lines of increasing saturation). We employ a
simple Gent model in Fig. 5b to capture the effect of a limiting
stretch, which produces behavior similar to that of Arruda-Boyce.
For this model, limiting stretch occurs when the first invariant of
the left Cauchy-Green deformation tensor I1 reaches a limiting
value Jlim +3 as illustrated by the strain energy density function

W =−µJlim

2
ln
(

1− I1−3
Jlim

)
. (4)

All three of these material responses are special cases in which
wb and σb are both proportional to µ, leaving ECT independent
of the modulus. For context, the calculated ECT values for each
of the materials tested here are provided in Fig 5b and Table 2.
Those that exhibit a finite Jlim according to a Gent fit of the uni-
axial stress strain response in Fig. 2c, are accompanied by a light,
dashed curve for that Jlim fit value.

We can also try to understand ECT from a comparison of the
physical quantities that comprise the dimensionless ratios wb/µ

and wb/[σb(λb−1)] in it. These ratios are similar, but not identi-
cal to, previous dimensionless quantities found in the literature.
For example, recently, the strength of soft elastic membranes was
modeled using a wb/µ-like threshold for hole growth.35 wb/µ

also shares some similarity with Ashby’s flexibility index σb/µ.36

Essentially it is a ratio of energetic toughness to stiffness. The
ratio wb/[σb(λb− 1)] normalizes the stored elastic energy by the
sum of the complementary strain energy¶ and the stored energy.
Visually, it is the fraction of the rectangle defined by the stress
and strain at break as swept out by the area under the actual
stress-stretch response. To our knowledge these dimensionless
groups have not previously been combined to describe the failure

given the similarity of the BPDMS materials.
¶ The principle of minimum complementary energy is typically used for linear elastic

materials.
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Fig. 5 Mapping cutting and tearing using the equivalency parameter, ECT . (a) Cutting energy is linearly proportional to the product of tearing energy
and ECT for the hyperelastic silicones tested. The fit constant α = 7.2 allows the data to be plot on a zero intercept line of slope one (black dotted).
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plots.

response of soft, deformable solids.

4.2 A minimum length scale for failure
Lake & Thomas described the failure threshold in polymer net-
works as being dictated by the energy released from the rupture
of a single molecular plane of polymer chains.32 This qualitative
picture of the minimum energy for surface creation is beginning
to be challenged. For instance, theories suggest it is associated
with massive bond breakage37 or that it should consider ener-
getic contributions from a few network layers neighboring the
failure plane.38 These suggest that the chain rupture required
for surface creation is not confined to a single molecular plane.
Recent experimental visualization of covalent bond breakage via
mechanophores finds that covalent bond scission occurs over a
diffuse volume near the crack in addition to the newly created
surface.39 The diffuse damage region reduces to the limits of res-
olution of the optical technique, ∼ 3 µm, in the absence of viscos-
ity. In our results, the transition to the cutting threshold response
occurs at an even smaller length scale, blade radii around 100 nm,
but still approximately an order of magnitude larger than an av-
erage mesh size in most cases.|| Several observations further sup-
port the idea that onset of this threshold arises from a localized
failure response deriving from the microstructural characteristics
of the polymer network:

• The length scale of onset L∗ appears to be unaffected by
the angle between the legs and is therefore a material re-
sponse.4

• L∗ is an order of magnitude smaller than both `e and `d ,

|| Only the unimodal network approaches, though it does not reach, the theoretical
mesh size.

the nonlinearity and dissipation length scales estimated from
bulk properties, respectively.

• L∗ is not governed solely by the presence of silica filler parti-
cles (∼ 100 nm), since it is similar for multi-modal networks
with and without filler (Sylgard 184 versus Solaris and Bi-
modal networks, respectively).

In support of the idea of a threshold damage volume for surface
creation, a modified Lake-Thomas theory,32 requiring failure of
all chains within the threshold length scale as opposed to a single
molecular plane, gives order-of-magnitude agreement with the
experimentally-observed threshold cutting energy G∗cut (Fig. 6).
Without the L∗-sized damage zone, Lake-Thomas theory underes-
timates G∗cut by an order of magnitude.

A critical element of the Lake-Thomas prediction is the mag-
nitude of the bond energy released upon chain scission. Lake-
Thomas theory predicts that the threshold energy for failure is
given by the expression32

GLT =

√
3
8

νx〈r0〉NxU (5)

where 〈r0〉 is the average distance between crosslinks that defines
the single molecular plane for failure. νx is the bulk density of
crosslinks and Nx is the average number of backbone bonds be-
tween crosslinks, each of which release a bond energy U when a
network chain is broken. We determine νx and Nx from a network
elasticity model39,40 and the stress-stretch curve (see ESI†). The
thickness of the molecular plane, which ranges from 5-15 nm,
comes from the expression 〈r0〉= l0

√
C∞Nx, where l0 is the length

of a backbone bond (0.165 nm for Si-O41), and C∞ ≈ 6.4 is the
Flory characteristic ratio for PDMS chains41 (see ESI† for 〈r0〉 val-
ues).

Recently, it has been suggested that the value for U used by
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Fig. 6 Threshold failure energy Gthreshold predicted using a threshold dam-
age volume (solid symbols, Eqn. (7)) and the traditional single molecular
plane of Lake-Thomas theory (open symbols, Eqn. (5)). Predictions are
compared to the experimentally observed threshold cutting energy G∗cut;
an exact match falls on the black dotted line of slope one defined by
Gthreshold = G∗cut. To illustrate possible deviation of G∗cut values from the
pure cutting energy, a light blue arrow and circular symbol are provided
for the pure cutting response of Syl-10:1. Error bars are the standard
deviation of all samples lying within the dotted plateau in Fig. 2a.

Lake & Thomas, the bond dissociation energy (≈ 7.36×10−19 J for
Si-O bonds41), provides a significant overestimate of the energy
released when the chain between cross-links breaks.39,42 A more
accurate estimation is obtained from the single strand stretch be-
haviors predicted by the modified freely-jointed chain model and
the associated enthalpic distortion energy per bond, Ue

42

U ≈Ue =
1
2

f 2
b
fs

l0, (6)

where fb is the breaking force of a main chain covalent bond and
fs is a characteristic stretching force. A typical breaking force for
a Si-O bond is fb ≈ 3.35 nN43,44 and the characteristic stretching
force may be estimated as fs = kKuhnb where kKuhn is the stiffness
of a Kuhn segment and b is the Kuhn length. We obtain values for
kKuhn and b by fitting experimental force versus extension data
for a single PDMS strand from the literature45 using the modified
freely-jointed chain model42,43 to find that kKuhn ≈ 12.9 N/m and
b ≈ 1.47 nm (see ESI†). As a result, Ue ≈ 4.89× 10−20 J, a fac-
tor of ∼ 15 less than the bond dissociation energy.** As a result,
the threshold failure values predicted by the Lake-Thomas model
fall an order of magnitude below the observed threshold cutting
energy (Fig. 6, Gthreshold = GLT within the gray region).

Motivated by the threshold in Gcut, we employ L∗ to enlarge
the damage zone beyond the molecular plane by replacing the

** This order of magnitude agrees with an estimation from the force-stretch response
of a single wormlike chain having average persistence length p ≈ 0.31 nm which
yields 1.7×10−20 J (see ESI†).

molecular plane, 〈r0〉, with it. This simple modification,

GLT,m =

√
3
8

νxL∗NxU =

(
L∗

〈r0〉

)
GLT (7)

restores agreement between the concept of molecular scission
proposed by Lake-Thomas and the threshold cutting energy in a
highly elastic material as quantified by G∗cut. Fig. 6 illustrates the
shift in the predicted threshold Gthreshold, where Gthreshold = GLT,m

within the light orange region. Agreement is indicated by prox-
imity to a dotted line of slope one.

Though all materials we test are highly elastic, the modified
theory best quantifies the response of the most brittle, least vis-
cous of these (BPDMS and diluted Sylgard 10:1) as evidenced by
their nearness to a line of slope one (Fig. 6). The approximation
appears to slightly underestimate the threshold cutting energy for
all other materials. However, it may also be that the measured
G∗cut is a slight over-estimation since no model materials or con-
ditions are perfect. First, there can never be a complete absence
of viscous or hysteretic effects. Thus, despite the very small re-
gion within which these effects may arise during cutting (small `e

and `d), they certainly do occur to some extent and would lead to
an increase in the force required to attain the minimum damage
zone and thus the corresponding failure energy. Second, though
we have made an effort to use a small angle θ between the legs,
practical considerations have required a larger value than that as-
sociated with a pure cutting response1 to maintain the consistency
of test conditions for all materials. Thus, we may have an addi-
tional tearing energy component T (Eqn. (1)). A concrete example
using Sylgard 184 10:1 illustrates this point. For this formulation,
we previously observed a pure cutting energy of ≈ 95± 10 J/m2

(θ = 11− 14◦),4 a small decrease from the value we report here
≈ 133 J/m2 (θ = 32±1◦). An arrow toward the circular symbol in
Fig. 6 indicates the deviation in the G∗cut. Both of these rationale
suggest that for some materials G∗cut may be a small overestimate
of the true threshold cutting response. However, they also provide
promising avenues for future inquiry.

4.3 Achieving a minimum damage zone with increasing
blade radius

Above the radius-independent cutting energy threshold, the en-
ergy required for steady-state cutting increases. We observe that
the sensitivity of this increase to blade radius depends on the ma-
terial being cut, with more stretchable samples requiring a higher
cutting force for an incremental increase in blade radius (nstiff in
Fig. 2 and Table 2). To describe the mechanism behind these ob-
servations, we adopt the concept of a high deformation zone gov-
erning the localized damage necessary for surface creation.7,9,12

We will show that when the threshold length scale L∗ determines
the size of this zone and the threshold cutting energy G∗cut sets the
magnitude of the strain energy density within the damage zone,
we quantitatively recover the experimentally observed sensitivity
of Gcut to R.

Using finite element simulation, we find that the size of the
damage zone relative to the blade radius leads to two indentation
force regimes, similar to the two Gcut regimes of experimental
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observation. The limits of the damage zone are determined nu-
merically by setting a threshold value for the strain energy den-
sity; any elements meeting or exceeding this threshold criteria
are accounted to be in the damage volume V . Fig. 7a illustrates
the normalized volume V/(R2t) of the damage zone and its rela-
tion to the applied normalized force per unit thickness F/(µR) for
simulation of a wedge with tip radius R indenting an elastic half-
plane of thickness t. Two sets of constitutive parameters, match-
ing Sol-1:1 (light blue) and Sol-4:1 (dark blue) are simulated.
Sol-1:1 exhibits a more neo-Hookean response, while Sol-4:1 ex-
hibits strain stiffening. When the size of the damage zone is large,
V/(R2t)� 1, the logarithmic slope approaches two and therefore

V/(R2t) ∼
(

F
µR

)2
making the required force to reach V indepen-

dent of R, or F ∼
√

V µ2/t. When the damage zone is small rel-
ative to the blade radius, V/(R2t) < 1 the constitutive response
of the solid governs the dependence as evidenced by the differ-
ence in slope for different materials on a log-log scale. The Sol-
1:1 like material shows a higher sensitivity of the required force
to the radius in comparison to the Sol-4:1 like material, qualita-
tively matching the experimentally-observed trend that the power
law dependence of Gcut on radius nstiff for Sol-1:1 is greater than
Sol-4:1. In effect, the more neo-Hookean, Sol-1:1 like material
deforms more easily around the applied blade, so achieving the
threshold damage zone size requires a larger force.

A critical component of this simulation is the choice of the
threshold value for the strain energy density that determines the
damage zone volume. We call this threshold wt . The two inden-
tation force regimes are only visible when the normalized critical
strain energy density wt/µ that sets the outer boundary of V cor-
responds to large deformation, λ & 2. Thus within V , the strain
energy density exceeds wt/µ and the material is highly deformed
λ � 2. The choice of wt also establishes the position of the curve
along the x-axis. The curve translates positive or negative when
wt/µ is increased or decreased, respectively (see ESI†).

To develop a quantitative comparison between the FE response
and the experimental data we begin with two assumptions: 1)
The minimum damage zone size is roughly determined by the
blade diameter at the onset of the cutting threshold, 2L∗, so that
Vmin = (2L∗)2t and 2) At the onset of the cutting threshold, the
normalized force per unit thickness matches that measured in the
cutting plateau. The former sets the reference point for the y-
axis in Fig. 7a at V/(R2t) = Vmin/(L∗

2t) = 4. The experimentally-
observed thickness-normalized cutting force value within the
plateau regime is given by F∗cut = f ∗cut/t. We determine that thresh-
olds of wt/µ = 25.4 and wt/µ = 98.9 for Sol-4:1 like and Sol-1:1
like materials, respectively, satisfy both requirements as indicated
by the dotted lines in Fig. 7a.

Next, we re-cast these indentation force results in terms of cut-
ting energy. For a constant applied tearing contribution, Eqn. (1)
yields

Gcut = T +
fcutλ̄

t
≈ T +Fcut (8)

where we have simplified the expression by noting that the ap-
plied pre-stretch is close to 1, λ̄ ≈ 1. Using this reference start-
ing point, the experimental conditions (T ), and material proper-

ties (µ, L∗), we predict Gcut versus R as shown in Fig. 7b which
aligns with the earlier presentation of the experimental results
in Fig. 2a. As noted previously, the more neo-Hookean Sol-1:1
exhibits a higher sensitivity to blade radius with a logarithmic
slope of nFE = 0.48 within the experimentally available radius
range R/L∗ ∼ 1− 2 and is nearly identical to the experimentally-
observed value nstiff = 0.53 (Fig. 7b, light blue dotted lines). Sim-
ilarly, the Sol-4:1 slope predicted by FE is lower and very close to
the experimentally-observed value, nFE = 0.27 versus nstiff = 0.34
for R/L∗ ∼ 1− 3, respectively (Fig. 7b, dark blue dotted lines).
For comparison, we include the experimental cutting energy data
(circles). Only the Sol-4:1 data are shifted to ‘fit’ the FE simula-
tions by modifying L∗ by ≈ 0.9L∗. This order-one shift factor has
no effect on the power-law dependence of the experimental data,
it simply shifts the points right. This small discrepancy between
FEA and experimental results may be due to a lack of precision
in L∗, which is limited to some extent by the blade radius values
available.

To provide further physical insight into the evolution of Vmin

with increasing force and radius, we visualize and compare the
FE near-tip deformation fields of the two materials in Figs. 7d
and e. The images correspond to a close-up of the deformation
near the tip of the needle as indicated by the insets in Fig. 7c.
In the left-most image of each panel, a blade of radius R/L∗ = 1
applies F∗cut sufficient to attain Vmin using each material’s respec-
tive threshold strain energy density cutoff wt/µ. When the blade
radius is tripled, R/L∗ = 3, the same force is no longer capable
of producing such a large damage volume (red region). Only
with increasing force is Vmin eventually attained at which point
we predict steady-state cutting to progress (fourth image in the
series). From the shape of the deformed damage zones, it is clear
that the more neo-Hookean, Sol-1:1-like material more read-
ily deforms to accommodate the blade. The necessary cutting
force to maintain Vmin at the increased radius 3R as depicted in
last of these images comes from Fig. 7a. The F/(µR) value at
R/L∗ = 3 is determined from the x-coordinate corresponding to
V/(R2t) = Vmin/[(3L∗)2t] = 4/9 via interpolation. We indicate the
position of the large blade radius threshold values in both Fig. 7a
and b using light-colored solid squares and a star or triangle to
indicate correspondence with the Sol-4:1 or Sol-1:1 like material,
respectively. The Sol-1:1 like material requires a cutting force
≈ 2.0F∗cut to achieve Vmin at R/L∗ = 3, while the Sol-4:1 like mate-
rial only requires ≈ 1.8F∗cut.

We conclude that for highly elastic materials under small-scale-
yield-like conditions, i.e., in which a dissipation zone ∼ `d is small
and thus contributes little to the observed response, the effec-
tive cutting energy is entirely governed by the ability to achieve a
threshold damage zone size ∼ `∗ of the order determined by the
blade radius at the onset of the cutting threshold L∗. The use of a
blade radius above the threshold length scale reduces the ability
of the applied cutting force to achieve the minimum damage zone
size. The reduction in effectiveness depends on the deformabil-
ity of the material being cut, with materials exhibiting a more
neo-Hookean response requiring more force and thus being more
resistant to cutting. These ideas are consistent with the cutting-
tearing equivalence parameter used to quantitatively link cutting
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and tearing energies.

4.4 A BPDMS Case study

We designed a series of four BPDMS elastomers (Section 2.1) as
a case study to probe the onset the cutting threshold L∗. An im-
portant initial consideration for this series of materials was that
their constitutive response prior to failure match since the non-
linear response was known to play a role in the sensitivity of Gcut

to radius outside of the threshold regime. Our initial aim was to
decouple the values of L∗ and nstiff, and thus, a set of unimodal
materials having different chain lengths Nx was insufficient since
a variable Nx alters the stress-strain response. However, our hope
of tuning L∗ using the series of BPDMS elastomers did not pro-
duce the anticipated results. Instead our results suggest several
interesting avenues for future inquiry.

First, all BPDMS formulations have a nearly linear response
while still exhibiting finite deformation (Fig. 2d). Such linear re-
sponses may be a compromise between a highly strain stiffening
response that leads to a higher Gtear than Gcut and a primarily
neo-Hookean response that leads to the reverse. BPDMS formu-
lations fall closest to direct correspondence between cutting and
tearing, exhibiting an equivalency factor of ECT = 0.14 to 0.2 for
all but the stretchiest 90s formulation (ECT = 0.25). It may be that
this range of equivalency factors provides an optimum for elastic
materials aiming to be equally resistant to both cutting and tear-
ing failure. Given Eqn. (3), a material that is equally resistant to
cutting and tearing would exhibit an ECT = 1/α = 0.14, which is
close to the range of BPDMS values and also consistent with the
ECT observed for Syl-10:1, which gives the best combination of
tearing and cutting resistance of all of the materials tested.

Second, the length scales at the onset of the threshold L∗ for
the BPDMS samples are not significantly different than those ob-
tained for the multi-modal commercial networks. Nor do they
differ from one another in a systematic way as one might expect
from the variation in long-chain length for each formulation. We
believe this may be due in part to resolution limitations of the
Y-shaped cutting technique. In the region in which these tran-
sitions occur, ≈ 100− 150 nm, we are limited by available razor
blade radii. To our knowledge and based on our measurements,
only the utility razor blade falls within this range (R ≈ 129 nm)
and it is challenging to precisely alter the radius through man-
ual blunting. Thus we are unable to make any conclusive claims
about a change in L∗ for the BPDMS samples as originally hoped.
However, the marked increase in L∗ for BPDMS relative to the uni-
modal network (Fig. 2a and Table 2) indicates that the damage
zone is greatly enlarged by this single change in microstructure,
to an extent that far outpaces an increase in average network
meshsize.

Two potential microstructural changes may be responsible for
the expanded damage zone: effective coordination number and
disorder in available chain lengths. Based on previous litera-
ture,46–50 it seems likely that for the highest short-chain concen-
trations (90s, 95s, and 98s), BPDMS exhibits significant kineti-
cally induced short-chain clustering. These ‘super-crosslink’ struc-
tures are linked together by long-chain lengths of 17200 g/mol,

28000 g/mol, and 43000 g/mol, respectively (Table 1). For
these formulations, the strain at break increases with decreasing
short chain concentration. This trend reverses for 80s, the next
available formulation given limitations in commercially avail-
able long-chains. At this lower short-chain concentration, pre-
vious work suggests the kinetically-induced clustering becomes
less significant and the enhancement in ultimate properties van-
ishes.47,50 For the potentially short-chain-clustered microstruc-
tures, any super-crosslink network would possess an effectively
larger coordination number for the long-chains which would
serve as the primary deformable network. Even without this in-
creased coordination number, all formulations possess a level of
disorder in available chain lengths due to their bimodal distri-
bution. Such disorder effectively engages two different length
scales when a linkage contains both short and long chains. Both
high coordination number and hierarchical linkage mechanisms
appear sufficient to increase the critical size of the near crack tip
regime contributing to failure L∗, consistent with previous the-
oretical predictions.38,51 Future work more directly controlling
network structure may provide the ability to control L∗ and could
lead to an approach to increase it. The latter would be expected
to improve a material’s failure properties.

5 Conclusions
This work looks at the cutting response of highly elastic silicones
and their failure response under more blunted loading conditions,
including blades of increasing radius and far-field tearing. We
demonstrate that when cracks are blunted, the attainment of lo-
cal damage criteria are mitigated by the nonlinear constitutive re-
sponse of the material. We provide evidence of a threshold dam-
age zone necessary for failure that extends beyond the molecular
plane postulated by Lake & Thomas.32 We emphasize that though
cohesive bond failure may also occur outside of this damage zone,
it is the cohesive failure within the damage zone that directly fa-
cilitates new surface creation. The quantitative effectiveness of a
new dimensionless group, the cutting-tearing equivalency param-
eter, and finite element simulation of blade radius-dependent in-
dentation, demonstrate that achieving this damage zone depends
on the deformability of the material. For example, more highly-
deformable materials stretch easily around a blade of increasing
radius and thus require more force to activate the threshold vol-
ume required for the damage zone. These two components of fail-
ure are represented in the new dimensionless parameter, which
combines both the ultimate failure properties and its nonlinear
response. Using the cutting-tearing equivalency parameter we
quantitatively map, for the first time, cutting energies to tearing
energies.

Our findings suggest a new direction in the search for failure
criteria in highly elastic soft solids. First, a critical, threshold dam-
age volume and strain energy density might be determined, e.g.,
using Y-shaped cutting to find the onset of the threshold cutting
response. The onset length scale and threshold energy would
then guide the choice of failure criteria in finite element software.
Like the simulations for blunted blades, failure occurs when the
net volume of the elements meeting or exceeding the threshold
strain energy density exceeds ∼ L∗2t. Open questions remain as
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to the role of sample thickness (all tests were performed in plane
stress) and the exact dimensions of the damage zone (we have as-
sumed V = (2L∗)2t here). Nevertheless, we believe this work has
provided a quantitative experimental-evidence-driven approach
toward establishing numerically implemented fracture criteria for
soft solids.
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